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The reproductive number, or reproduction number, is a valuable metric in understanding infectious disease
dynamics. There is a large body of literature related to its use and estimation. In the last 15 years, there has been
tremendous progress in statistically estimating this number using case notification data. These approaches are
appealing because they are relevant in an ongoing outbreak (e.g., for assessing the effectiveness of interventions)
and do not require substantial modeling expertise to be implemented. In this article, we describe these methods
and the extensions that have been developed. We provide insight into the distinct interpretations of the estimators
proposed and provide real data examples to illustrate how they are implemented. Finally, we conclude with a
discussion of available software and opportunities for future development.

infectious disease outbreaks; reproduction number; reproductive number; serial interval

Abbreviations: CI, confidence interval; COVID-19, coronavirus disease 2019; MERS-CoV, Middle East respiratory syndrome
coronavirus; SARS, severe acute respiratory syndrome; SIR, susceptible-infectious-recovered.

The reproductive or reproduction number, defined as the
average number of secondary cases generated by an infected
case, is an important quantity in infectious disease applica-
tions, with an expansive body of literature dedicated to its
estimation and the public health implications of estimates for
specific diseases. A notable use of this quantity is monitoring
the infectiousness and transmissibility of diseases during
outbreaks. For instance, in the severe acute respiratory syn-
drome (SARS) outbreak of 2003, estimates of the repro-
ductive number demonstrated the impact of World Health
Organization policies on reducing transmission (1). Other
examples include monitoring the transmission of Ebola out-
breaks (2–6), Middle East respiratory syndrome coronavirus
(MERS-CoV) (7), the 2009 H1N1 influenza pandemic (8, 9),
and the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pandemic (10, 11).

Estimates of the reproductive number are also used to
parameterize models to determine effective control and pre-
vention strategies. For example, Fraser et al. (12) showed
how the reproductive number, along with the amount of
presymptomatic or asymptomatic transmission, can be used
to determine the efficacy of control measures. Ferguson et al.
(13) showed the relationship between the reproductive num-

ber and strategies for containing an influenza pandemic in
Southeast Asia. Similar modeling exercises requiring accu-
rate estimates of the reproductive number exist for many
infectious diseases, including MERS-CoV, tuberculosis, and
malaria (14–17). These exercises can focus on finding trans-
mission hot spots, determining effective control policies, and
examining the impact of vaccines or other pharmaceutical
interventions.

Another use of the reproductive number is assessing
the probability of a pathogen’s becoming established upon
arrival in a new location. Such estimates were considered to
predict the risk of sustained outbreaks in countries outside
of China during the ongoing coronavirus disease 2019
(COVID-19) pandemic (18–20), and in West Africa during
the 2014–2016 Ebola outbreak (21–24). Many other appli-
cations and examples exist. We do not aim to provide a com-
prehensive summary here but simply to emphasize that the
reproductive number is a useful and important quantity to
estimate in infectious disease outbreaks. In this article, we
focus on approaches for estimating the reproductive number
in real time during outbreaks using case notification data.

There are many methods of estimating the reproductive
number. In general, one could group these methods into
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mathematical approaches, which tend to rely on the con-
struction of a mechanistic model describing the transmis-
sion of the disease, and statistical approaches, which use
existing data to derive estimators using probability theory.
The mathematical approaches are arguably the methods
most commonly used; however, statistical approaches are
increasingly being employed. Dietz (25) and Becker (26)
provide excellent summaries of many of these methods.
Additionally, Wallinga and Lipsitch (27) describe the rela-
tionship between the basic reproductive number, defined
as the average number of secondary cases an infectious
person will generate during the initial phase of an outbreak,
and exponential growth factors and generation intervals.
Further, Chowell and Nishiura (28) describe methods of esti-
mating the reproductive number for influenza, focusing on
structured models, branching process theory, and counting
process methods.

