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Abstract Increasing age is the strongest predictor of risk of COVID-19 severity and mortality.

Immunometabolic switch from glycolysis to ketolysis protects against inflammatory damage and

influenza infection in adults. To investigate how age compromises defense against coronavirus

infection, and whether a pro-longevity ketogenic diet (KD) impacts immune surveillance, we

developed an aging model of natural murine beta coronavirus (mCoV) infection with mouse

hepatitis virus strain-A59 (MHV-A59). When inoculated intranasally, mCoV is pneumotropic and

recapitulates several clinical hallmarks of COVID-19 infection. Aged mCoV-A59-infected mice have

increased mortality and higher systemic inflammation in the heart, adipose tissue, and

hypothalamus, including neutrophilia and loss of gd T cells in lungs. Activation of ketogenesis in

aged mice expands tissue protective gd T cells, deactivates the NLRP3 inflammasome, and

decreases pathogenic monocytes in lungs of infected aged mice. These data establish harnessing

of the ketogenic immunometabolic checkpoint as a potential treatment against coronavirus

infection in the aged.

Introduction
Aging-driven reduced resilience to infections is dependent in part on the restricted T cell repertoire

diversity together with impaired T and B cell activation as well as inflammasome-driven low-grade

systemic inflammation that compromises innate immune function (Akbar and Gilroy, 2020;

Camell et al., 2017; Youm et al., 2013). Consequently, 80% of deaths due to COVID-19 in USA are

in adults >65 years old (https://www.cdc.gov/), and aging is the strongest factor to increase infection

fatality (Pastor-Barriuso et al., 2020; Perez-Saez et al., 2021; Ward et al., 2020). Lack of an aging

animal model that mimics SARS-CoV-2 immunopathology has been a major limitation in the effort to

determine the mechanism of disease and to develop effective therapeutics for the elderly. Inability

of mouse ACE2 to bind SARS-CoV-2 is a significant hurdle in understanding the basic mechanism of
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COVID-19. Accordingly, several approaches have been employed to develop models including intro-

duction of human-ACE2 in mice and transient induction of hACE2 through adenoviral-associated

vectors. These models have begun to yield important information on the mechanism of disease

development. For example, epithelial cell-specific induction of hACE2 (K18-hACE2) as a model of

SARS-CoV-2 infection demonstrated that post-intranasal inoculation, animals develop lung inflamma-

tion and pneumonia driven by infiltration of monocytes, neutrophils, and T cells (Winkler et al.,

2020). Also, initial studies that employ lung-ciliated epithelial cell-specific HFH4/FOXJ1 promoter-

driven hACE2 transgenic mice show that SARS-CoV-2 infection induces weight loss, lung

inflammation, and approximately 50% mortality rate, suggesting the usefulness of this model to

understand the mechanism of immune dysregulation (Jiang et al., 2020). However, significant hur-

dles remain to understand the mechanism and test therapeutic interventions that are relevant to dis-

ease severity in elderly, as complicated breeding and specific mutations need to be introduced in

hACE2 transgenic strains in addition to the time required to age these models. The mouse model of

SARS-CoV-2 based on adeno-associated virus (AAV)–mediated expression of hACE2 may allow cir-

cumvention of the above constrains. The delivery of hACE2 into the respiratory tract of C57BL/6

mice with AAV9 causes a productive infection as revealed by >200-fold increase in SARS-CoV-2 RNA

and shows similar interferon gene expression signatures as COVID-19 patients (Israelow et al.,

2020). However, in young wild-type mice, this model induces mild acute respiratory distress syn-

drome (ARDS) and does not cause neutrophilia, weight loss, or lethality (Israelow et al., 2020).

Other studies using replication-deficient adenovirus-mediated transduction of hACE in mice and

infection with SARS-CoV-2 produced 20% weight loss including lung inflammation (Hassan et al.,

2020; Sun et al., 2020). Furthermore, genetic remodeling of the SARS-CoV-2 spike receptor binding

domain that allow interaction with mACE demonstrated peribronchiolar lymphocytic inflammatory

infiltrates and epithelial damage but no weight loss in infected mice (Dinnon et al., 2020). More-

over, middle-aged female mice that are 1 year old, (analogous to approximately 43 year old human),

display greater lung pathology and loss of function post-infection with 10% weight loss followed by

spontaneous recovery 7 days post-infection (Dinnon et al., 2020).

The mouse hepatitis virus (MHV) and SARS-CoV-2 are both ARDS-related beta coronaviruses with

a high degree of homology (Gorbalenya et al., 2020). Importantly, mCoV-A59 utilizes the entry

receptor CEACAM1, which is expressed not only on respiratory epithelium, but also on enterocytes,

endothelial cells, and neurons, much like ACE2 (Godfraind et al., 1995), thus allowing the study of

wide-ranging systemic impacts of infection. The MHV infection is known to cause hepatitis and

encephalomyelitis (Lavi et al., 1984). Importantly, however, the intranasal infection with mCoV-A59

is pneumotropic and causes ARDS in C57BL/6J animals, while all other MHV strains require the A/J

or type-I interferon-deficient background, for the development of severe disease (De Albuquerque

et al., 2006; Khanolkar et al., 2009; Yang et al., 2014) limiting their use.

