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Abstract

Hierarchy is a major organizational principle of the cortex and underscores modern computational 

theories of cortical function. The local microcircuit amplifies long-distance inter-areal input, 

which show distance-dependent changes in their laminar profiles. Statistical modeling of these 

changes in laminar profiles demonstrates that inputs from multiple hierarchical levels to their 

target areas show remarkable consistency, allowing the construction of a cortical hierarchy based 

on a principle of hierarchical distance. The statistical modeling that is applied to structure can also 

be applied to laminar differences in the oscillatory coherence between areas thereby determining a 

functional hierarchy of the cortex. Close examination of the anatomy of inter-areal connectivity 

reveals a dual counterstream architecture with well-defined distance-dependent feedback and 

feedforward pathways in both the supra- and infragranular layers, suggesting a multiplicity of 

feedback pathways with well-defined functional properties. These findings are consistent with 

feedback connections providing a generative network involved in a wide range of cognitive 

functions. A dynamical model constrained by connectivity data shed insights into the 

experimentally observed signatures of frequency-dependent Granger causality for feedforward 

versus feedback signaling. Concerted experiments capitalizing on recent technical advances and 

combining tract-tracing, high-resolution fMRI, optogenetics and mathematical modeling hold the 

promise of a much improved understanding of lamina-constrained mechanisms of neural 

computation and cognition. However, because inter-areal interactions involve cortical layers that 

have been the target of important evolutionary changes in the primate lineage, these investigations 

will need to include human and non-human primates comparisons.
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1. Introduction

Hierarchy as an organizational feature of the brain has been a recurrent theme since the 

evolutionary theory of neurological disorders of John Hughlings Jackson (1835–1911), 

following his observations of positive and negative symptoms in his patients (York and 

Steinberg, 2011). The neurobiology of cortical hierarchy was explored by the pioneering 

work of David Hubel and Torsten Weisel when they characterized the receptive field 

properties of simple, complex and hypercomplex neurons across areas of the visual cortex 

(Hubel and Wiesel, 1962). Following the work of Rockland and Pandya (1979) a myriad of 

connectivity studies in the cortex found additional evidence of hierarchical organization, 

allowing Felleman and Van Essen to propose the first hierarchical model of the cortex 

(Felleman and Van Essen, 1991), thereby providing a framework for modern concepts of 

feedforward (FF) and feedback (FB) processes. The notion of hierarchy has become 

considerably generalized and for example can be considered to be the major concept linking 

biological and artificial intelligence (Hawkins and Blakeslee, 2004). Convolutional deep 

neural networks have a clear hierarchical organization, with convergent, FF connections 

passing information from lower to higher layers, and divergent FB connections shaping 

plasticity in the connections from lower layers (LeCun et al., 2015). But what exactly is the 

significance of hierarchy in the brain? Hierarchy has been extensively studied in terms of 

ranking of cortical areas with respect to a number of criteria including, gradients of 

structural and functional features, as a progression of scales or as a topological sequence of 

projections (Hilgetag and Goulas, 2020). Here we take a diametrically opposing view. 

Rather than simply considering hierarchy as a ranking of cortical areas, we address what it 

means in terms of monosynaptic inter-areal connectivity. In line with the tenet that the 

explanation of how the brain works demands an account of what neurons do, and that 

functional interactions of cortical areas is assured by neuronal activity relayed between areas 

by axons, we confine our discussion of hierarchy to the description of the neuronal 

properties of inter-areal relations. We propose that the structural and functional markers of 

hierarchy define the integration of long-range inputs into each local circuit. Future 

investigation of these markers are expected to provide insight to the cellular mechanisms 

underlying hierarchical processing. A critical aspect of these regularities concerns the spatial 

distances governing interactions between cortical neurons, which we and others have shown 

obey metabolic constraints in terms of wire minimization underlining the spatial embedding 

of the cortex (Markov et al., 2013). We discuss the functional implications of the Dual 

Stream Architecture (Markov et al., 2014b) in terms of FF and FB processing and where 

future investigations are expected to provide insight into the cellular mechanisms underlying 

hierarchical processing. Finally, we cast FF and FB relations in terms of predictive 

processing theory and evoke the importance of top down generative networks.
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2. Hierarchy – signatures of inputs to local circuits.

In 1989 Douglas, Martin and Whitteridge published a landmark study that proposed a 

canonical microcircuit for the neocortex (Douglas et al., 1989) (Figure 1 and 10b). A 

common misconception of the canonical microcircuit is that it constitutes solely a 

description of the interlaminar wiring patterns of the cortex. In fact, it is much more a theory 

that sets out to explain the electrophysiological properties of the cortex in terms of local 

connectivity, in particular with respect to within-laminar connections. In an effort to nail 

down the transformation of the thalamic input, in vivo intracellular recordings were made in 

area V1 in cat cortex. This showed that minute inputs from the LGN are amplified by 

recurrent excitation in layer 4 neurons (Latawiec et al., 2000). Subsequent quantification of 

the synaptic components of the local circuit showed that high levels of within-layer recurrent 

excitation is a characteristic feature of the local circuit (Figure 1) (Binzegger et al., 2009). 

These experiments showed that the role of inhibition was not to carve out the selectivity of 

the neuron response but rather to exert a control over the amplitude of the response and 

therefore to maximize the inhibitory potentials in the optimal receptive field response 

(Douglas et al., 1995; Douglas et al., 1989). Subsequent work showed that there is a weak 

orientation response in the input to the cortex, meaning that the primary role of the recurrent 

excitation is the amplification of a signal and not its creation (Ferster et al., 1996).

For many years research on cortex was predominantly in carnivores and non-human 

primates, leading to the notion of the cortical column as a fundamental component of 

functional organization (Mountcastle, 1995). In these studies, electrophysiological 

recordings from electrode penetrations made perpendicular to the cortex found a conserved 

function in the depth of the cortex in passing from pia to white matter (Hubel and Wiesel, 

1962; Mountcastle, 1957). In the visual system there were expectations that the columnar 

organization of the cortex would be both functional and structural, since physiologically 

demonstrated ocular-dominance columns appeared to co-localize with cortical territories 

labeled by transynaptic labeling following tracer injections in the eye (Hubel and Wiesel, 

1977). However, close examination revealed important discrepancies in such a 

correspondence (da Costa and Martin, 2010)), suggesting that the link between cortical 

structure and function is to be found at a much finer scale. Thanks to work in the mouse 

visual cortex using the molecular tools that are available in this species, it has been 

confirmed that cortical responses to thalamic input are indeed the consequence of an 

amplification (Harris and Mrsic-Flogel, 2013) (Lien and Scanziani, 2013) via the local 

recurrent excitation (Cossell et al., 2015; Douglas et al., 1995; Ko et al., 2011). These 

studies built on earlier findings of highly nonrandom features of synaptic connectivity in 

local cortical circuits, proposing that there is a skeleton of strong connections in a sea of 

weak connections (Song et al., 2005). Later it was shown that the rare strong connections in 

the lognormal distribution of synaptic weights are between neurons with similar receptive 

fields, meaning that neurons in the visual cortex listen most closely to a subset of their 

synaptic inputs (Cossell et al., 2015). These findings explain earlier observations showing 

that ongoing activity of a neuron (so called spontaneous activity) reflects the functional 

architecture (i.e. the backbone of strong connections) in which it is embedded (Tsodyks et 

al., 1999). The emerging picture is that layers 4, 3 and 2 neurons are organized into 
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subnetworks so that the selectivity of the amplification is ensured by constraints at the scale 

of dendritic spines (Lee et al., 2016).

The principal wiring property of the canonical circuit is the recurrent excitation that is 

observed in all of the cortical layers including layer 4 (Binzegger et al., 2004). The relevance 

of the canonical microcircuit theory for understanding inter-areal processing became 

apparent when cortical connectivity was quantified. In fact, 80–90% of the connections of 

the cortex are in the local circuit spanning 1–2mm in the visual cortex (Markov et al., 2011). 

Except for the adjacent cortical area, the structural weight of the average input from a distant 

source area to a target area is several orders of magnitude less than the thalamic input 

(Markov et al., 2014a). These observations lead to the notion that amplification by local 

recurrent excitation is a general phenomenon, that allows selection and recombination of 

relatively small afferent signals (Douglas and Martin, 2007a, b). For instance, top-down 

signaling of selective attention multiplicatively modulates sets of sensory neurons 

(McAdams and Maunsell, 1999; Treue and Maunsell, 1996). In this manner, selective 

amplification by local circuit dynamics leads to all-or-none task switching (Ardid and Wang, 

2013).

Early anatomists, working principally in non-human primates, distinguished between rostral 

directed connections that originate chiefly in the supragranular layers and terminate in layer 

4 (Cragg, 1969; Kennedy and Bullier, 1985; Lund et al., 1975; Martinez-Millan and 

Hollander, 1975; Rockland and Pandya, 1979; Spatz et al., 1970; Van Essen and Zeki, 1978; 

Wong-Riley, 1978) and caudal directed connections that mostly originate from infragranular 

layers and terminate outside of layer 4 (Kaas and Lin, 1977; Kennedy and Bullier, 1985; 

Kuypers et al., 1965; Tigges et al., 1973; Wong-Riley, 1978). In a landmark study, Rockland 

and Pandya (Rockland and Pandya, 1979) were the first to formulate inter-areal connectivity 

in terms of hierarchy and suggested that the laminar organization of cortical afferents and 

their terminals indicates the sequence of information processing in cortex. These authors 

proposed that connections originating from supragranular layers and terminating in layer 4 

by analogy with the main thalamic input to cortex constitute the FF pathway channeling 

sensory information to cortical areas carrying out higher-order analyses. By contrast 

connections arising from the infragranular layers, by analogy with descending projections to 

subcortical structures, correspond to FB connections and were postulated to enable higher 

order areas to be able to modulate the activity of lower level areas (Rockland and Pandya, 

1979).