In the last 15 years, beginning with Wallinga and Teunis
(1), there have been substantial developments in statistical
approaches to estimating the reproductive number using
case notification data. These methods typically require an
estimate of the serial or generation interval, defined as the
time between symptom onset or infection in an infector and
symptom onset or infection in an infectee. This approach to
estimation, using case notification data, has broad appeal,
since these methods do not require specification of a disease-
or outbreak-specific approximating mechanistic model and
can be implemented with standard statistical software. How-
ever, because these approaches are relatively new and many
extensions exist, it can be challenging to implement and
interpret the different estimators. Here, we present a uni-
fying framework for understanding and interpreting exist-
ing estimators of the reproductive number that use case
notification data and describe important extensions to these
methods. We draw on our collective experience to synthesize
published methods that are most frequently used for this
problem. We describe existing software for implementing
these approaches and note instances where software does not
yet exist but would be beneficial.

NOTATION AND ASSUMPTIONS

We denote the case notification data by N(t), t =1, . . . , T ,
where t = 1 is the first observation time and t = T is the last
time with available data. In most cases, the time unit is days;
however, for settings such as tuberculosis or human immun-
odeficiency virus, the time unit might more appropriately be
weeks or months. Data availability might also lead to the
use of a coarser time scale for some outbreaks, such as the
2014–2016 Ebola outbreak, in which weekly case reports
were common (21, 24). Let β(t, τ) be the infectiousness
of an individual at calendar time t, where τ denotes the
time since disease onset. We also denote the distribution of
the serial interval, the time τ between disease onset in an
infector and disease onset in an infectee, by w(τ|θ), where θ
are the parameters of the probability density function used
to describe the serial interval. These parameters, θ, might
be the shape and rate parameters of a gamma distribution,
for example, or probabilities of a multinomial distribution.
To facilitate efficient estimation, the serial interval is often

truncated to have a maximal length of k time units; that is,
w(τ|θ) = 0, if τ > k. For instance, serial intervals longer
than 10 or even 7 days are unlikely in influenza (29). We note
that the more biologically relevant generation interval, the
time between infection in an infector-infectee pair, is more
desirable, but because infection times are rarely observed,
we often use the serial interval. The serial interval is an
adequate surrogate for the generation interval if the times
between infection and onset of symptoms are independent
and identically distributed (30, 31).

The methods we describe use the following assumptions
in their original formulation:

1. The serial/generation interval and the reproductive num-
ber are statistically independent of each other.

2. The reproductive number follows a Poisson distribution.
3. All infectors appear before those they infect.
4. Individuals mix homogenously.
5. There is a closed population.
6. There is complete case reporting.

The first 3 assumptions are fundamental to the derivation of
these methods. The last 3 have been relaxed or well-studied
and their impact on estimation is understood, as we describe.

DEFINITIONS OF REPRODUCTIVE NUMBERS

We first note that there are many variants of the reproduc-
tive number that can be estimated. The basic reproductive
number, R0, refers to the average number of secondary cases
an infectious person will generate during the initial phase of
the outbreak when one might assume that everyone in the
population is susceptible to disease and no control measures
are in place. The effective reproductive number, Rt (denoted
R(t) in equations below), is a time-varying version of R0 that
reflects the changing levels of immunity in the population
and control measures limiting transmission.

When estimating the time-varying reproductive number,
we find it useful to distinguish between the case reproductive
number and the instantaneous reproductive number (32).
The instantaneous reproductive number describes the aver-
age number of secondary cases generated by persons who
are infectious at time t, assuming no changes to current con-
ditions. In contrast, the case reproductive number estimates
the total number of secondary cases who were infected by
an individual with symptom onset at time t. Though similar
estimates of Rt will typically be obtained if the transmission
dynamics are not changing dramatically, their interpretation
is fundamentally different. One way to understand the dif-
ference between these values is by examining the expected
number of cases at time t. When using the instantaneous
reproductive number, one can denote the expected number
of cases at time t as

E [N(t)] = R(t)w(1)N(t − 1) + R(t)w(2)N(t − 2)

+ · · · + R(t)w(k)N(t − k)

=
k∑

j=1

R(t)w(j)N(t − j) .
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Here the instantaneous reproductive number is an attribute
of the outbreak at time t. In contrast, utilizing the case
reproductive number, we have

E [N(t)] = R(t − 1) w(1)N(t − 1)

+ R(t − 2) w(2)N(t − 2)

+ · · · + R(t − k) w(k)N(t − k)

=
k∑

j=1

R(t − j) w(j)N(t − j) .