Aging-induced chronic inflammation in the absence of overt infections is predominantly driven by

the NLRP3 inflammasome (Bauernfeind et al., 2016; Camell et al., 2017; Youm et al., 2013), a

myeloid cell-expressed multiprotein complex that senses pathogen-associated molecular patterns

(PAMPs) and danger-associated molecular patterns (DAMPs) to cause the processing and secretion

of IL-1b and IL-18. There is increasing evidence that SARS-CoV-2 infection activates the NLRP3

inflammasome with increased levels of IL-18 and lactate dehydrogenase (LDH) levels due to inflam-

masome-mediated pyroptotic cell death (Lucas et al., 2020; Zhou et al., 2020). It is now known

that increased glycolysis, which activates inflammasome, is associated with worsened COVID-19 out-

come (Codo et al., 2020). This raises the question whether the substrate switch from glycolysis-to-

ketogenesis can be employed to stave off COVID-19 in high-risk elderly population. Here, we estab-

lish that intranasal infection with mCoV-A59 recapitulates clinical features of COVID-19 seen in

elderly and demonstrate that ketone metabolites protect against disease through inhibition of

NLRP3 inflammasome and expansion of protective gd T cells in lungs.

Results

mCoV-A59 infection in aged mice mimics COVID-19 severity
To determine the underlying deficits in immune and inflammatory response in aging, we investigated

the impact of mCoV-A59 intranasal inoculation on adult (2–6 months) and old male mice (20–24
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Figure 1. Aging exacerbates A59 (mCoV) infection. (A) Schematic of A59 (mCoV) infection experiment with young (2–6 months) and old mice (20–24

months). (B) Probability of survival of young (n = 6) and old (n = 6) infected mice. Survival of mice was examined after infection with high dose of virus

(PFU 7e3) up to 14 days. (C–E) Young (n = 8) and old mice (n = 8) were infected with low dose of virus (PFU 7e2), and weight change (%) (C), O2

saturation (D), and daily food intake (E) were recorded. (F) Plaque assay of lung from uninfected, infected young and old mice. (G–L) Flow cytometry

analysis of CD4 T cell (G), CD4/CD8 T cell ratio (H), gd T cell (I), neutrophil (J), Ly6Chi cell (K), and CD64+ MerTK+ cell (L) on day 8 post (PFU 7e2)

infection. Error bars represent the mean ± S.E.M. Two-tailed unpaired t-tests were performed for statistical analysis. *p<0.05; **p<0.01; ***p<0.001;

****p<0.0001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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months) (Figure 1A). The LD-0 infectious dose of mCoV-A59 in adult (PFU 7e3) caused 100% lethal-

ity in aged mice (Figure 1B). Aged mice displayed greater weight loss (Figure 1C), hypoxemia

(Figure 1D), and anorexia (Figure 1E), without a significant difference in viral load in lungs

(Figure 1F) after infection (PFU 7e2) when compared to adults.

Immune profiling of the lung revealed that aged mice had significant reductions both in the per-

centage of CD4 cells and in the CD4:CD8 ratio in the lung compared to adult controls at steady

state and after infection (Figure 1G,H, Figure 1—figure supplement 1A). Interestingly, while ϒd T

cell numbers in the lung were significantly increased at steady state in aged mice compared to adult

mice, both the proportion and number of ϒd T cells in the lung were dramatically reduced only in

aged mice after infection compared to adult mice (Figure 1I, Figure 1—figure supplement 1A). In

the spleen, ϒd T cells were found to be reduced at steady state in aged mice (Figure 1—figure sup-

plement 1B).

Analyses of the myeloid compartment revealed that aged mice had significantly increased neutro-

phils in the lung post-infection with a trend toward increase in neutrophils at steady state

(Figure 1J). We did not detect age-associated changes in eosinophils in lungs (Figure 1—figure

supplement 1C). Aging increased Ly6Chi monocytes, which rose further post-infection (Figure 1K,

Figure 1—figure supplement 1D). Moreover, the frequency and number of CD64+MerTK+ cells

were highest in infected aged mice (Figure 1L, Figure 1—figure supplement 1D), while no signifi-

cant differences were observed in the total population of alveolar or interstitial macrophages (Fig-

ure 1—figure supplement 1E,F) in lungs. These data suggest that post-sub-lethal infection, when

young animals recover, aging is associated with delayed resolution of infection with prolonged infil-

tration of inflammatory myeloid cells and a dramatic reduction in gd T cells in the lung.

Transmission electron microscopy confirmed the dissemination of the viral particles in pneumo-

cytes in lungs (Figure 2A). The pneumotropism of mCoV-A59 was also validated by demonstration

of viable mCoV-A59 in lungs using plaque assays, and aged mice did not show significant differences

in viral load in lungs (Figure 1F). Interestingly, following mCoV-A59 inoculation, pathology analyses

by hematoxylin and eosin (H and E) and MSB staining, in both 6 month and 20–24 month old mice,

revealed perivascular inflammation (arrows, arrowhead) as well as perivascular edema (*) and

increased perivascular collagen/fibrosis (MSB, blue) that is more severe in the 20–24 month mCoV-

A59 infected mice (Figure 2B). Furthermore, 20–24 month old mice intranasally inoculated with

mCoV-A59 have dense foci visible at low power (box) and amphophilic material (fibrosis) with few

scattered brightly eosinophilic erythrocytes (gray arrowhead) admixed with lymphocytes and plasma

cells. By MSB stain, at higher power, this same focus (***) in the 20–24 month infected mice revealed

that the end of a small blood vessel (BV) terminates into a mass of collapsed alveoli, without obvious

septa admixed with inflammatory cells, disorganized fibrin/collagen fibers (blue) suggestive of ante

mortem pulmonary thrombosis in contrast with post-mortem blood clots where erythrocytes are yel-

low (** MSB, yellow) (Figure 2B). Taken together, consistent with ARDS, the lungs of aged mice

infected with mCoV-A59 had increased foci of inflammation, immune cell infiltration, perivascular

edema, hyaline membrane formation and type II pneumocyte hyperplasia, organizing pneumonia,

interstitial pneumonitis, and occasional hemorrhage and microthrombi, affecting approximately 75%

of the lungs (Figure 2B).