3. Models of Hierarchy.

The classification of pathways between areas as FF and FB helped motivate the investigation 

of the role of the cortical network in terms of FF pathways shaping receptive fields in their 

target areas (Hubel, 1995) and FB pathways relaying contextual information (Gilbert and Li, 

2013; Zipser et al., 1996). How the cortical network related to the mosaic of cortical areas 

was given substance by Felleman and Van Essen’s demonstration that the layout of cortical 

areas corresponded to a distributed hierarchy (Felleman and Van Essen, 1991). In their 

seminal study these authors established a definition of FF and FB connections largely 

employing the criteria of Rockland and Pandya (1979), and although principally based on 
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laminar patterns of anterograde labeling they were able to stipulate criteria so as to include 

retrograde labeling therefore enabling them to define pathways with respect to findings 

reported in a large number of publications (Figure 2A). Pairwise comparisons of the 

connections linking areas using these criteria revealed a high regularity; connections that 

were classified as FF were largely reciprocated by FB connections, allowing the authors to 

establish a distributed hierarchy across multiple streams in the macaque visual cortex shown 

in Figure 2B. Because of the many parallel pathways and given that hierarchical levels were 

defined arbitrarily, it meant that the precise ordering of cortical areas was ill-defined. 

Computational modeling showed that there were over 150,000 equally plausible solutions to 

the Felleman and Van Essen Model (Hilgetag et al., 1996) (Figure 2C).

A solution to the indeterminacy of the Felleman and Van Essen model could be overcome by 

an objective localization of hierarchical level. A suggestion that this might be the case was 

the observation that injections of retrograde tracers in a target area in one of the early visual 

areas generated a progressive decrease in the numbers of labeled FB neurons in 

supragranular layers in source areas with increasing physical rostral distance (Figures 3A) 

(Kennedy and Bullier, 1985). Quantitative measures of interareal connectivity showed that 

patterns of retrograde labeling were highly consistent across different brains, provided that 

labeled neurons are summed across the full extent of a projection zone, defined as the region 

in a particular source area which contains projections to an injected target area (Figure 

3B,C). Subsequently injections in cortical areas at higher hierarchical levels generated a 

progressive increase in the numbers of labeled FB neurons in supragranular layers with 

increasing physical caudal distance. In this manner FF and FB pathways exhibited opposing 

gradients of projection neurons (Barone et al., 2000; Kennedy and Bullier, 1985; Markov et 

al., 2014b). These observations led to the definition of an index of this gradient based on the 

proportion of Supragranular Labelled Neurons or SLN (Barone et al., 2000; Vezoli et al., 

2004). Because these changes are highly consistent across brains, the smooth gradients of 

inputs from neurons in different layers and areas to a target area lead to the derivation of a 

hierarchical distance rule (Figure 3B).

The transition from a binary model of hierarchy to one based on hierarchical distance had 

important consequences. One way of thinking about these connectivity gradients (Figure 

3A) is that they represent gradual changes in the composition of inputs to the local 

microcircuit of a cortical area that is dependent on physical distance. Elsewhere we have 

shown that input strength to cortical areas declines exponential with distance (Ercsey-Ravasz 

et al., 2013). In terms of hierarchy, the strong nearby connections are near-lateral and with 

increasing distance connections are progressively more FB or FF in nature.

If these changing inputs to the local microcircuit represent the structural signature of 

hierarchy it is legitimate to wonder if they have a functional correlate? If this is the case, 

then Pascal Fries and his team reasoned that one can derive a functional hierarchy (Bastos et 

al., 2015b). The hierarchical distance rule is based on the fact that supragranular layers 

primarily send FF projections and infragrananular layers FB projections. In the visual 

system, superficial and deep layers are characterized by relatively strong gamma and alpha/

beta oscillations, respectively (Buffalo et al., 2011). Furthermore, whereas in early visual 

areas, gamma oscillations are relatively strong (Gray et al., 1989), beta oscillations tend to 
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be strong in higher areas like those in parietal cortex (Brovelli et al., 2004; Scherberger et 

al., 2005). These observations lead to the prediction that in the visuo-parietal system 

interareal synchronization in the gamma frequency band mediates FF and interareal 

synchronization in the alpha- and beta-frequency band mediate FB influences. Granger-

causality was used to quantify functional FF and FB interactions, thereby allowing the 

strength of these interactions to be quantified for individual frequency bands. Neuronal 

populations show spontaneous fluctuations over time that are driven by brain rhythms in 

different frequency bands, such as theta (3–8Hz), alpha (8–12Hz), beta (12–30Hz) and 

gamma (30–80Hz). Note, neocortical rhythms do not comprise band-limited sinusoidal 

oscillation but typically describes noisy oscillations with energy in a wide frequency range 

(Burns et al., 2011; Spyropoulos et al., 2020). Frequency-specific directed influences of 

rhythmic synchronization are correlated with hierarchical distance, FF pathways are 

characterized by synchronization in the theta (4 Hz) and gamma-band (60–80 Hz) and FB in 

the beta-band (14–18 Hz) (Bastos et al., 2015b). These observations mean that the structural 

signatures to the microcircuit are indeed paralleled by functional signatures (Bastos et al., 

2015b). However, whereas the structural hierarchy is fixed theses authors were able to show 

that activity patterns underlying functional hierarchy exhibit task dependent dynamics.

Using empirical connectivity data as a structural substrate, Mejias et al. (Mejias et al., 2016) 

built a dynamical model of multi-regional macaque monkey cortex endowed with a laminar 

structure. The model captures stochastic fast oscillations in the gamma frequency range in 

the superficial layers, and lower-frequency (alpha) oscillations in the deep layers. 

Importantly, in contrast to regular oscillators, such network rhythms are quite irregular and 

noisy, compatible with the notion of sparsely synchronous brain rhythms (Wang, 2010), 

which provides a unifying framework for explaining both population oscillations and 

Poisson-like highly variable spike trains of single neurons. The model accounts for the 

distinct signatures of frequency-dependent Granger causality that reflect FF versus FB 

signaling, and reproduces the experimentally deduced neural population dynamics that are 

consistent with the anatomically defined hierarchy. Therefore, this model provides a 

computational platform for theoretical investigations of the interplay between feedforward 

and feedback processes.

Both structural and functional hierarchies show that the regularities stemming from laminar 

distributions of connections and the signals they confer are remarkably consistent. In the 

following section, we address the extent of this consistency in order to formalize how 

hierarchy inputs to an area are shaped by distance.

4. Hierarchy – Input Consistency.

The notion of hierarchy implies order or rank, so that a prerequisite to determining if there 

are hierarchical relations between cortical areas requires determining if order relations can 

be defined between them. For example, the Felleman and Van Essen hierarchy was based on 

the binary classification of FB/FF relations between areas defined by laminar origin and 

termination of projections (Felleman and Van Essen, 1991). A FF projection from area A to 

B implied that B was ordered after A. Similarly, a FB projection from B to A would also be 

consistent with the above FF relation in assigning B after A. While in a hierarchy we would 
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expect the two criteria to agree that might not in fact be the case. On a simple level, 

disagreement could be taken to define equality of ordinal levels in the sense that equality is 

defined as those numbers, A and B, that simultaneously satisfy A ≥ B and A ≤ B. 

Alternatively, distinct hierarchical orders might arise: one on the basis of FF laminar 

projections, the other on the basis of FB. These observations become important when the 

data supporting multiple laminar FB/FF pathways are analyzed.

The criteria for determining hierarchical rank described above are based on the properties of 

projections that define relations between areas. Alternatively, one can consider properties 

that are intrinsic to an area, such as cortical thickness, neuron density, soma size, spine 

count, spine density and dendritic tree size. These properties have been shown to display a 

smooth variation across the cortex that allows ranking of areas in accordance with the 

gradation principle of Sanides (Barbas, 2015; Sanides, 1972). Because these properties vary 

across the cortex, a hierarchical ranking can be established simply by ordering the areas 

according to the property. This distinction leads us to consider that criteria for building 

cortical hierarchies can be divided into two broad classes that we shall refer to as node-based 
and link-based (Figure 4A).

Here it is useful to draw an analogy with social networks. A hierarchy in a social network 

implies that the actors show specific kinds of interactions with each other (link-based). 

Hierarchy implies that those close to each other in a hierarchy show stronger interactions 

with each other than actors that are distant in the hierarchy. More information can be gauged 

from the nature of the interactions: We expect that someone high in the hierarchy (a boss) 

will show a more directive communication pattern to workers lower in the hierarchy. The 

workers, in turn, will show a different ascending communication pattern, e.g. asking more 

questions. Thus, a hierarchy can be constructed by studying the way in which people interact 

with each other, and knowing a hierarchy could in principal allow us to predict these 

interactions. By analogy, the SLN can be seen as a measure that directly quantifies the 

nature of the interactions between brain areas, based on the laminar projection patterns. 

Interestingly and as we described above, these laminar projection patterns also relate to 

certain functional interaction patterns (FF gamma and FB alpha/beta influences). In addition, 

social hierarchy might also be gauged from properties of the people in the hierarchy 

themselves. For instance, one expects the boss of the company to have the largest office, 

whereas the workers at the bottom to share an office and have smaller desks (node-based). In 

some sense, one could argue however, that the node-based view is based only on indirect 

markers and is ultimately grounded in the interaction link-based view.

There are critically important differences for constructing hierarchies between node and 

link-based information. By definition, node-based relations depend only on a value intrinsic 

to the node, not the relations between nodes so they give no information on the symmetry or 

otherwise of inter-areal relations. By contrast, ranks based on links are expected to show 

reciprocity, so that if there is FF pattern from area A to area B, a FB pattern is expected from 

area B to area A. Node based criteria are defined between any two areas independently of 

whether or not a connection is actually present. Link-based criteria can provide information 

on asymmetric relations, provided they are directional and are strictly defined between areas 

only when there is a direct connection. Nevertheless, hierarchical ordering between 
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unconnected areas can be achieved through indirect connections. Generally, link-based 

hierarchy describes the connections that are carrying information between areas and 

therefore the manner in which the connections and activity from source areas are integrated 

into the local circuit of the target area.