In this setting, the reproductive number is an attribute of
cases infected at time t and its value is linked to the timing
of disease onset for an infectious individual. The differ-
ence is subtle, but important for estimation. If a change in
transmission dynamics occurs at some point (e.g., vaccine
introduction), both estimators will be impacted at potentially
different times (32). In our example, we show that this is
not straightforward and further study through simulation is
needed. Another key difference is that the case reproductive
number is sensitive to right-censoring, as its estimate at time
t, Rt, is dependent on observing all cases infected by persons
with onset time t. Therefore, incomplete observation of all
potential infectees of cases at time t will lead to under-
estimation of Rt. The instantaneous reproductive number
assumes there is no change to infectiousness and leverages
prior cases to estimate Rt. It is particularly important that
investigators understand how to correctly interpret estimates
of the reproductive number to ensure that the impacts of
interventions on the outbreak are appropriately modeled.

Below, we describe estimators of the basic reproduc-
tive number using case notification data. We then summa-
rize estimators of the time-varying effective reproductive
number, drawing parallels, where possible, with the basic
reproductive number estimators. We illustrate these methods
with 2 examples. Finally, we describe extensions to these
methods.

ESTIMATORS OF THE BASIC REPRODUCTIVE NUMBER

Estimators of the basic reproductive number focus on
using data during the exponential growth phase of an out-
break, assuming that all people are susceptible to infection.
As we above, Wallinga and Lipsitch (27) have described how
using the exponential growth rate during this period, along
with an estimate of the mean generation time, can be used
to derive an estimator of R0. We now describe alternative
approaches to estimation during this period that leverage
daily case counts.

Sequential Bayes’ estimator of the basic reproductive
number

Bettencourt et al. (33) introduced a Bayesian approach to
estimating R0 by updating the reproductive number estimate

as data accumulate over time. Bayes’ theorem is used to
derive the following expression.

P(R0|N(0), . . . , N(t + 1))

= P(N(t + 1) |R0, N(0), . . . , N(t)) P(R0)

P(N(0), . . . , N(t + 1))
. (1)

Here P(R0) is the prior distribution of R0, which is param-
eterized with the prior information obtained from the pos-
terior distribution of estimation through day t. P(N(t +
1)|R0, N(0), . . . , N(t)) is typically parameterized using a
Poisson model. The denominator is a normalizing constant
that can be ignored in estimation. The posterior estimator
of R0 is obtained through successive application of Bayes’
theorem using the case report data. Notably, this approach
does not require an explicit estimate of the serial interval
but does assume that the infectious period is exponentially
distributed, as it is derived from a susceptible-infectious-
recovered model, which may be an oversimplification.

Maximum likelihood estimation

White and Pagano (34) derived a likelihood function for
the stochastic process by assuming that people infect others
according to a Poisson distribution with a parameter given
by R0, and that those infected become symptomatic and
infectious τ time units later. The joint likelihood, which
involves both the serial interval and R0, is given by

L(R0, θ) =
T∏

t=1

e−μ(t)μ(t)N(t)

N(t)!
, (2)

where μ(t) = R0

min{k,t}∑
j=1

N(t − j)w(j|θ). Using case notifica-

tion data, estimates for both R0 and θ (i.e., the serial interval)
can be obtained using numerical optimization routines or
Bayesian approaches, where contact-trace data can be incor-
porated (35, 36). If numerical optimizers are used, Griffin
et al. (37) have shown that joint estimation of the serial
interval and R0 is challenging when either the reproductive
number is extremely high (larger than 7) or the coefficient of
variation of the serial interval is large. However, Bayesian
implementations, particularly when limited contact tracing
information is used, lead to more stable estimates (35, 36).