Aging enhances systemic inflammatory response in mCoV-A59 infected
mice
We next investigated whether mCoV-A59 infection in aged mice mimics the hyperinflammatory sys-

temic response seen in elderly patients infected with COVID-19. Compared to young animals, old

mice infected with equivalent doses of mCoV-A59 displayed significant increase in circulating IL-1b,

TNFa, IL-6, and MCP-1 (Figure 3A–C, Figure 3—figure supplement 1A–D), without affecting MIP-

1b (Figure 3—figure supplement 1E). Similar to COVID-19, infection with mCoV-A59 caused

increased cardiac inflammation in old mice as evaluated by greater number of infiltrating CD68+

myeloid cells (Figure 3D, Figure 3—figure supplement 1F).

Figure 1 continued

Figure supplement 1. Characterization of immune cell population in young and old mice infected with A59 (mCoV).
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Figure 2. A59 (mCoV) infection significantly affects lung phenotype in old mice. (A) Transmission electron microscopic images of A59 (mCoV) particles

in pneumocytes. Left panels show pneumocyte of an infected young (left) and old (right) mice. Bar scale represents 500 nm. Right panels show zoomed-

in images of boxed areas of left panels. Pneumocyte with budding viral particles was indicated by red arrowheads. Bar scale represents 100 nm.

Apoptotic pneumocyte of an infected old mouse showed the shrunken and degraded nucleus (white arrow) and chromatin condensation (white

asterisk). (B) Representative photomicrographs of hematoxylin and eosin (H and E)-stained (left) and Martius scarlet blue trichrome (MSB)-stained (right)

sections of lung from young and old mice 8 days post infection with A59 (mCoV), along with lung from uninfected young and old mice. There are foci

of inflammation (arrow), perivascular edema (*), and perivascular lymphocytes and plasma cells (arrow head). Boxed areas in low power images were

used for high power imaging. BV indicates small blood vessel.
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Figure 3. Aging induces systemic hyperinflammatory response in A59 (mCoV) infection. (A–C) Serum levels of inflammatory cytokines IL-1b (A), TNFa

(B), and IL-6 (C) of young (6 months old) and old (24 months old) infected mice on day 8 post (PFU 7e2) infection. (D) Representative

immunofluorescence analysis of CD68 expression, phalloidin, and DAPI in hearts isolated from young and old mice. CD68+ cells/heart area analysis was

shown in right panel. (E) Quantification of MHV-A59 (mCoV) in visceral adipose tissue (VAT) of young and old infected mice by quantitative PCR (qPCR)

of a gene expressing A59 M protein. (F–H) qPCR analysis of Il1b (F), Tnf (G), and Il6 (H) in VAT of young and old infected mice. (I) Western blot analysis

of caspase-1 inflammasome activation in VAT of uninfected young and old mice. (J) Immunoblot analysis of caspase-1 cleavage showing higher

inflammasome activation in VAT in aged mice post-infection. (K) Quantification of gene expression of Casp1 in VAT by qPCR. (L) Quantification of MHV-

A59 (mCoV) in hypothalamus of young and old infected mice by qPCR. (M–P) Gene expression analysis of Tnf (M), Casp1 (N), Il1b (O), and Il6 (P) in

hypothalamus of young and old mice 8 days post-infection. Error bars represent the mean ± S.E.M. Two-tailed unpaired t-tests were performed for

statistical analysis. *p<0.05; **p<0.01.

Figure 3 continued on next page
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Given that increased visceral adiposity is a risk factor for COVID-19 severity and expression of

ACE2 is upregulated in adipocytes of obese and diabetic patients infected with SARS-CoV-2

(Kruglikov and Scherer, 2020), we next studied whether mCoV-A59 infection affects adipose tissue.

Given the prevalence of obesity is 10% among younger adults aged 20–39, 45% among adults aged

40–59 years, and 43% among older adults aged 60 and over (Hales et al., 2020), we investigated

adipose tissue inflammation as a potential mechanism that contributes to infection severity in the

aged. Interestingly, consistent with the prior findings that adipose tissue can harbor several viruses

(Damouche et al., 2015), the mCoV-A59 RNA was detectable in visceral adipose tissue (VAT)

(Figure 3E, Figure 3—figure supplement 1G). Despite similar viral loads, VAT of aged infected

mice had significantly higher mRNA levels of the pro-inflammatory cytokines IL-1b, TNFa, and IL-6

(Figure 3F–H, Figure 3—figure supplement 1H–J). Moreover, consistent with prior work, aging is

associated with increases in inflammasome activation (Figure 3I). Infection with mCoV-A59 further

enhanced caspase-1 cleavage (p20 active heterodimer) as well as expression of inflammasome com-

ponents, Casp1 and Nlrp3, in old mice (Figure 3I–K, Figure 3—figure supplement 1K). In addition,

similar to SARS-CoV-2 invasiveness in central nervous system (CNS), the mCoV-A59 was detectable

in the hypothalamus (Figure 3L, Figure 3—figure supplement 1L). Compared to adults, the hypo-

thalamus of aged infected mice showed increased mRNA expression of TNFa and caspase-1

(Figure 3M,N, Figure 3—figure supplement 1M,N) with no significant differences in IL-1b, IL-6

(Figure 3O,P, Figure 3—figure supplement 1O,P), and NLRP3 (Figure 3—figure supplement 1Q).