In order to define a hierarchical distance scale, i.e., that is not just ordinal, a distance 

function, d has to be defined. This function d should transform whatever anatomical or 

physiological measure one is using into a consistent measure of hierarchical distance across 

cortical areas. For example, Figure 4B shows a hypothetical distance scale on which 4 areas, 

A, B, C, D, are arranged. Suppose that hierarchical distances are estimated based on 

measures derived from tracer injections in areas A and B. The injection in area A provides 

information about hierarchical distances to areas B, C and D and the injection in B to areas 

A, C and D. A consistent measure of hierarchical distance, d, would generate the same 

estimate of distance, dAB, between areas A and B or, formally, we would expect that dCA – 

dCB = dDA – dDB. This is easily derived from the two equations in Figure 4B that show for 

two areas, C and D, the expected relation between the hierarchical distances of a common 

area to C or D to two areas sites, A and B. For common projections X, plotting dXA against 

dXB should fall along a line of unit slope with intercept dAB. The question is how to define 

the distance function d.

In contrast to the binary measure of hierarchy in the Felleman and Van Essen model, SLN is 

a continuous measure on the interval (0, 1), thus providing a measure of the degree of 

feedforwardness/feedbackness. A binary description treats a projection as FF (FB) if its SLN 

is greater (less) than 0.5. Using simply the SLN differences as a hierarchical distance 

measure, the Barone et al., 2000 study was able to reproduce nearly all of the features of the 

Felleman and Van Essen model based on the SLN values from injections in just two areas, 

V1 and V4. A notable exception is that the Barone et al. 2000 study placed the frontal eye 

field (FEF), this prefrontal area, below the early extrastriate visual area V4. The SLN value 

from FEF to V4 was above 0.7 which placed V4 at higher hierarchical levels. Subsequent 

physiological studies confirmed an FEF role in early visual processing (Moore and 

Armstrong, 2003; Schall, 2015), thus justifying its relatively low hierarchical level. The 

unusual FF pattern for such a caudally directed projection was further confirmed in other 

studies (Pouget et al., 2009) and pertains to a specific link-category on which we expand 

later.

While differences in SLN establish a determinate hierarchical distance measure between 

areas, the measure is not necessarily consistent in the manner described in Figure 4B. As the 

measure is defined on the interval (0, 1), SLN differences for two areas projecting to a third 

area could be quite different from those to another more distant area. An ideal measure 

would project the interval (0, 1) to a scale where differences remain linear. This is 

commonly accomplished in statistical models, such as generalized linear models (GLM), by 

means of a logit or probit transformation (Figure 4C) that map the unit interval onto the real 

line. As the figure demonstrates, with the proper scaling both of these transformations yield 

rather similar mappings.
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Figure 5 shows a set of scatter plots for SLN values of common projections for all area pairs 

between each of 11 visual areas injected with retrograde tracer (Markov et al., 2014b). The 

SLN values are plotted on probit transformed axes. For many of the area pairs, the point 

distributions are reasonably well described by a line of unit slope (dashed blue in each 

graph), as predicted by a consistent measure of distance, i.e., g(SLNj) = g(SLNi)+ c, where c 

is a constant. Given the similarity of the transforms, it is not surprising that the logit 

transformation yields virtually the same linear patterns between area pairs. Thus, this 

indicates that the ratio of supra- and infra-granular projections follows a gradient across the 

cortical areas and constitutes a global signature of hierarchical distance among these areas.

Is this laminar pattern of connectivity specific to the visual system or is it a more general 

principle of organization of FF and FB pathways in the brain? In support of the latter 

hypothesis, Figure 6 shows paired scatter plots of SLN values for a set of 8 somatosensory 

and motor areas in the same format as Figure 5. As in the visual system, the transformed 

SLN values, here by the similar logit function, provide evidence of a consistent distance 

measure in the hierarchical organization among these areas.

To quantify the consistency displayed in these pairs plots, we proposed a model to estimate 

hierarchical distances based on SLN values, but as we argue below, the model is quite 

general in its application. In short, we suppose that we can assign hierarchical levels, hi and 

hj, to all area pairs i and j, based on a measure of differences between properties linking the 

areas. For example, in the case of SLN, we suppose

g SLNi
p − g SLNj

p = ℎi − ℎj,

where g applies a logit or probit transformation to SLN values, from an injection into area p 
that receives projections from areas i and j. This suggests a formalism similar to a GLM with 

a binomial family. The SLN is taken as a binomial variable (neurons are found in the upper 

or lower cortical layers) and the sum of neurons in both compartments is used as a weight.

The key feature of the model that relates the estimates of hierarchy to the biological measure 

(i.e. the transformed SLN values) is the incidence matrix, X, of the cortical graph. The 

incidence matrix of the graph is defined to have a column for each node and a row for each 

link. In each row, all values are 0 except for the two nodes of the link, taking on values of −1 

and 1, respectively for source and target, if the link is directed. The product of the incidence 

matrix and the vector of hierarchical values, h, maps the differences in hierarchical value 

between two areas with the differences between the transformed SLN, such that:

g SLNi
p = Xh

where the left side of the equation is the difference between transformed SLN values of the 

source area i and the injection site p. The vector h contains the hierarchical coefficients to 

estimate and its length is equal to the number of columns of the model matrix. The model as 

defined is not identifiable because the sum of every row equals 0, but by dropping one 
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column, for example, area V1 in the visual hierarchy, the hierarchical coefficients can be 

estimated with the area corresponding to the dropped row fixed at a hierarchical level of 0.

This resembles a logistic or probit regression problem. However, these models yield 

standard errors for the estimated coefficients that are unrealistically small. Alternatively, we 

have used a beta-binomial model; this arises naturally as a binomial model in which the 

response, which in the current context is the expected SLN value, has variability greater than 

that specified by the binomial distribution and its distribution is described by a beta 

distribution (Lesnoff and Lancelot, 2012). For present purposes, the model can be 

reparameterized to include a dispersion parameter that better models the overdispersion 

typically observed in neural counts (see (Markov et al., 2014a) for further details). Once the 

statistical model is specified, the coefficients are estimated by maximum likelihood. Note 

that because numbers of neurons are used in the model and not just the SLN proportions, 

this method generates a weighted hierarchy.

The formalization is quite general. For example, if instead of SLN, a binary variable is used 

simply specifying whether a connection is of a FF or FB type, then the model corresponds to 

the original problem that Felleman and Van Essen solved. We have found that fitting the 

model in this fashion leads to coefficients with much larger standard errors (Figure 7A), 

thus, providing an alternate demonstration of the indeterminacy or more limited information 

on hierarchy contained in purely binary relations. Thus, the use of a quantitative measure of 

hierarchy leads to a more exact solution (Figure 7B).

To summarize, a qualitative assessment of a hierarchical gradient is initially evaluated 

visually by choosing a (possibly transformed) measure of the hierarchical difference 

between area pairs and using pairs plots to assess the pairwise consistency of the distance 

measure. If the evidence looks promising, the hierarchical values are obtained by fitting a 

model that maps the hierarchical estimates to the biological measure of the gradient via the 

network incidence matrix. If a suitable probability distribution can be assigned to the 

biological measure, the solution can be obtained by maximum likelihood, but other methods, 

for example introducing Bayesian priors, might be applied in appropriate circumstances.

The visual hierarchy estimated from our model is shown in Figure 8A and resembles 

qualitatively the Felleman and Van Essen model (Felleman and Van Essen, 1991). In 

contrast, the levels are continuously distributed. Here we have split FEF into area 8L and 8M 

corresponding to regions involved in small and large saccades, respectively. Area 8L 

occupies a low position in the hierarchy while 8M is several levels higher. The goodness of 

fit of the model is indicated by plotting the empirical SLN values against those predicted by 

the model (Figure 8B) and shows that the model accounts for a high proportion of the 

variance in the data. The functional implications of this model have been explored in several 

contexts (Bastos et al., 2015b; Chaudhuri et al., 2015; Magrou et al., 2018) and observations 

indicate that it is applicable to anterograde tracing data from the mouse (D’Souza et al., 

2020).

The use of a transformation of SLN to estimate hierarchical distance imposes strong 

constraints on inter-areal SLN relations. We demonstrate this in Figure 8C by using the logit 
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transform, which performs quantitatively nearly identically to the probit transform (Figure 

4C), but allows expression of the hierarchical relations in terms of ratios of projection 

strengths. The model defines hierarchical distance, hij, between two areas, i and j, as the 

difference between the logit of SLN values for their projections to a target area, p, shown in 

the top equation. For the logit, this distance is just the natural log of the ratio of ratios of 

supra- to infragranular projection strengths from areas i and j to p (orange arrows in Figure 

8C, left). If the hierarchical distance measure is consistent, we expect that ratio to be the 

same for projections to any other area, q, (blue arrows in Figure 8C, left) as shown by the 

equation below the diagram. A simple rearrangement of this identity demonstrates that the 

ratio of projections from area i to areas p and q (orange arrows in Figure 8C, right) should be 

the same for any other area j, projecting to areas p and q. Thus, the hierarchical model we 

propose implies strong invariances in the ratio of FF to FB projection strengths from 

common inputs and outputs across areas. We further hypothesize that these invariances 

impose constraints on the exchange and stability of information flow across the cortical 

hierarchy.

One might suppose that when simultaneous retrograde tracer injections are made in 

reciprocally connected areas that the pair of areas would display a reciprocal FF-FB relation. 