If the serial interval is known, the maximum likelihood
estimator for R0 is

R0 =
∑T

t=1 N(t)
∑T

t=1
∑min(t,k)

j=1 w(j)N(t − j)
. (3)

This bears a strong resemblance to a branching process
estimator. Nishiura (38) describes a modification of the
branching process estimator where he uses the mean serial
interval to group daily influenza case data and then estimates
the reproductive number through time. Here the N(t) can
be grouped into generational data denoted by M(s), where
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s indexes generations. Then the estimator given in equation
3 does not require inclusion of the serial interval terms, and
w(j) and N(t) are replaced by M(s).

TIME-VARYING REPRODUCTIVE NUMBER

Instantaneous reproductive number, Rt

Fraser (32) developed an estimator of the time-varying
instantaneous reproductive number. This estimator is de-
rived using the so-called renewal equations. The renewal
equations intuitively describe the number of cases at time
t as a function of the number of prior cases multiplied by
their infectiousness,

N(t) =
k∑

τ=0

β(t, τ) N(t − τ) , (4)

where β(t, τ) describes infectiousness as noted above. Fraser
shows that if one assumes independence between calendar
time and the serial interval, then β(t, τ) becomes

β(t, τ) = R(t)w(τ) . (5)

Substitution of this quantity in the renewal equation (equa-
tion 4) leads to an estimator of the instantaneous reproduc-
tive number:

R(t) = N(t)
∑k

τ=1 w(τ) N(t − τ)
. (6)

This is similar to the White and Pagano estimator shown in
equation 3, and it can be shown that if the renewal equation
is generalized to the period where R(t) is described by R0,
then equation 4 becomes

T∑

t=1

N(t) =
T∑

t=1

k∑

τ=1

R0w(τ) N(t − τ) , (7)

and the estimator for R0 is identical to equation 3. Therefore,
generalizations and results obtained for one estimator are
readily translatable to the other.

The time-varying estimator of Rt can be stabilized and
smoothed by estimating Rt over a longer time window rather
than in a 1-time step (39, 40). The basic reproductive number
can be seen as a special case of this, when we assume that the
instantaneous reproductive number is unchanged over the
course of the initial phase of an outbreak. It is also possible
to use a Bayesian approach to estimating the reproductive
number that allows for the estimation of credible intervals
(39). A similar formulation is derived by White and Pagano
(34) using their likelihood with a gamma prior for R0.

Case reproductive number, Rc(t)

Wallinga and Teunis (1) derive an estimator of the case
reproductive number by formulating the problem from a

network perspective. Here the probability that case i with
symptom onset at time t, denoted by ti, was infected by case
νi with symptom onset at time tνi is given by the probability
of a serial interval of length ti − tνi , w(ti − tνi |θ). Then
assuming that cases are only infected by 1 individual, all
probabilities for 1 infectee are reweighted to sum to 1 and
become relative probabilities of infection, qi,νi = w(ti −
tνi |θ)/

∑
j∈s,s<ti

w(ti − tj|θ). The case reproductive number for

a person developing symptoms on day t is the sum of the
relative probabilities implicating that person as a potential
infector,

Rc (ti) =
∑

j<ti

qti j. (8)

This assumes that each potential infection is parameterized
by the relative probability of infection. Then the expected
number of infections is the expected value of each of these
independent Bernoulli events. As we noted above, a draw-
back of this estimator is its sensitivity to right-censoring,
meaning that in order to estimate Rt one must observe all
potential secondary cases arising from infectors at time t,
implying that we observe all cases up to N(t + k). The
mathematical simplicity of the Wallinga and Teunis estima-
tor makes this approach appealing. A Bayesian implemen-
tation of this approach allows for estimation closer to real
time (9, 41), meaning that we can obtain an estimate for
the reproductive number that is more relevant to the last
date of data collection and minimize the impact of right-
censoring.

For estimation of R0 from an effective reproductive num-
ber, one can average the estimates of Rc(t) or Rt over the
period of exponential growth.