Infection in both young and aged mice caused significant increases in markers of astrogliosis and

microglia activation (Figure 3—figure supplement 1R,S). Interestingly, mCoV-A59 reduced the

mRNA expression of orexigenic neuropeptide-Y (Figure 3—figure supplement 1R,S), consistent

with the fact that infected mice display anorexia (Figure 1C,E). However, mCoV-A59 infection

completely abolished the expression of pre-opiomelanocortin (POMC) in the hypothalamus, a tran-

script expressed by POMC neurons, which is involved in the control of the autonomic nervous sys-

tem and integrative physiology. Further investigation will be necessary to test the involvement of the

hypothalamus in the pathogenesis of COVID-19 and organ failure due to alterations in the auto-

nomic nervous system.

Ketogenic diet-mediated protection against mCoV-A59 infection in
aging is coupled with inflammasome deactivation
Given the switch from glycolysis to fatty acid oxidation reprograms the myeloid cell from pro-inflam-

matory to tissue reparative phenotype during infections (Ayres, 2020; Buck et al., 2017; Galván-

Peña and O’Neill, 2014), we next investigated whether mCoV-A59-driven hyperinflammatory

response in aging can be targeted through immunometabolic approaches. Hepatic ketogenesis, a

process downstream of lipolysis that converts long-chain fatty acids into short chain b-hydroxybuty-

rate (BHB) as a preferential fatty acid fuel during starvation or glucoprivic states, inhibits the NLRP3

inflammasome activation (Youm et al., 2015) and protects against influenza infection-induced mor-

tality in mice (Goldberg et al., 2019). We infected bone marrow-derived macrophages (BMDMs)

with mCoV-A59 in vitro in TLR4 (Figure 4A, Figure 4—figure supplement 1A) and TLR1/2 primed

cells (Figure 4B, Figure 4—figure supplement 1B). Infection with mCoV-A59 caused robust activa-

tion of inflammasome as measured by cleavage of active IL-1b (p17) in BMDM supernatants

(Figure 4A,B) as well as in cell lysates (Figure 4—figure supplement 1A,B). Given our prior findings

that ketone metabolites specifically inhibit the NLRP3 inflammasome in response to sterile DAMPs

such as ATP, ceramides, silica, and urate crystals (Youm et al., 2015), we next tested whether BHB

impacts inflammasome activation caused by mCoV-A59.

Interestingly, BHB treatment reduced pro and active cleaved IL-1b (p17) in both conditions when

protein level was measured in the supernatant (Figure 4A,B) and cell lysate (Figure 4—figure sup-

plement 1A,B). Mechanistically, post-mCoV-A59 infection, the BHB reduced the oligomerization of

ASC, which is an adaptor protein required for the assembly of the inflammasome complex

Figure 3 continued

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Inflammatory response in young and old mice infected with A59 (mCoV).
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Figure 4. Ketogenic diet reduces the severity of A59 (mCoV) infection in old mice. (A, B) Western blot analysis about pro and active cleaved p17 form

of IL-1b from supernatant of A59 (mCoV)-infected BMDMs co-treated with priming reagents such as LPS (A) and Pam3CSK4 (B), and BHB with indicated

concentration. (C, D) Western blot analysis of ASC monomer, dimer, and oligomers from insoluble pellet of A59 (mCoV) infected BMDMs co-treated

with priming reagents such as LPS (C) and Pam3CSK4 (D), and BHB with indicated concentration. (E) Schematic of non-lethal dose (PFU 7e2) of A59

Figure 4 continued on next page
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(Figure 4C,D). This data provides evidence that the ketone metabolite BHB can lower inflammation

in response to coronavirus infection and deactivate the inflammasome. However, inflammasome acti-

vation is also required for mounting adequate immune response against pathogens including certain

viruses. Therefore, we next investigated if induction of ketogenesis and ketolysis in vivo by feeding a

diet rich in fat and low in carbohydrates that elevates BHB level impacts inflammasome and host

defense against mCoV-A59 infection in aged mice.

We next tested whether ketogenic diet that increases BHB via mitochondrial metabolism affects

the outcome of coronavirus infection in mice. Ketogenesis is dependent on hydrolysis of triglycerides

and conversion of long-chain fatty acids in liver into short chain fatty acid BHB that serves as primary

source of ATP for heart and brain when glucose is limiting. Aging is associated with impaired lipid

metabolism which includes reduced lipolysis that generates free fatty acids that are essential sub-

strates for BHB production. Thus, it is unclear whether in context of severe infection and aging, if suf-

ficient ketogenesis can be induced. To test this, the aged male mice (20–21 months old) were fed a

ketogenic diet (KD) or control diet for 5 days and then intranasally infected with mCoV-A59

(Figure 4E). Despite mCoV-A59’s known effects in causing hepatic inflammation (Navas et al.,

2001), we observed that compared to chow-fed animals, old KD-fed mice achieved mild physiologi-

cal ketosis between 0.6 and 1 mM over the course of infection for 1 week (Figure 4—figure supple-

ment 1C).