That is to say, the origin of the majority of projections from one area would arise from upper 

layers and the principal origin of the reciprocating projections from lower layers. This 

arrangement would naturally lead to the hierarchical regularities that we observe. However, 

this regularity is not imposed by our model, nor is it always found to occur. In effect, this is 

what explains the surprising observation (noted above in the hierarchy derived in Figure 8A) 

of a prefrontal area like 8L at the same hierarchical level as early visual areas V3 and V4. As 

expected, the projections from several lower order visual areas, e.g., V4 and TEO, to area 8L 

originate in upper layers signifying FF, projections. However, 8L projects back to these areas 

through FF projections also originating in upper layers (Barone et al., 2000; Markov et al., 

2014b). We designate such FF-FF connections as strong loops (Crick and Koch, 1998). They 

correspond to the situation described earlier in an order relation that when A ≥ B and B ≥ A, 

then A = B.

In the Felleman and Van Essen model, FF (FB) projections connect upstream (downstream) 

areas in a bottom-up (top-down) fashion placing hippocampus, anterior temporal and 

prefrontal areas at the top and occipital areas at the bottom of the visual hierarchy. As such, 

this model described two main counterstreams involved in hierarchical processing within the 

visual system: a rostro-caudal gradient of FB projections reciprocated by a caudo-rostral 

gradient of FF projections. Interestingly, in the data base of visual areas on which the 

Felleman and Van Essen model was based, only one pathway was reported – between FEF 

and CITd (dorsal part of inferior temporal cortex) that corresponds to a strong loop. This led 

Crick and Koch (Crick and Koch, 1998) to speculate that such configurations were forbidden 

in cortical organization. However, we have identified a significant number of strong loops in 

our data base. Figure 8D shows how the log10 FLN varies as a function of distance estimated 

through the white matter from the source area to the target injection site, referred to as white 

matter (WM) distance), replotted from Ercsey-Ravasz et al. (Ercsey-Ravasz et al., 2013). 

The beige points correspond to those connections that participate in strong-loops i.e. area 

pairs for which SLN is greater than 0.5 in both directions. For reference, the saturation of 
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these points indicates their SLN values with less saturated points indicating a higher SLN, as 

shown by the inset color bar. As expected, most of the SLN values near 1 cluster to the right 

as more long distance connections. There is a fair amount of scatter among the points but 

they do display a distance rule (blue regression line) just as the rest of the connections do 

(black regression line). Interestingly, the strength of the strong loop projections is on average 

greater than the rest of the projections. This suggests that they are likely to play a unique 

role in cortical computation. What that role is currently remains a mystery. However, there is 

experimental evidence in favor of an attentional role concerning the strong-loop between 

FEF and V4. FEF projections can drive attentional response in V4 (Moore and Armstrong, 

2003), through selective gating of V4 receptive-fields (Armstrong et al., 2006). Further 

evidence points to the involvement of fast rhythmic synchronization during FEF attentional 

modulation of V4 visual responses (Gregoriou et al., 2012; Gregoriou et al., 2009), strongly 

suggesting a supragranular origin (Bastos et al., 2015a; Markov et al., 2014b).

The results reveal a high-degree of consistency of the structural regularities underlying 

cortical hierarchy in the sensory cortex. But how generalizable are these findings across the 

more anterior regions, particularly in frontal and prefrontal cortex (Badre and D’Esposito, 

2009; Choi et al., 2018)? One of the few studies that has addressed the structural hierarchy 

with tract tracing of the prefrontal cortex (Goulas et al., 2014) found little evidence of the 

rich rostral to caudal hierarchical organization that has been reported in human imaging 

studies (Badre and D’Esposito, 2007; Koechlin et al., 2003). The controversial issue of 

frontal cortex and hierarchical control shows promise of resolution via a revision of the 

concept of a unitary model ensuring a unidimensional gradient. Recent reports favor distinct 

networks that are proposed to interact thereby ensuring a global hierarchical structure 

(Schumacher et al., 2019). Nevertheless, the mismatch between the multistage cascade 

architecture mediating a temporal organization of cognitive control and inter-areal 

connectivity contrasts with the situation in the visual cortex where there is a smooth increase 

in receptive field size ascending the Felleman and Van Essen cortical hierarchy (Roelfsema 

and de Lange, 2016). The mismatch reported in the prefrontal cortex is between the concept 

of a smooth and gradual rostral-caudal organization found in the imaging studies and the 

connectivity as found in the collated and binary data base. What about the relation of SLN 

across prefrontal areas? In Figure 9A, the SLN pairs plots for the prefrontal cortex show an 

encouraging agreement with that described in visual cortex. The hierarchical scale values 

estimated from the statistical model described above (Figure 9B) seem to support a rostral-

caudal organization with F1 at the bottom and areas 10 and 24c (the most anterior limbic 

region) at the top. Note, analysis based on more complete coverage of the frontal cortex 

might give significantly improved results.

5. Dual stream Architecture and its functional significance.

In the preceding section we showed that the contributions of supra- and infragranular layers 

in the projections across hierarchical levels were highly consistent. The consistency of our 

measure of hierarchical distance, in conjunction with the known differences in oscillatory 

properties of laminar compartments of the cortex, suggests that FF and FB interactions are 

not only anatomically distinct, but (i) use specific frequencies for communication and (ii) 

play specialized roles in cortical computation. Here we address how these functional 
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properties relate to the detailed anatomical properties of FF and FB pathways. In the light of 

recent findings showing FF and FB constitute distinct pathways in both the upper and lower 

layers constituting a Dual Stream Architecture (Markov et al., 2014b), leads to the 

hypothesis that FB signals in upper and lower layers have distinct roles in information 

processing.

There are a number of reasons for expecting that supra- and infragranular layers might house 

different FF and FB pathways. During corticogenesis the supragranular compartment is 

generated by a primate-specific germinal zone (Smart et al., 2002), exhibiting uniquely 

complex lineages (Betizeau et al., 2013; Dehay et al., 2015; Lukaszewicz et al., 2005), 

findings that have consequently been amply confirmed in human corticogenesis (Geschwind 

and Rakic, 2013). These specialized developmental origins of the supragranular layers are 

linked to the observed expansion of these layers in primates culminating in human 

(Cahalane et al., 2014; Sousa et al., 2017), and a diversification of cell-types, which we 

speculate underlies the observed coding properties of these layers in the adult primate cortex 

(Tang et al., 2018; Vinje and Gallant, 2000; Wang and Kennedy, 2016; Willmore et al., 

2011). A number of studies have shown that supragranular layers exhibit sparse coding in 

which large numbers of cells are characterized by low levels of activity and a sensory 

stimulus activates only few neurons (Barth and Poulet, 2012; Crochet et al., 2011; Haider et 

al., 2013; Harris and Mrsic-Flogel, 2013; Petersen and Crochet, 2013; Tang et al., 2018). In 

a sparse code information is encoded at any instant by the spiking of a small number of 

neurons, as opposed to a dense code where overall activity is high and information is 

encoded by variation in firing rate as observed in the infragranular layers (Sakata and Harris, 

2009). A sparse code reduces redundancy and is arguably more efficient. Studies indicating 

sparse coding in supragranular layers find evidence of higher levels of recruitment of 

inhibitory drive in these layers via fast spiking PV+ neurons (Hu et al., 2014), which 

supports the presence of distinct frequency channels for FB and FF communication (Bastos 

et al., 2018; Bastos et al., 2015b; Michalareas et al., 2016). In addition, sparse coding, 

supragranular neurons in area V1 showed more complex and specific selectivity than 

expected for primary visual cortex (Bonnefond et al., 2017).

A more detailed description of the laminar organization of inter-areal connectivity suggests 

that variation of SLN with distance has complex origins concerning inter-areal connectivity 

in sublayers of the cortex. Exhaustive examination of inter-areal connectivity shows, that 

whereas canonical FB streams have been traditionally allocated to infragranular layers, a 

robust supragranular FB stream is in addition found in layer 2 in all areas examined in the 

extrastriate visual cortex of the macaque (Figure 10A) (Markov et al., 2014b). In addition to 

the layer 2 FB, we found some evidence of a layer 5 FF stream. Hence, in both upper and 
lower compartments there is a counter stream leading to the term dual counterstream 

architecture. Interestingly, the two FB streams in the supra and infragranular layers will 

impact differently the canonical microcircuit (Figure 10B) (Douglas et al., 1989). The strict 

segregation of FF and FB streams was hypothesized by Ullman in his counterstream model, 

which he proposed allows a bi-directional search for optimal matches between descending 

and ascending pathways (Ullman, 1995, 2000).

Vezoli et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Closer examination of the individual streams showed that each obeys a unique distance rule. 

In all streams labeled cell counts decline with WM distance, however the rate of decline is 

characteristic for a given stream. In this way, the classical FB stream in layer 6 of the 

infragranular layers has the most gradual decline so that these FB connections span the 

biggest distance in the cortex. This contrasts with the layer 2 FB, which shows a much 

shorter space constant. Hence it is the combination of the space constants of the layers 2 and 

6 FB streams that leads to the observed SLN values going up stream from near to far-distant 

areas (See Figure 11). The classical FF stream in L3 is also long-distance stream, but 

significantly less than the FB layer 6 stream, thus leading to the observation of the greater 

reach of FB pathways compared to FF pathways (Markov et al., 2014b).

Hence, the dual counterstream architecture shows that the relative rate of decline in 

individual streams determines the way that SLN is modulated by WM distance. In the 

previous section (Hierarchy –input consistency) we showed that the agreement between SLN 

values across hierarchical levels is relatively constant across the extrastriate macaque cortex, 

but less so for the prefrontal cortex. These differences between frontal and posterior regions 

could be driven by two sets of factors. Firstly, quite simply the space constant can change in 

individual layers so that the two regions sample supra- and infragranular layers over 

different WM distances. For example, if the difference in space constants of layer 2 and 6 

FB streams are reduced then so are the SLN differences and there will be a reduction of the 

hierarchical distance as such between a group of areas with a common target. A second 

factor could be the identity of cells in the two streams. Comparison of the gene expression 

across species has revealed that some genes in rodents that are exclusively expressed in deep 

layers are expressed in the supragranular layers of primates (Zeng et al., 2012). Such 

changes in the laminar phenotype could perhaps occur across regions meaning that the layer 

2 FB pathway in the prefrontal cortex may not correspond to the same identities as the FB 

pathway in extrastriate cortex.