EXAMPLES

We illustrate these methods using data from 2 outbreaks:
1) 610 cases of influenza A/H1N1 reported in La Gloria,
Mexico, over a period of 34 days in 2009 (42) and 2) 1,702
cases of SARS reported in Hong Kong, China, over a period
of 96 days in 2003 (1). Figure 1 illustrates the estimation of
R0 using the sequential Bayes estimator and the White and
Pagano maximum likelihood estimator. We show the case
notification data during the exponential growth period (the
first 15 days for influenza and the first 39 days for SARS)
of the outbreaks and estimates of R0 derived using the data
available at each time point. For example, on day 15 of the
influenza outbreak, we estimate R0 using data collected up to
day 15. While the estimates are substantially different early
on, by the peak of the epidemics, they begin to converge.
The White and Pagano maximum likelihood estimate for
influenza on day 15 of the outbreak is 1.99 (95% confidence
interval (CI): 1.66, 2.33), while the sequential Bayes esti-
mate is 1.65 (95% CI: 1.21, 2.06). Similarly, for SARS, the
White and Pagano maximum likelihood estimate on the 39th
day is 2.32 (95% CI: 2.08, 2.58) and the sequential Bayes
estimate is 2.54 (95% CI: 1.89, 3.18).
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Figure 1. Estimates of the basic reproductive number
(
R0

)
derived using data cumulatively collected during the exponential growth phase of

the outbreaks for the 2009 H1N1 inf luenza pandemic (A) and the 2003 severe acute respiratory syndrome outbreak (B). The sequential Bayes
(SB) and White and Pagano maximum likelihood (ML) estimators are shown. Estimates for each day depict the estimate of R0 obtained using
data available at that point. The horizontal dotted line is positioned at the critical value of 1 for R0.

We estimate time-varying versions of the reproductive
number using the case and instantaneous reproductive
number estimators. In Figure 2, we include smoothed
(7-day) and unsmoothed implementations of the instanta-
neous Rt. Overall the estimates are similar, though we note
that the unsmoothed instantaneous reproductive number
estimates tend to reach subcritical levels more slowly than
the Wallinga and Teunis estimator and smoothed estimates.
Further research is needed to understand how the differences
in estimates from different estimators relate to the actual
disease dynamics. Software code is provided on GitHub
(43) and in the Web Appendix (available at https://doi.
org/10.1093/aje/kwaa211).

EXTENSIONS

Work has been done to relax the original model assump-
tions, including homogenous mixing, no imported cases, and
incomplete reporting. In reality, relaxing model assumptions
is of interest, as this provides increased understanding of the
potentially important and realistic dynamics of an outbreak.
For instance, understanding the meaningful differences
in reproductive numbers between groups of individuals
(defined by space, demographic factors, or pathogen strain)
is helpful in mounting an appropriate targeted response
to an outbreak. Accounting for movement into and out of
the population is important given the interconnectedness of
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Figure 2. Epidemic curve data and time-varying estimated reproductive numbers (Rt) derived using an instantaneous estimator, a smoothed
instantaneous estimator, and the Wallinga and Teunis (WT) estimator for the 2009 H1N1 inf luenza pandemic (A) and the 2003 severe acute
respiratory syndrome outbreak (B). The horizontal dotted line is positioned at the critical value of 1 for Rt. Inst, instantaneous.

spatially distinct populations, leading to a more accurate
sense of the relative importance of native transmission ver-
sus imported transmission.

Incomplete reporting

Two patterns of incomplete data have been described and
studied: 1) undiagnosed cases, such as those missed because
of reporting issues (44); and 2) the more challenging prob-
lem that we never observe outbreaks that do not take hold in
a population. The latter inevitably leads to overestimation of
the basic reproductive numbers (45). For the first scenario,

White et al. (46) describe the implications of incomplete
case report data and show that the reproductive number is
unbiased if the fraction of cases reported remains constant
through time. Bias in the estimate will occur if the reporting
fraction changes over time—for instance, when awareness
of an outbreak increases health-care-seeking behavior and
testing. As an example of accounting for this, White et al. (8)
use hospital data from the 2009 influenza A/H1N1 pandemic
to estimate the reporting fraction.