Compared to chow-fed animals, the mCoV-A59-infected mice fed KD displayed similar levels of

food intake, blood glucose, core body temperature, heart rate, and respiration (Figure 4—figure

supplement 1D–I). Interestingly, mCoV-A59-infected KD-fed mice were protected from infection-

induced weight loss and hypoxemia (Figure 4F,G). Furthermore, we infected young and old mice

fed either chow or KD with a lethal dose of mCoV-A59 (PFU 1e6) to investigate whether KD affects

mortality caused by mCoV-A59 infection (Figure 4H). Interestingly, compared to chow-fed controls,

young mice fed KD prior to infection showed improved survival (Figure 4I). However, old mice fed

KD were not protected from death caused by high-dose mCoV-A59-induced infection (Figure 4J).

Together, these data show that KD is protective in aged mice in sub-lethal infections and partially

protects adult, but not aged animals, from lethal coronavirus infections.

Induction of ketogenic substrate switch inhibits systemic inflammation
in aged mCoV-A59 infection
Elderly COVID-19 patients exhibit multi-organ failure with systemic viremia and inflammation. There-

fore, we next investigated the impact of KD on the inflammatory response in lungs, adipose tissue,

and hypothalamus in old mice post-sub-lethal mCoV-A59 infection. Consistent with the improved

clinical outcome and protection afforded by ketone bodies in infected mice, we found that KD-fed

mice inoculated with mCoV-A59 had significantly reduced mRNA expression of pro-inflammatory

cytokines IL-1b, TNFa, and IL-6 in lung, VAT, and hypothalamus (Figure 5A–C). Aging and mCoV-

A59 increases inflammasome activation, which is increasingly implicated in the pathogenesis of

COVID-19 (Vijay et al., 2017; Youm et al., 2013). The SARS-CoV open-reading frame 3a (ORF3a)

and ORF8b activates the NLRP3 inflammasome (Siu et al., 2019) by inducing ER stress and lyso-

somal damage (Shi et al., 2019). Moreover, ability of bats to harbor multiple viruses including coro-

naviruses is due to splice variants in the LRR domain of NLRP3, which prevents inflammasome-

mediated inflammatory damage (Ahn et al., 2019). Interestingly, in the aging mouse model of

mCoV-A59 infection, KD significantly lowered NLRP3 and caspase-1 mRNA in lung, VAT, and

Figure 4 continued

(mCoV) infection experiment with old mice (20–21 month) fed chow (Old-Chow, n = 6) or ketogenic diet (Old-KD, n = 5). The mice were provided with

diet from 5 days before infection. (F, G) After infection, the phenotype was evaluated until 7 days post-infection. Weight change (%) (F), and % O2

saturation (G) in old mice fed chow or KD. (H) Schematic of lethal dose (PFU 1e6) of A59 (mCov) infection experiment with young (4 months) and old (24

months) mice fed chow (Young-Chow, n = 11; Old-Chow, n = 7) or KD (Young-KD, n = 11; Old-KD, n = 6). The mice were provided with diet from 5

days before infection. After infection, the survival was evaluated until 7 days post-infection. (I) Probability of survival of lethal dose A59 (mCoV)-infected

young mice fed chow or KD. (J) Probability of survival of lethal dose A59 (mCoV)-infected old mice fed chow or KD. Error bars represent the mean ± S.

E.M. Two-tailed unpaired t-tests were performed for statistical analysis. Gehan–Breslow–Wilcoxon tests were performed for survival analysis. *p<0.05.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Protective effect of BHB in BMDM against A59 (mCoV) and phenotype of A59 (mCoV) infected old mice fed chow or KD.
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Figure 5. Ketogenic diet protects old mice from A59 (mCoV) infection by alleviation of inflammation. (A–E) Gene expression analysis of inflammatory

cytokines (A–C) and components of inflammasome (D, E) in lung, VAT, and hypothalamus of A59 (mCoV)-infected old mice fed chow (Old-Chow, 20–21

months, n = 6) or KD (Old-KD, 20–21 months, n = 5). (F, G) Western blot analysis of caspase-1 inflammasome activation (F) in VAT of infected Old-Chow

and Old-KD mice with quantification (G). (H) Representative immunofluorescence images of CD68 expression, phalloidin, and DAPI in hearts isolated

from Old-Chow and Old-KD mice (left) and CD68+ cells/heart area analysis in heart of infected Old-Chow and Old-KD mice (right). (I) Flow cytometry

analysis of gd T cell in lung of infected Old-Chow and Old-KD mice. Error bars represent the mean ± S.E.M. Two-tailed unpaired t-tests were performed

for statistical analysis. *p<0.05; **p<0.01.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Immune cell population profile in lung of infected old mice provided with chow or ketogenic diet.

