Skip to main content
. 2020 Oct 9;190(4):611–620. doi: 10.1093/aje/kwaa211

Table 1.

Statistical Approaches to Estimation of the Effective Reproductive Number and the Basic Reproductive Numbera

Approach (Reference No.) Estimator Extensions R Software Package(s)
Estimators of  Inline graphic
White and Pagano (34)—serial interval known Inline graphic Imported cases (8, 47)
Bayesian implementation (35, 36)
Heterogeneity (58)
R0 package (47) function: est.R0.ML, option unknown.GT = F
White and Pagano (34)—serial interval unknown Maximize the likelihood w.r.t. Inline graphic and Inline graphic:
Inline graphic,
where
Inline graphic
Imported cases (8, 47)
Bayesian implementation (35, 36)
Heterogeneity (58)
R0 package (47) function: est.R0.ML, option unknown.GT = F
Bettencourt et al. (33) Inline graphic Imported cases (8, 60) R0 package (47) function: est.R0.SB
Estimators of  Inline graphic
Instantaneous reproductive number (32, 39) Inline graphic Importation (51)
Smoothing (39)
EpiEstim package (39, 52)
Case reproductive number (1) Inline graphic ,
where Inline graphic
Heterogeneity (56, 57)
Importation (47)
R0 package (47)
est.R0.TD function
EpiEstim package (39, 52)

a Notation: Inline graphic, number of new cases at time Inline graphic; Inline graphic, basic reproductive number; Inline graphic, case reproductive number at time Inline graphic; Inline graphic, instantaneous reproductive number; Inline graphic, probability of a serial interval of length j, where Inline graphic are the parameters of the serial interval density function.