6. Functional characteristics of FF and FB pathways.

In the present review we propose that cortical hierarchy can be gauged from the nature of the 

interactions between different brain areas, in the same manner that hierarchies in social 

networks reflect the nature of interactions between people. Crucially, our measure of 

hierarchical distance shows that SLN values of area pairs are highly consistent across 

multiple hierarchical levels. This consistency in conjunction with the known differences in 

oscillatory properties of laminar compartments of the cortex suggests that FF and FB 

interactions are not only anatomically distinct, but (i) use specific frequencies for 

communication and (ii) play specialized roles in cortical computation. Here we address how 

these functional properties relate to the detailed anatomical properties of FF and FB 

pathways.

As described above functional interactions between brain areas are distance dependent 

(Bastos et al., 2015b; D’Souza et al., 2016; Michalareas et al., 2016; Richter et al., 2018; van 

Kerkoerle et al., 2014). Granger-causality was used to quantify functional FF and FB 

interactions, thereby allowing the strength of these interactions to be quantified for 

individual frequency bands. Neuronal populations show spontaneous fluctuations over time 
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that are driven by brain rhythms in different frequency bands, such as theta (3–8Hz), alpha 

(8–12Hz), beta (12–30Hz) and gamma (30–80Hz). As already noted above, neocortical 

rhythms do not comprise band-limited sinusoidal oscillation but typically describe noisy 

oscillations with energy in a wide frequency range (Burns et al., 2011; Spyropoulos et al., 

2020). FF Granger-causality is particularly strong in the gamma-frequency band, while FB 

Granger is strong in the alpha and beta-frequency band (Bastos et al., 2015b; Michalareas et 

al., 2016; Richter et al., 2018; van Kerkoerle et al., 2014).

The finding that Granger-causality in the FF (FB) direction is strong in gamma (alpha/beta) 

frequencies is partially dictated by the cellular targets of inter-areal pathways. FF inputs 

target both excitatory and GABAergic interneurons (Figure 12). Importantly, the FF 

projections to GABAergic interneurons target almost uniquely parvalbumin – PV 

interneurons, which are associated with gamma-frequency rhythms and respond to 

excitatory inputs with high temporal fidelity (Buzsaki and Wang, 2012; Cardin et al., 2009; 

Jouhanneau et al., 2018; Wang, 2010), and exhibit supra-threshold resonance at gamma-

frequencies (Hasenstaub et al., 2005; Pike et al., 2000). Moreover FF projections skip the 

infragranular layers that are canonically associated with alpha and beta rhythms (Bollimunta 

et al., 2008; Buffalo et al., 2011; van Kerkoerle et al., 2014). By contrast, FB projections 

target multiple classes of GABAergic interneurons. Of these, somatostatin – SSt 

interneurons are associated with the generation of slower brain rhythms (Moore et al., 2010), 

and can directly influence activity of neurons in infragranular compartments, which are 

associated with alpha/beta rhythms.

Frequency-specific information transmission can also be predicted by the properties of the 

sending and receiving areas, so that the global distribution of brain rhythms across areas and 

layers contribute to the nature of functional interactions in the FF and FB directions. 

Gamma-rhythms are particularly strong in early visual areas and superficial layers (Bastos et 

al., 2015a; Buffalo et al., 2011; van Kerkoerle et al., 2014; Vinck and Bosman, 2016), 

whereas beta rhythms are most prominent in fronto-parietal areas and infragranular 

compartments (Bastos et al., 2015a; Buffalo et al., 2011). Consequently, one expects 

Granger-causal FF influences from early visual areas to parietal areas to be dominated by 

gamma frequencies, whereas FB influences to visual areas to be dominated by beta 

frequencies, in agreement with the fact that major long-range FF projections originate nearly 

exclusively from superficial layers, and FB from infragranular layers. Further, we note that 

gamma frequencies are generally associated with cortical activation, e.g. a visual stimulus or 

optogenetic activation, whereas alpha and beta frequencies are not clearly associated with a 

FF stimulus drive, consistent with the suggestion that FF provide the major driving influence 

(Covic and Sherman, 2011; De Pasquale and Sherman, 2011).

Above we hypothesized that these frequency specific channels constitute functional 

analogues of the SLN projections that we have quantified, leading to the expectation that 

they exhibit similar hierarchical properties. Bastos et al. (2015) defined the multiple 

Directed-influence Asymmetry Index (mDAI) based on the difference of gamma and theta 

vs beta frequency Granger-causality, obtained from ECog recordings in macaque. mDAI 

enabled these authors to reconstruct hierarchies that closely resembled the structural 

hierarchy derived from SLN values. The feasibility of accounting for their data with the 
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model that we presented above is demonstrated by the strong tendency of mDAI values 

corresponding to common projections to lie along lines of unit slope (Figure 13). The mDAI 

index is already on a scale that appears to show the consistency necessary to apply the 

model, so the hierarchical values could be estimated from the incidence matrix in a global 

fashion, as described above, rather than by the averaging method used by Bastos et al. 

(2015).

Future work will need to specifically address the nature of layer-specific functional 

interactions for individual FF and FB projections. The dual counterstream architecture 

postulates that a prominent short-range FB projection originates from L2 in the higher area. 

Consequently, we predict that FB from L2 is particularly strong at gamma-frequencies. 

Likewise, L5 is postulated to have a short-range FF projection, and to exhibit strong 

oscillations at alpha/beta frequencies. Hence, based on the dual counterstream architecture 

we predict a greater diversity of functional interactions than suggested by previous work, the 

elucidation of which will require multi-layer high-density recording across multiple cortical 

areas.

7. The predictive brain and the importance of topdown generative 

networks.

A large body of physiological studies has shown that FF pathways ascending the hierarchy 

generate increasingly complex representations of the world in higher areas, leading to the 

large range of receptive field properties observed at different levels of the hierarchy. Thus, at 

its core, convergent FF projections carry information from the outside world, and allow this 

information to be gradually transformed to low-dimensional representations that can be 

exploited for behavior. In this respect, it is worthwhile noting that the recent success of deep 

neural network architectures in solving complex tasks similarly demonstrates the power of 

FF transformations in computation (LeCun et al., 2015; Richards et al., 2019) e.g. by 

forming increasingly complex representations along the feedforward hierarchy in 

convolutional networks (Yamins and DiCarlo, 2016).

In contrast to FF-pathways, the neurobiology of the twice as numerous FB pathways 

(Markov et al., 2014a) remains elusive, forming a major impediment to understanding the 

brain. A clearly defined role of FB connections is proposed for attentional modulation, but 

FB pathways are likely critical in a host of complex operations including: the comparison of 

internally generated predictions of sensory input with actual inputs; imagining sensory-like 

representations from concepts of e.g. visual objects; carrying out mental simulations and 

finally gating synaptic plasticity. An early conceptualization of hierarchical processing in the 

cortex conceived of FF pathways as driving target areas, whereas FB pathways would 

merely exert a modulatory influence (Klink et al., 2017); some researchers, however, 

proposed a more nuanced view (Bastos et al., 2012). Indeed, the simple dichotomy of the 

roles of FF and FB pathways is difficult to reconcile with the multiple physiological effects 

that are imputed to FB control. For example, in the case of perceptual completion (e.g. in 

illusory figures) or visual imagination, FB is usually conceived to enhance neural activity; 

by contrast in the case of filtering out self-generated sensory inputs, FB activity is expected 
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to suppress neural activity. These forms of enhancement and suppression represent 

essentially distinct computational operations: a central concept is that of gain modulation, 

where an existing sensory representation is preserved, but in essence multiplied or divided, 

as in attentional mechanisms (McAdams and Maunsell, 1999). However, in the case of 

imagery, one expects FB to “write-in” a pattern of neural activity, i.e. operate a driving 
process, or alternatively selectively modulate the activity of specific spontaneously active 

cell assemblies. In the case of cancelling out self-generated sensory inputs through FB (as in 

self-tickling), FB activity is thought to be subtractive (Bastos et al., 2012). Finally, FB 

activity has been conceived to mediate error signals, playing a key role in shaping perceptual 

learning and synaptic plasticity. The notion of FB as a “swiss-army-knife” contrasts with FF 

processing which is essentially homogeneous and driving, as captured by the architecture of 

deep neural networks. These considerations underline the diversity of FB processes, which 

could be mediated by distinct neural circuits. In particular, we hypothesize that laminar and 

distance-determined diversity of FB pathways will exhibit anatomo-functional properties 

that characterize the cortical circuits underlying the diverse global influences engaged in 

different cognitive functions. Given the diversity of FB pathways, and the many functions in 

which FB is implicated, it is a daunting task to develop a unified theory of the function of 

cortical FB. Yet, our understanding of the brain depends crucially on the development of 

precise theories of cortical FB.