Figure supplement 2. Myeloid cell population profile in lung of infected old mice provided with chow or ketogenic diet.
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hypothalamus (Figure 5D,E), inflammasome activation in VAT (Figure 5F,G), and decreased myeloid

cell infiltration in heart (Figure 5H). The ketogenesis in infected old mice did not affect the fre-

quency of CD4, CD8 effector memory or macrophage subsets in lungs, suggesting that reduction in

pro-inflammatory cytokines was not a reflection of reduced infiltration of these cell types (Figure 5—

figure supplements 1A–L and 2A–H). Interestingly, we found that KD feeding rescued mCoV-A59-

induced depletion of ϒd T cell in lungs of aged mice (Figure 5I, Figure 5—figure supplement 1A).

Ketogenesis induces protective gd T cells and decreases myeloid cell
subset in mCoV-A59-infected old mice
To determine the mechanism of ketogenesis-induced protection from mCoV-A59-driven inflamma-

tory damage in aging, we next investigated the transcriptional changes in lung at the single-cell

level. The scRNA-sequencing of whole-lung tissues (Figure 6A, Figure 6—figure supplement 2A)

found that KD feeding in old infected mice caused significant increase in goblet cells (Figure 6B),

expansion of ϒd T cells (Figure 6B) and significant decrease in proliferative cell subsets and mono-

cyte populations (Figure 6B). When differential gene expression analyses were performed with the

clusters, we observed only very modest changes within few clusters and no shared signature (Fig-

ure 6—figure supplement 2B). Comparison with scRNA-seq of the lungs from young and old

infected animals highlighted the largest increase in B cells and club cells and reduction of proliferat-

ing myeloid cells, including Trem2+ macrophages and NK cells (Figure 6—figure supplement 1A–

D). The fraction of Foxp3-positive Treg cells were not different between young infected and old

infected mice (Figure 6—figure supplement 1E–G). Notably, when differential gene expression and

pathway analyses were performed (Figure 6—figure supplement 1H–K), the old infected mice

showed a reduced interferon signature, suggesting increased vulnerability to the viral infection (Fig-

ure 6—figure supplement 1I,J). Interestingly, some of the most striking changes occurred in T cells,

where ketogenesis led to a substantial increase in ϒd but not ab T cells (Figure 6C, Figure 6—figure

supplement 2C). To understand whether expansion of ϒd T cells was also accompanied by the

changes in their regulatory programs, we sorted the lung ϒd T cells from aged mice fed chow diet

and KD and conducted bulk RNA-sequencing to determine the mechanism of potential tissue pro-

tective effects of these cells in mCoV-A59 infection. We found that KD in aging significantly

increased the genes associated with reduced inflammation (Figure 6D), increased lipoprotein

remodeling and downregulation of TLR signaling, Plk1 and aurora B signaling pathways in ϒd T cells

(Figure 6E). However, there was no difference in mRNA expression levels of Vg chain subtypes, IL-

17, or IFN-g (Figure 6—figure supplement 2D–F). Furthermore, RNA-sequencing revealed that lung

ϒd T cells from ketogenic mCoV-A59-infected old mice displayed elevated respiratory electron

transport and complex I biogenesis (Figure 6E). In addition, Golgi to ER retrograde transport and

cell cycle are downregulated, suggesting the reduced activation status of ϒd T cell (Figure 6E).

These data suggest that ϒd T cells expanded with KD are functionally more homeostatic and

immune protective against mCoV-A59 infection.

Zooming in into monocyte sub-population, we observed three distinct monocyte clusters

(Figure 6F), characterized by Ifi44, Lmna, and Cd300e, respectively (Figure 6G). Strikingly, ketogen-

esis-induced change in the monocyte compartment was driven by a loss of cluster 1 (characterized

by high levels of Chil3, Lmna, Il1r2, Lcn2, Cd33, Cd24a, Figure 6H, Figure 6—figure supplement

2G,H). The same clusters were identified in scRNA-sequencing with young and old infected mice

and aging was only associated with reduction of the cluster 0 (Figure 6—figure supplement 2I–K).

In addition, the loss of monocyte sub-population was observed in cells with low interferon response,

further suggesting the immune protective response induction post-ketogenesis in infected mice.

This is an intriguing finding that is consistent with recent observations that dietary interventions can

impact plasticity of the monocyte pool in both mouse and human (Collins et al., 2019;

Jordan et al., 2019).

Discussion
Immune-senescence exemplified by inflammasome-mediated basal activation of myeloid cells,

expansion of pro-inflammatory aged B cells, impaired germinal center, and antibody responses

together with thymic demise and restriction of T cell repertoire diversity all contribute to increased

risk of infections and vaccination failures in elderly (Akbar and Gilroy, 2020; Frasca et al., 2020;
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Figure 6. Ketogenesis induces protective gd T cell expansion and inhibits myeloid cell activation in aged mice with mCoV infection. (A) Uniform

Manifold Approximation and Projection (UMAP) plot of lung cells from Old-KD and Old-Chow samples as described in Figure 4E. (B) Bar chart shows

population fold-changes in relative abundance of each cluster. (C) Zoom into UMAP plot from A showing T cells (cluster 1) split by sample. Color

represents expression of Trdc. (D) Volcano plot identifying significantly regulated genes (5% FDR) within sorted gs T cells from lungs of Old-KD and

Figure 6 continued on next page
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Goldberg and Dixit, 2015; Goronzy and Weyand, 2019). It is likely that multiple mechanisms par-

take in aging-induced mortality and morbidity to SARS-CoV-2. However, study of immunometabolic

mechanisms that control aberrant inflammatory response in elderly COVID-19 patients is incom-

pletely understood. Epidemiological data strongly support that elderly and aged individuals with

late-onset chronic diseases – including diabetes, obesity, heart conditions, pulmonary dysfunctions,

and cancer – present a much higher disease severity compared to young healthy adults (Cai et al.,

2020; Chen et al., 2020). These observations suggest that it is the vulnerability of the various tissues

that occur in these chronic conditions that predispose elderly to develop severe forms of COVID-19.