For the second scenario, it has been documented that
missingness will initially lead to overestimation of R0 (45–
47). Obadia et al. (48) propose a correction to account for
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this for the Wallinga and Teunis estimator, the sequential
Bayes estimator, and the White and Pagano maximum like-
lihood estimator. For the final scenario, Rebuli et al. (47)
show analytically how one can modify the estimator for
the reproductive number by conditioning on observing an
outbreak in the setting of a susceptible-infectious-recovered
model. We are not aware of extensions of this approach to
estimators based on case notification data.

Inclusion of contact-trace data and genetic data

Recognizing that estimates of the serial interval or gener-
ation interval are often not reliable, nonexistent, or variable
between outbreaks, there has been an effort to incorporate
contact-trace data while estimating the reproductive number.
At a minimum, one can estimate the serial interval from
contact-trace data and then estimate the reproductive number
with a 2-step process using the estimators described above
(e.g., see Bettencourt and Ribeiro (33)). Using appropriate
statistical approaches to estimation is important in order to
account for issues in these data, including censoring and
truncation (29, 49–52).

Alternatively, one can modify the above estimators,
incorporating this information in estimation. For instance,
contact-trace data are included either explicitly in the like-
lihood (35) or as prior information for the serial interval
(36) using a Bayesian implementation of the White and
Pagano estimator. The time-varying instantaneous reproduc-
tive number has been modified to incorporate data describ-
ing the times of symptom onset in known infector-infectee
pairs (53). In that framework, interval-censored data can
be included (i.e., lower and upper bounds on the timing of
symptom appearance).

There has been a growing interest in methods incorpo-
rating pathogen genetic information to estimate the repro-
ductive number. Leavitt et al. (54) and Klinkenberg et al.
(55) present distinct approaches that leverage whole genome
sequencing data.

Heterogeneity

The issue of heterogeneity in transmission has been dis-
cussed extensively in the modeling literature. This can take
the form of identifying superspreaders (e.g., persons who
have a much higher than average capacity to infect), highly
transmissible pathogen strains, geographic regions with
greater transmission rates, and demographic groups that
are more efficient transmitters. The goal of this work is not
only to improve estimators and potentially reduce standard
errors but also to add meaningful insights into the under-
lying disease dynamics. The proposed approaches require
information describing interactions between heterogeneous
groups. For age groups, social contact surveys, such as those
carried out by Mossong et al. (56), have been commonly
used. Three main approaches exist for age-specific estima-
tion of the reproductive number.

Glass et al. (57) modified the Wallinga and Teunis and
White and Pagano methods using a next-generation matrix
to accommodate 2 age groups. White et al. (58, 59) modified
the probabilities of transmission in the Wallinga and Teunis

estimator to accommodate a larger number of age groups.
Moser et al. (60) provide a Bayesian implementation of the
White and Pagano estimator of R0 that uses contact infor-
mation between heterogeneous groups as prior information.
The Bayesian implementation allows increased flexibility to
incorporate contact-trace data for serial interval estimation,
as well. Modifying the instantaneous reproductive number
to account for heterogeneity by modifying the renewal equa-
tion would be a straightforward extension.

Imported cases

In outbreak settings, it is highly likely that infected per-
sons will move into the population being studied, contrary to
the assumptions of the methods we have presented. During
the 2009 H1N1 pandemic, many infected persons arrived in
the United States from Mexico, the pandemic’s suspected
point of origin. All of the approaches we have presented have
been modified to accommodate imported cases requiring
identification of persons infected elsewhere, typically using
travel history data. Estimators are modified by removing
these individuals as potential infectees but retaining them as
infectors.

The sequential Bayes estimator in equation 1 was modi-
fied to analyze pandemic influenza (61, 62). The Wallinga
and Teunis method has also been modified by Paine et al.
(61) and Cowling et al. (9). White et al. (8) modified the
White and Pagano method to study pandemic influenza in
the United States in 2009. More recently, Thompson (53)
derived a real-time estimator of the instantaneous reproduc-
tive number and demonstrated its use on data for MERS-
CoV in Saudi Arabia.