The core feature of FB that distinguishes them from FF is that their projections are more 

divergent; i.e. they project from few to many neurons. Interestingly, divergent projections are 

a core feature of the most popular kind of artificial neural network architectures, which are 

also rapidly becoming a mainstream model of sensory processing in the brain (LeCun et al., 

2015; Richards et al., 2019). In FF (deep) neural networks, divergent error signals lead to an 

adjustment of synaptic weights of FF projections (“backprop”). In other words, in FF (deep) 

neural networks, the exclusive role of FB is to improve the data transformations 

implemented by the FF projections. For a biological organism, error signals could be 

provided for instance by multi-sensory signals or reward signals. However, it is an open 

question as to how FB would be able to adjust synaptic weights of FF projections 

(Whittington and Bogacz, 2019). A candidate pathway is the multiple FB projections 

converging onto layer 1 (Cauller, 1995). Here FB projections impact the distal dendrites of 

pyramidal neurons, activating non-linear NMDA-R-dependent dendritic integration 

mechanisms and voltage-gated calcium channels. A recent study provides evidence that top-

down FB to layer 1 might indeed be involved in perceptual learning in a primary sensory 

area: With reward reinforcement, mice rapidly learn a behavioral task in which their 

response is contingent on electric-current stimulation of S1. However, when layer 1 

projections from perirhinal cortex to S1 are inhibited, mice fail to learn the same task, 

suggesting that top-down FB is instructive for learning (Doron et al., 2019). Another 

candidate pathway to modulate plasticity is the FB projection to VIP+ and SOM+ 

interneurons, given that SOM+ neurons can gate plasticity on the dendrites of pyramidal 

neurons (Batista-Brito et al., 2018).

Until very recently the dominant theory of brain function was that sensory information 

progressing up the cortical hierarchy undergoes successive abstractions generating 

increasingly complex receptive fields. In this feedforward processing model of cortex 
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function, the characterization of the receptive fields at different levels of the hierarchy has 

been a neuroscience success story over the past 60 years (Hubel and Wiesel, 1962). The 

bottom up sensory processing driving receptive field elaboration leads to the notion of the 

importance of single neurons coding for perceptually significant features. According to this 

feature detection view the cortical hierarchy will house neurons ranging from edge detectors 

to the proverbial grandmother neurons (Martin, 1994). However, in recent years there has 

been a paradigm shift in cognitive neuroscience that takes account of the inherent 

uncertainty of the nature of the sensory input to the brain. In this view which goes back to 

Helmholtz and was later championed by Richard Gregory, making sense of input from the 

sensorium requires knowledge of the world, which allows the brain to develop hypotheses of 

the world that are tested against sensory evidence (Friston, 2010; Gregory, 1997). These 

hypotheses can be formalized as Bayesian inferences on the causes of our sensation and how 

these inferences induce perception and behavior (Dayan et al., 1995; Lee and Mumford, 

2003). The implementation of inference in the cortex has more recently been recast in terms 

of the circuits underlying the hierarchical processing that formulate generative statistical 

models as predictive processing (Clark, 2013; de Lange et al., 2018; Friston, 2010; Keller 

and Mrsic-Flogel, 2018; Rao and Ballard, 1999).

According to the predictive processing model the brain possesses a model of the world that it 

seeks to optimize using sensory inputs. Predictive processing postulates that the prior 

information that resides at the different levels of the cortical hierarchy generate descending 

predictions that cascade down the cortical hierarchy, allowing interaction with bottom up 

information ascending the hierarchy. At each level of the hierarchy the interaction between 

the top-down predictions and the ascending input from the sensorium is such that only the 

residual, unexplained sensory information (or prediction error) proceeds to the next level. 

The overall outcome of the hierarchical process is prediction error minimization. Predictive 

processing constitutes an inversion of the classical feedforward model by proposing that 

descending feedback pathways provide representations of the external world, which 

modifies the ascending signal that now indicates aspects of the world that are unexpected. 

Given its radical nature impacting every aspect of cortical function, predictive processing 

has attracted considerable attention from experimentalists which have gone some way to 

providing empirical support (Bastos et al., 2012; Clark, 2013; de Lange et al., 2018; Keller 

and Mrsic-Flogel, 2018; Walsh et al., 2020).

Much of the complexity of predictive coding concerns the circuitry underlying the 

interaction of FF and FB streams and this area of research is still hotly debated (Keller and 

Mrsic-Flogel, 2018). However, little research has focused on testing how FB connections in 

the brain could serve as the substrate of a top-down generative network (Bastos et al., 2012; 

Hinton, 2007; Kosslyn, 1994; Mumford, 1992; Senden et al., 2019). In FF visual processing, 

high-dimensional sensory representations such as an image are sequentially transformed into 

low-dimensional representations such as object categories, represented at higher hierarchical 

levels. Conceivably FB pathways invert this process by generating high-dimensional 

representations starting from low-dimensional variables (Hinton, 2007). We refer to such 

pathways as top-down generative networks. Whereas the FF projections in convolutional 

networks create a convergence of information from many to few, in generative networks 

information is relayed by divergent projections from few to many. For instance, the 
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perception of a red apple depends on a transformation of the image of a red apple 

(represented by many neurons) into high-level representations in the temporal lobe 

(represented by few neurons). However, if we imagine a red apple, processing should start 

from high-level representations (few neurons) and generate a low level neural representation 

of the image of a red apple (represented by many neurons).

Top-down generative networks may play distinct functional roles in several cognitive 

processes such as predictive processing, mental simulation, imagery or selective attention. 

An attractive aspect of the generative top-down network hypothesis is that all of these 

functions are subserved by a relatively small number of anatomical FB pathways 

implementing a function-specific generative network. This network would then interact with 

distinct cellular components in individual target areas, thereby differentially impacting 

ongoing ascending FF activity in distinct pathways. As an example, we can take the 

processes of imagination, expectancy and attention. In the case of expectancy (e.g. walking 

to the kitchen and expecting to see a red apple in the fruit basket, but not in the sink), 

generative networks may cause a reduction of neural response to an expected stimulus, 

whereas that to surprising stimuli would not be suppressed by top-down predictions. In the 

case of attention (e.g. searching for a red apple in the kitchen), generative networks may lead 

to an amplification of sensory activity when we find the stimulus that we were seeking. In 

the case of imagination (e.g. thinking of a red apple), generative networks would drive 

activity in lower areas based on the activation of neurons in higher areas in the absence of 

any sensory stimulation. Since high-level brain areas contain abstract representations of 

objects, how do the feedback pathways of the brain achieve the remarkable feat of 

generating concrete sensory representations in the mind’s eye during mental imagery? An 

apple is an abstract concept, yet we can generate concrete instantiations of apples by 

imagining for example, a Pink Lady or a green Granny Smith apple on a real or an imagined 

table in front of us. Remarkably, we are also not limited to imagining objects as we usually 

see them –it is equally possible for us to imagine a red apple that is as big as a football! 

Remarkably, we can generate sensory experiences in environments of which we have no 

experience, such as standing on Mars staring out through our space helmet at the red colored 

landscape in front of us. These examples illustrate a cornerstone of our hypothesis: that 

generative networks are competent to transform abstract concepts into concrete sensory-like 

representations in our mind’s eye.

Strong experimental support for top-down generative networks comes from findings in 

human imaging experiments showing that imagined objects lead to corresponding spatial 

temporal activation of area V1 (Emmerling et al., 2016; Naselaris et al., 2015; Senden et al., 

2019; Thirion et al., 2006). The activation of the top-down pathway is coherent with 

predictive processing theory where FB pathways shape the FF pathway but not the inverse. 

These findings of top-down generative networks creating a sensory-like representation in 

early visual areas could be a particularity of the human brain, thereby providing the substrate 

for enhanced visual imagery supporting simulation and imagination. However, this appears 

not to be the case; a recent breakthrough publication from the Roelfsema lab revealed 

spiking activity in area V1 of a macaque with respect to an object held in working memory 

(van Kerkoerle et al., 2017), suggesting that the fMRI activation patterns reported in human 

experiments could correspond to spiking activity generated by visual imagery of imagined 
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objects (Emmerling et al., 2016; Hinton, 2007; Naselaris et al., 2015; Senden et al., 2019; 

Thirion et al., 2006).

The dual counterstream architecture (see Section 5) suggests several features that are 

congruent with the hypothesis of top-down generative networks: (1) the convergence of 

cortical FF connections in the sensory stream is mirrored by the divergence of FB 

connections; (2) source populations of FF and FB pathways are completely separate, which 

has been recognized as a key requirement enabling distinct functionalities of generative top-

down networks (Friston, 2018; Markov and Kennedy, 2013; Markov et al., 2014b; Shipp, 

2016) (3) on average throughout the cortex there are twice as many FB pathways than FF 

projections to a given area. Studies in which human subjects are cued to generate a sensory 

percept also provide evidence for top-down generative networks in the cortex (Emmerling et 

al., 2016; Naselaris et al., 2015; Senden et al., 2019; Slotnick et al., 2005; Thirion et al., 

2006).

Examining the dual counterstream suggests a possible division of labor between layer 2 and 

6 FB projections: Layer 2 FB and layer 3 FF projections exhibit common features that 

distinguish them from layer 6 FB. Layer 2 FB and layer 3 FF are short distance, 

topographically organized and exhibit low rates of bifurcation; contrasting with layer 6 FB 

which are long-distance, diffuse and have high rates of bifurcation. Thus, the layer 2 FB 

system may mirror the layer 3 FF system and implement a generative top-down network in 

which high-dimensional sensory representations can be generated through sequential stages, 

starting from higher brain areas. The layer 6 FB pathway, on the other hand, may determine 

the way in which the layer 2 generative network interacts with the local microcircuit, 

sending contextual signals that reflect behavioral goals and reward signals. Based on this 

reasoning, we hypothesize that layer 6 FB has more modulatory effects that it exerts, for 

example, via targeting the apical layer 1 dendrites as well as GABAergic interneurons such 

as SOM+ and VIP+ interneurons that modulate the activity of local pyramidal neurons 

(Batista-Brito et al., 2018). Testing this hypothesis will require parallel anatomical and 

physiological investigations. Optogenetic techniques in non-human primates could allow the 

injection of precise spatiotemporal activation patterns into specific laminar compartments of 

higher brain areas, combined with physiological measurements of activity in lower brain 

areas.