Rodent CoVs are natural, highly contagious pathogens of mice and rats (Compton et al., 2003;

Compton et al., 1993). These viruses also offer the possibility of efficient and safe platforms for

modeling COVID-19 and examining immunometabolic mechanisms and interventions that impact

disease. Of particular interest for COVID-19 are the strains of MHV that are respiratory tropic

(Yang et al., 2014). Given, these advantages, MHV mCoV-A59 infection in C57BL/6 mice can be a

powerful tool to rapidly study the disease as well as test therapeutic interventions. We demonstrate

that MHV mCoV-A59 infection in aged mice recapitulates severe features of COVID-19 that includes

up to 30% weight loss, sickness behavior exemplified by anorexia, loss of oxygen saturation, lung

pathology including neutrophilia, monocytosis, loss of gd T cells, lymphopenia, increase in circulating

pro-inflammatory cytokines, hypothalamic, adipose and cardiac inflammation, and inflammasome

activation. Importantly, LD-0 dose of MHV mCoV-A59 induces 100% lethality in 2 year old male

mice, suggesting that this model allows investigation of COVID-19-relevant immunometabolic mech-

anisms that control disease development and severity with aging.

Mechanistically, NLRP3 inflammasome has been demonstrated to be an important driver of

aging-induced chronic inflammation and organ damage (Bauernfeind et al., 2016; Camell et al.,

2017; Youm et al., 2013). COVID-19 patients have inflammasome-dependent pyroptosis and

increase in IL-18 (Lucas et al., 2020; Zhou et al., 2020). Consistent with the hypothesis that aging

may exacerbate inflammasome activation in SARS-CoV-2 infection, our data demonstrates that in

vivo, mCoV infection increases NLRP3 inflammasome-mediated inflammation. Recent study shows

that MHV-A59 also activates the NLRP3 inflammasome in vitro BMDM (Zheng et al., 2020). In addi-

tion, severe cases of COVID-19 are accompanied with dysregulation of monocyte populations with

increased level of S100A8/A9 or calprotectin (Schulte-Schrepping et al., 2020; Silvin et al., 2020),

which can prime and induce the inflammasome activation (Goldberg et al., 2017). Interestingly, the

KD feeding blocked infiltration of pathogenic monocyte subset in lungs that has high S100A8/9 and

low interferon expression. These data underscore that enhanced innate immune tolerance mediated

by inflammasome deactivation maybe an important strategy against COVID-19.

The integrated immunometabolic response (IIMR) is critical in regulating the setpoint of protec-

tive versus pathogenic inflammatory response (Lee and Dixit, 2020). The IIMR involves sensing of

nutrient balance by neuronal (sympathetic and sensory innervation) and humoral signals (e.g. hor-

mones and cytokines) between the CNS and peripheral tissues that allow the host to prioritize stor-

age and/or utilize substrates for tissue growth, maintenance, and protective inflammatory responses.

Peripheral immune cells, both in circulation and those residing within tissues, are subject to regula-

tion by the metabolic status of the host. Ketone bodies, BHB, and acetoacetate are produced during

starvation to support the survival of host by serving as an alternative energy substrate when glyco-

gen reserves are depleted (Newman and Verdin, 2017). Classically, ketone bodies are considered

essential metabolic fuels for key tissues such as the brain and heart (Puchalska and Crawford, 2017;

Veech et al., 2017). However, there is increasing evidence that immune cells can also be profoundly

Figure 6 continued

Old-Chow mice. Increase in expression corresponds to ketogenic diet-induced genes. (E) GSEA enrichment curve based on differential expression

analysis results shown in (D). (F) Monocyte cluster 0 and 1 from (A) were subset and analyzed separately. UMAP plot of monocytes split by samples. (G)

Heatmap of normalized within row gene expression values of selected markers of three monocyte subsets. (H) UMAP as in (F). Color represents

expression of selected genes. For (A–C, F–H), expression values were obtained by pooling data from Old-Chow and Old-KD samples (each containing

n = 6 chow and n = 5 KD pooled biological samples into one technical sample for each diet).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Single-cell RNA-sequencing analysis of lung from young and old A59 (mCoV)-infected mice.