The impact of this adjustment will generally be a decrease
in the estimated reproductive number. Of particular interest
are scenarios in which an outbreak might be considered
uncontrolled when in fact the reproductive number is below
1 (e.g., see the MERS-CoV example in Cauchemez et al.
(41)).

SOFTWARE

The methods described are most commonly implemented
using R software (63). We describe 2 packages for these
methods (Table 1). The R0 package implements the sequen-
tial Bayes, White and Pagano, and Wallinga and Teunis
estimators and provides confidence intervals. Adjustment
for imported cases is also permitted (48).

The EpiEstim package (53) estimates the instantaneous
reproductive number, as well as the case reproductive num-
ber. Contact-trace data for informing the serial interval,
imported cases, and smoothing of the reproductive num-
bers over a sliding window can be used to estimate the
instantaneous reproductive number (39, 53). An R Shiny app
(64) is also available for implementing these methods. The
EpiEstim package and its accompanying software applica-
tion have been used for estimating pathogen transmissibility
during outbreaks of influenza (65, 66), Ebola (67, 68), Zika
(69), and COVID-19 (70, 71).

Software with which to implement methods accounting
for heterogeneity has not been disseminated. This would be
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Table 1. Statistical Approaches to Estimation of the Effective Reproductive Number and the Basic Reproductive Numbera

Approach (Reference No.) Estimator Extensions R Software Package(s)

Estimators of R0

White and Pagano (34)—serial
interval known

R0 =
∑T

t=1 N(t)
∑T

t=1
∑min(t,k)

j=1 w(j)N(t − j)
Imported cases (8, 47)
Bayesian implementation

(35, 36)
Heterogeneity (58)

R0 package (47) function:
est.R0.ML, option
unknown.GT = F

White and Pagano (34)—serial
interval unknown

Maximize the likelihood w.r.t. R0 and θ:

L(R0, θ) =
T∏

t=1

e−μ(t)μ(t)N(t)

N(t)!
,

where

μ(t) = R0

min{k,t}∑
j=1

N(t − j)w(j|θ).

Imported cases (8, 47)
Bayesian implementation

(35, 36)
Heterogeneity (58)

R0 package (47) function:
est.R0.ML, option
unknown.GT = F

Bettencourt et al. (33) P(R0|N(0), . . . , N(t + 1)) =
P(N(t + 1)|R0, N(0), . . . , N(t))P(R0)

P(N(0), . . . , N(t + 1))

Imported cases (8, 60) R0 package (47) function:
est.R0.SB

Estimators of Rt

Instantaneous reproductive
number (32, 39)

R(t) = N(t)
∑k

τ=1 w(τ)N(t − τ)
Importation (51)
Smoothing (39)

EpiEstim package (39, 52)

Case reproductive number (1) Rc(ti) = ∑
j<ti

qti j,

where
qi,νi = w(ti − tνi |θ)/

∑
j∈s,s<ti

w(ti − tj|θ)

Heterogeneity (56, 57)
Importation (47)

R0 package (47)
est.R0.TD function
EpiEstim package (39, 52)

a Notation: N(t), number of new cases at time t; R0, basic reproductive number; Rc(t), case reproductive number at time t; R(t), instantaneous
reproductive number; w(j|θ), probability of a serial interval of length j, where θ are the parameters of the serial interval density function.

an important addition, although of course it would require
relevant data.

CONCLUSION

Accurate estimation of the reproductive number is impor-
tant during infectious disease outbreaks. Timely estimates of
this number are most likely obtained using case notification
data and tools that are easy to implement, as is being done
in the current COVID-19 pandemic. It is noteworthy that
these data are not always available or of sufficient quality,
meaning that data must be preprocessed in order to use these
methods. We have summarized advances over more than
15 years to create statistical tools for this problem and de-
scribe important extensions to these methods. The growth
of digitized health systems and increasing molecular test-
ing present exciting opportunities to create estimators that
will provide more granular understanding of transmission.
As emerging infectious disease outbreaks occur, rapid dis-
semination of data and generation of reproductive number
estimates is important for a timely and appropriate response.
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