9. Conclusion and speculations.

We have shown that cortical hierarchy can be defined by connectivity gradients and the 

functional correlates of these gradients. In other words, inputs to a cortical area sample the 

cortical sheet in a principled manner defined by the differential space constants of the 

distance rules governing the individual cortical layers. This approach to understanding 

hierarchy is anchored in the recognition that it is the activity and connectivity linking 

neurons across the cortex that will ultimately reveal the process underlying the dynamics of 

cortical function. Link based investigation is complemented by characterization of the nodes. 

Helen Barbas has championed the structural model, which shows that laminar differentiation 

allows hierarchical ranking of cortical areas that correlates well with connectivity patterns 

(Barbas, 2015). The structural model is of particular interest because it allows ranking of 
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cortical areas via gradual variations of cytoarchitecture and myeloarchitecture (Sanides, 

1972), and has opened the interpretation of large-scale models of the cortex to investigation 

with non-invasive imaging techniques that can be applied to the human brain (Burt et al., 

2018; Margulies et al., 2016; Paquola et al., 2019).

The central argument of this review is that cortical hierarchy can be usefully thought of as 

the gradual changes in the cortical input requirements of the local cortical circuit that in 

terms of synaptic mass constitutes the powerhouse of the cortex. Understanding the cellular 

mechanisms underlying hierarchical processing require investigations of hierarchy in terms 

of the laminar restricted connectivity and physiology that we have advocated in this review 

and described in Box 1. It is nearly 15 years since Jean Bullier posed the question “What is 

fed back?” (Bullier, 2006). The multiplicity of FB pathways and the complexity of their 

proposed functions were deep issues that he felt needed to be addressed. In the last 14 years 

there has been a spectacular development of three classes of techniques that now allow us to 

address Jean Bullier’s question. Firstly, optogenetics holographic stimulation makes it 

possible to address causation (Carrillo-Reid et al., 2019; Marshel et al., 2019), thereby 

addressing how activation of a given FB pathway influences a particular cognitive task. 

Secondly, viral tracing allows cell-type and laminar-constrained connectivity (El-Shamayleh 

et al., 2016; Nassi et al., 2015; Siu et al., 2020) making it possible to resolve the dual 

counterstream architecture. Thirdly, high-resolution fMRI allows laminar and columnar 

resolution imaging in the human brain e.g. (Kemper et al., 2018); furthermore, recent 

advances in MR methods and data analysis enable investigation of directional laminar 

connectivity in hierarchical brain networks (Huber et al., 2020). The key feature of future 

investigation will be to examine FB modulation of cognitive tasks in animal models that can, 

in parallel, be applied in humans where perceptual consequences can be reported (Kok et al., 

2016; Schneider et al., 2019). These combined approaches will address the complexity of 

the interaction of descending generative networks with the local microcircuit. Interpreting 

the data coming out of these experiment in terms of cortical dynamics will require 

computational modeling of the interactions of these top-down effects with the canonical 

microcircuit using approaches developed by Maass (Haeusler and Maass, 2007).

The interactions of descending with ascending pathways required by predictive processing 

theory will be largely in supragranular cortical layers, which have been shown to be a major 

target for human evolutionary adaptation (Heide et al., 2020; Won et al., 2019). The 

evolutionary expansion of the supragranular layers is accompanied by an increase in 

heterogeneity of glutamergic cell-types in terms of morphology, electrophysiology and gene 

expression going from rodent to human (Berg et al., 2020) in turn supporting a 

complexification of the circuits in these layers (Hodge et al., 2019). The amplification and 

diversification of supragranular intratelencephalic-projecting neurons in primates suggest 

that the investigation of the biology of the generative networks advocated here may well 

exploit reductionist approaches in the rodent model, but will need nonetheless to be studied 

with a particular emphasis on human and non-human primates.

Finally, the observation that top-down networks generate sensory-like activity in low levels 

of the cortical hierarchy in the absence of sensory input raises interesting issues of 

representation in the brain. According to predictive coding theory, sensory perception 
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requires predicting the present. These top-down generative networks can be important for 

predicting or simulating the future (Grezes and Decety, 2001), in interplay with the 

hippocampus (Buckner, 2010; Kay et al., 2020), as well as revisiting the past allowing for 

instance the minds eye to scrutinize detail in visual images (Kosslyn, 1994). In this way the 

top-down generative networks could have much to do with what we call thinking. In addition 

these networks would support an integral aspect of human consciousness, namely the 

seamless and continuous navigation of the mental narrative of self across past, present and 

future (Jaynes, 1976; Nørretranders, 1991). Importantly, the observation that these networks 

are active in the NHP (van Kerkoerle et al., 2017), indicates that we can now plan 

experimental investigation of their integrative neurobiology at the cellular level.
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Box 1

Experimental Exploration of the Dual Counterstream Architecture.

Dual counterstream features Functional and structural correlates

(1) Source populations of FF and FB pathways are 
completely separate, which has been recognized as a key 
requirement enabling distinct functionalities of generative 
top-down networks (Friston, 2018). A core feature of the 
dual counterstream architecture is that despite the ubiquity 
of bifurcation (Kennedy and Bullier, 1985), in no layer do 
individual neurons in FF and FB pathways possess both 
up and downstream collaterals (Markov et al., 2014b). 
Similar findings hold for mouse (Berezovskii et al., 2011). 
This indicates that FF and FB cells indeed constitute 
distinct populations.

Molecular characterization of FF and FB 
neurons is very much on the agenda. This 
would lead to the development of markers of 
these two projection types and hold the 
promise of the development of genetic tools 
for independent manipulation of different FB 
pathways.

(2) Large variability in the laminar configuration of FB 
pathways. FF connections are highly stereotypical, while 
FB projections show a large variability in their laminar 
origins and targets. Retrograde tracer in a midlevel target 
area labels up- and downstream areas with different 
proportions of supragranular neurons according to their 
hierarchical distance (Figure 10C). These laminar 
distributions of FF and FB neurons constitute their 
signatures that allow areas to be ranked in the Felleman 
and Van Essen hierarchy. Importantly, the different 
signatures of hierarchical distance reflect the changing 
laminar composition of the long-distance inputs to an 
area, meaning that “hierarchy” refers to the distance-
dependent laminar-constrained integration of FF and FB 
inputs (Barone et al., 2000; Markov et al., 2014b) and 
signals (Bastos et al., 2015b; Michalareas et al., 2016) into 
the canonical microcircuit.

The multiplicity of the FB pathways in terms 
of laminar origins and targets over different 
distances suggest that compared to the 
singularity of FF pathways, individual FB 
pathways come in different flavors and fulfill 
different functions. These different FB 
pathways need to be investigated in human 
and non-human primates (NHP) in high-
field, laminar resolution fMRI and in parallel 
using invasive electrophysiology in NHP. 
These functional investigations are of 
particular relevance to the supragranular 
counterstream given the unique features of 
the Primate supragranular layers which are 
generated by a primate-specific germinal 
zone (OSVZ) (Smart et al., 2002), that 
exhibits complex cell lineages (Lukaszewicz 
et al., 2005) that we have hypothesized 
generate unique cell features in primates 
(Dehay et al., 2015; Harris and Shepherd, 
2015). These considerations support the 
notion that the two FB pathways (one in the 
supra- and one in infragranular layers) will 
have distinct functional roles in generative 
networks.

(3) FB and FF are not serially organized. Computational 
modeling studies e.g. (Bastos et al., 2012) invariably 
assume a serial hierarchical organization (Figure 10C) 
whereas in fact most areas receive and project to most 
other areas (Markov et al., 2014b).

The non-serial nature of inter-areal 
connectivity raises difficulty for ongoing 
attempts at large-scale computational 
modeling that needs to be given further 
attention.

(5) Lamination The dual counterstream architecture 
explicitly links pathways to layers, which is in-line with 
the increasing importance attached to cortical lamination 
and connectivity (Senzai et al., 2019). (l): effects on 
topography of FB. In addition to the low divergence-
convergence values of supragranular layers (L2 FB and 
L3FF), and the high divergence-convergence values of 
infragranular layers (L5 FF and L6FB), high-rates of 
bifurcation by L6/L5 ensures innervation of multiple areas 
contrasting with and low levels of bifurcation by L2/L3 
neurons (Kennedy and Bullier, 1985).

There are two interrelated issues here. 
Present understating of inter-areal 
connectivity in NHP, crucially lacks insight 
into the laminar restricted connectivity of 
these pathways. This requires using viral 
tracers in order to obtain precise information 
on the connectivity of individual pathways 
over different distances.

(6) Differences of FB and FF targets. The L3 FF 
projections primarily target upstream interneurons in L4. 
Presently we do not know the cellular targets of L2 FB 
projections although there is some suggestion that they 
could principally target L2 FB neurons in downstream 
areas, leading to long inter-areal FB chains. In parallel 
with differences in FF and FB cellular targets, do the cell 
targets change (and how) as a function of connection 
distance, possibly bringing a solution to addressing the 
problem raised in point (3)?

Laminar restricted connectivity to different 
cell types needs to be investigated in rodents 
and primates using next generation of viral 
tracers.

(7) FB show distinct development strategies. Differences 
in functionality are expected to require different 
developmental programs, which is indeed the case for FF 

These observations invite the investigation of 
inter-areal processing in NHP at different 
developmental periods and suggest that high-
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Dual counterstream features Functional and structural correlates

and FB pathways. FF pathways develop precociously and 
exhibit directed-growth; FB pathway formation is delayed 
well into the postnatal period and exhibits diffuse growth 
followed by pruning (Barone et al., 1995; Barone et al., 
1996; Kennedy et al., 1989).

field, laminar resolution fMRI in infants and 
adults could reveal important developmental 
processes.
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Figure 1. Quantitative map of excitatory synapses between excitatory neurons of the local 
microcircuit in visual cortex (area 17) of the cat.
Numbers indicate proportions of excitatory synapses, note the dominance of within layer 

recurrent connectivity with 21.6 peak values in Layers 2/3. The FF loop starts in layer 4, the 

major thalamic recipient layer and then extends to layers 2/3, 5 and 6 with recurrent inputs 

back to layer 4. This FF loop corresponds to a little less than half of synapses involved in 

self-innervation of individual cortical layers. X/Y refers to the component cells of the lateral 

geniculate nucleus, the major thalamic relay. The original canonical microcircuit is shown in 

Figure 9B. L refers to layer. From (Binzegger et al., 2004) with permission.
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Figure 2. The Felleman and Van Essen binary model of cortical hierarchy.
A) Criteria for classifying connections between areas as FF (top), lateral (middle) and FB 

(bottom) row. Termination patterns are depicted in the central column, preferentially in layer 

4 (F pattern) FF, across all layers (C pattern) lateral, in upper and lower layers avoiding layer 

4 (M pattern) FB. Laminar origin from a single layer (left column), is either supragranular 

(S) and therefore FF, or infragranular (I) and therefore FB. Bilaminar (B) origins (right 

column) either terminate in the middle layers (F pattern) and are therefore FF, terminate in 

all layers (lateral) or terminate predominantly in upper supra- and infragranular layers (M 

pattern) and therefore FB. B) The binary hierarchical model. C: Area frequency distributions 

for 150,000 optimal hierarchical orderings (Hilgetag et al., 1996).
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Figure 3. Quantitative parameters characterizing the hierarchy.
A) The laminar distribution of parent neurons in each pathway, referred to as SLN (fraction 

of supragranular neurons) is determined by high frequency sampling and quantitative 

analysis of labeling. Supra- and infragranular layer neurons contribute to both FF and FB 

pathways, and their relative proportion is characteristic for each type of pathway. For a given 

injection there is a gradient of SLN of the labeled areas, between purely FF (SLN = 100%, 

all the parent neurons are in the supragranular layers) to purely FB (SLN = 0%, all the 

parent neurons in the infragranular layers) and a spectrum of intermediate proportions; B) 

All labeled areas can then be ordered by decreasing SLN values and this order is consistent 

with hierarchical order according to Felleman and Van Essen. SLN is thus used as an 

indicator of hierarchical distance between areas from the same injection; C) Reliable 

estimation of SLN crucially requires sampling labeling throughout the full extent of the 

projection zone in each area.
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Figure 4. Properties of nodes and links.
Nodes have fixed properties, a, b, c which in turn fixes their order and any distance measure, 

d, calculated from these properties. b. Link properties depend on the relations between node 

pairs, ab, bc, ac. The distance measures, δ, for ab, and bc do not necessarily fix that for ac. 

The above graphs are unidirectional, but in bi-directional graphs the distances between 

nodes need not by symmetric. B) Hierarchical scales. Suppose a hierarchical scale between 

areas A, B, C, D, with the ordering and distances as illustrated on the bottom line. We expect 

measures of distance to be consistent measured between any pairs of areas. For example, 

injections in areas A and B lead to distances defined with respect to each of these areas, i.e., 

distances AB (double headed grey arrow), AC and AD (black arrows) for injection in area A, 

and BA (double headed grey arrow), BC and BD (orange arrows) for injection in area B. 

Consistency would imply, for example, that for a distance measure, d, the estimate of dAB = 

dBA would be the same for both injections, i.e., dCA – dCB = dDA – dDB. C) SLN 
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Transformation. Comparison of logit (solid) and probit (dashed) transformations of SLN 

values on the interval (0, 1). The logit SLN is defined as ln(SLN/(1 – SLN)). The probit is 

defined as the inverse of the Gaussian cumulative distribution function and is often notated 

by Φ−1. The scale factor of the logit curve has been adjusted by a factor of 0.588 to match it 

to the probit curve.
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Figure 5. Probit transformation.
Scatter plots of probit transformed SLN values of common source areas from pairs of 11 

visual areas, obtained from retrograde tracer injections. The absicssa of each graph 

corresponds to the transformed SLN values of area i, indicated on the diagonal at the top of 

the column and the ordinate values are the transformed SLN values of area j indicated on the 

diagonal at the right of the row. The dashed blue line in each plot is the best fit line of unit 

slope (replotted from (Markov et al., 2014b)).
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Figure 6. Logit transformation.
Scatter plots of logit transformed SLN values of common source areas from pairs of 8 

somatosensory and motor areas, obtained from retrograde tracer injections. The plots follow 

the same format as in Figure 6 except that the SLN values from each axis are transformed by 

the logit function. The dashed blue line in each plot is the best fit line of unit slope.
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Figure 7. Precision of estimated hierarchy based on hierarchical index.
A. Estimated hierarchy obtained using logit transformed SLN values as a measure of 

hierarchical distance. The counts of supra- and infragranular neurons are used as weights. 

The error bars are 95% confidence intervals estimated from the covariance matrix of the 

fitted model. B. Estimated hierarchy using a binary variable as an indicator of the 

hierarchical relation between area pairs. A logit link was also used in this case. The larger 

95% confidence intervals demonstrate the loss of precision in estimating the hierarchical 

distance when using only binary information about connectivity.
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Figure 8. Hierarchical organization of visual areas (A) estimated from the beta-binomial model.
The model only provides the vertical level of the areas with respect to the lowest level. For 

clarity of presentation, we have separated them laterally into ventral and dorsal stream areas. 

The estimated values are only unique up to adding a constant and multiplying by a 

coefficient. Here, we have the areas to span the range 1–10. B) The scatter plot shows the 

empirical SLN values plotted against those predicted by the model. The solid line is the unit 

slope line through the origin and the dashed line is the best fit linear regression. C) 
Hierarchical distance. The hierarchical distance, hij, between common projections from 

areas i and j to area p, defined as the difference of logits of their SLN values, is equivalent to 

the log of the ratio of their supra- to infra-granular projection strengths to area p. a. This 

definition implies that the ratio between the laminar ratios of areas i and j to area p (orange 

arrows) is the same as that for any other target area q receiving projections from the same 

source areas (blue arrows), as formalized in the equation below the diagram. This is because 

the hierarchical distance from i to j should be the same for injections in both areas p and q. 

b. A rearrangement of the equation (below) implies, also, that the ratio between the laminar 

ratios of projections from a common source area, i, to areas p and q, will be the same for any 
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other common source area, j, to the same target areas. D) Cortical-cortical strong loops. 

The strength-distance relation of 1615 projections from 91 to 29 cortical areas obtained from 

retrograde tracer injections. The transparent black points indicate all of the projections 

except those that participate in strong-loops in beige. The color gradient on these symbols 

corresponds to SLN strength as indicated by the inset color bar. The black line is the best fit 

linear regression to the transparent black points and the blue line is the best fit to the strong-

loops. The F-statistic indicates the result of a nested likelihood test indicating the probability 

of a difference in strength between the two sets of points as large as that obtained under the 

null hypothesis that the true difference is zero, when physical distance via the WM is taken 

into account.
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Figure 9. 
A) Scatter plots of logit transformed SLN values of common source areas from pairs of 9 

frontal and pre-frontal areas, obtained from retrograde tracer injections. The plots follow the 

same format as previous in Figures 6 and 7. The dashed blue line in each plot is the best fit 

line of unit slope. B) Hierarchical scale values estimated for the 9 areas based on the 

proposed statistical model. Area F1 was assigned a value of 0 for model identifiability.
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Figure 10. Dual counterstream architecture of inter-areal pathways.
A) Parent neurons at L3 and L5 have FF projections (red) to higher order areas reciprocated 

by FB projections (blue) in L2 and the L6. Simultaneous tracer injections in high and low 

areas show that the upper layer counterstream has near 100% segregation, i.e. the FF (FB) 

neurons do not send axon collaterals to lower (higher) order areas. However the evidence 

that the FF and FB pathways form continuous streams, as depicted here is indirect; what 

crucially remains to be elucidated are the laminar details on the connectivity and the cellular 

targets. B) the canonical microcircuit showing the two FB pathways targeting L2 and L6. 

Modified from (Douglas and Martin, 1991); C) the incorrectly assumed serial processing 

(lower) between areas that is not observed in the cortex, where instead each areas project to 

all upper and lower stream areas (all to all). (panel A from (Markov et al., 2014b));
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Figure 11. Distance effects of labeling in individual layers.
This figure how FB projecting neurons are differentially distributed in L2 and 6 and FF in 

L3 and 5. The characteristic SLN gradient found in up- and down stream areas shown in 

figure 2 is due to different distance rules operating in individual layers. Hence the short-

distance spread of labeled neurons in L2 coupled with the long-distance spread in L6 leads 

to the observed decrease in SLN with increasing FB hierarchical distances. Likewise the 

long-distance spread of labeled neurons in L3 coupled with the short-distance spread in L5 

leads to the observed increase in SLN with increasing FF hierarchical distances.
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Figure 12. Schematic circuit for the interplay between bottom-up and top-down signaling 
characterized by differential frequency-band synchrony.
In a reciprocally connected loop between a sensory-type area and a cognitive-type area, 

neural circuits in the superficial layers are endowed with strong intrinsic synaptic 

connections and generate stochastic oscillations in the gamma frequency range, whereas the 

deep layers have a propensity to display slower oscillations in the lower beta or alpha 

frequency range. Top-down projections originate in the deep layers and innervate pyramidal 

cells (brown), as well as dendrite-targeting (purple) and perisoma-targeting (blue) inhibitory 

interneurons. In this scenario, low beta/alpha oscillations are directly involved in top-down 

signaling, which interacts with locally generated gamma oscillations. Adopted with 

permission from Wang (Wang, 2010).
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Figure 13. 
Scatter plots of a hierarchical measure of cortical distance (mDAI) derived by Bastos et al., 

2015 of common source areas for pairs of 8 visual areas obtained from contrasting Granger 

Causality measures in gamma, theta and beta bands. The abscissa of each graph corresponds 

to the value calculated for the area at the top of the column and the ordinate to the area at the 

right of the row. Dashed blue line in each plot is the best fit line of unit slope.
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