Figure supplement 2. The lung RNA-sequencing analysis of old infected mice fed chow or ketogenic diet.
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regulated by ketone bodies (Goldberg et al., 2020; Youm et al., 2015). For example, stable iso-

tope tracing revealed that macrophage oxidation of liver-derived AcAc was essential for protection

against liver fibrosis (Puchalska et al., 2019). Given our past findings that ketone bodies inhibit

NLRP3 inflammasome activation induced by sterile DAMPs, we next hypothesized that coronavirus

mediated inflammasome activation and disease severity in aging could be improved by BHB driven

improved metabolic efficiency and NLRP3 deactivation. In support of this hypothesis, we found that

BHB inhibits the mCoV-A59-induced NLRP3 inflammasome assembly and KD reduces caspase-1

cleavage as well as decreases gene expression of inflammasome components. We next investigated

the mechanism of protection elicited by KD that is relevant to aging. Interestingly, scRNA-sequenc-

ing analyses of lung homogenates of old mice fed KD revealed robust expansion of immunoprotec-

tive gd T cells, which are reported to decline in COVID-19 patients (Lei et al., 2020; Rijkers et al.,

2020). The KD activated the mitochondrial function as evidenced by enhanced complex-1 biogenesis

and upregulation of ETC in immunoprotective gd T cells. These results are consistent with a previous

study reporting that KD-mediated enhancement of mitochondrial fatty acid oxidation is required for

protection against flu infection. In the study, increasing BHB by feeding ketone esters could not

mimic the effect of KD (Goldberg et al., 2019). This suggests an important role for mitochondrial

fatty acid oxidation and hepatic ketogenesis in protection against viral infections.

Our findings assume strong clinical significance as recent studies demonstrate that gd T cells were

severely depleted in COVID-19 patients in two highly variable cohorts, and disease progression was

correlated with near ablation of Vg9Vd2 cells that are dominant subtype of circulating gd T cells

(Laing et al., 2020). Taken together these data demonstrate that a ketogenic immunometabolic

switch protects against mCoV-A59-driven infection in mice and this involves anti-inflammatory

response in lung which is coupled with reduction of NLRP3 inflammasome, restoration of protective

ϒd T cells, and remodeling of the pool of the inflammatory monocytes. Finally, our results suggest

that acutely switching infected or at-risk elderly patients to a KD may ameliorate COVID-19 and,

therefore, is a relatively accessible and affordable intervention that can be promptly applied in most

clinical settings.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(mouse,
male)

C57BL/6 NIA

Strain, strain
background (Murine
Coronavirus)

MHV-A59 Bei resources NR-43000

Cell line
(Rattus norvegicus)

L2 ATCC CCL-149

Cell line
(Mus musculus)

L929 ATCC CCL1

Biological
sample
(Mus musculus)

Primary BMDM This paper Freshly isolated from mouse

Antibody Rat anti-
Caspase-1

Genentech N/A WB (1:250)

Antibody Rabbit polyclonal
anti-b actin

Cell Signaling
Technology

Cat#4967L; RRID:AB_330288 WB (1:1000)

Antibody Rabbit
polyclonal
anti-IL-1b

GeneTex Cat#GTX74034; RRID:AB_378141 WB (1:1000)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Rabbit
polyclonal
anti-ASC

AdipoGen Cat#AG-25B-0006; RRID:AB_2490440 WB (1:1000)

Antibody BV711 Rat
monoclonal
anti-CD45

BioLegend Cat#103147; RRID:AB_2564383 FACS (1:100)

Antibody FITC Rat
monoclonal
anti-MERTK

BioLegend Cat#151504; RRID:AB_2617035 FACS (1:100)

Antibody BV605 Mouse
monoclonal
anti-CD64

BioLegend Cat#139323; RRID:AB_2629778 FACS (1:100)

Antibody eFluor 450
Rat monoclonal
anti-F4/80

Thermo
Fisher Scientific

Cat#48-4801-82; RRID:AB_1548747 FACS (1:100)

Antibody PerCP-Cy5.5
Rat monoclonal
anti-Ly-6C

Thermo
Fisher Scientific

Cat#45-5932-82; RRID:AB_2723343 FACS (1:100)

Antibody APC Hamster
monoclonal
anti-CD11c

BioLegend Cat#117310; RRID:AB_313779 FACS (1:100)

Antibody PE Rat
monoclonal
anti-CD169

Thermo
Fisher Scientific

Cat#12-5755-82; RRID:AB_2572625 FACS (1:100)

Antibody PE/Cy7 Rat
monoclonal
anti-CD86

BioLegend Cat#105014; RRID:AB_439783 FACS (1:100)

Antibody BV605 Rat
monoclonal
anti-CD3

BioLegend Cat#100237; RRID:AB_2562039 FACS (1:100)

Antibody PE-Cy7 Rat
monoclonal
anti-CD4

Thermo
Fisher Scientific

Cat#25-0042-82; RRID:AB_469578 FACS (1:100)

Antibody eFluor 450 Rat
monoclonal
anti-CD8a

Thermo
Fisher Scientific

Cat#48-0081-82; RRID:AB_1272198 FACS (1:100)

Antibody PE Hamster
monoclonal
anti-TCR g/d

BioLegend Cat#118108; RRID:AB_313832 FACS (1:100)

Antibody APC Rat
monoclonal
anti-Ly-6G

Thermo
Fisher Scientific

Cat#17-9668-82; RRID:AB_2573307 FACS (1:100)

Antibody PerCP-Cy5.5
Rat monoclonal
anti-Siglec-F

BD Biosciences Cat#565526; RRID:AB_2739281 FACS (1:100)

Antibody PerCP-Cy5.5
Rat monoclonal
anti-CD62L

BioLegend Cat#104432; RRID:AB_2285839 FACS (1:100)

Antibody APC/Cy7
Rat monoclonal
anti-CD44

BioLegend Cat#103028; RRID:AB_830785 FACS (1:100)

Antibody Rat monoclonal
anti-CD68

Bio-Rad Cat#MCA1957; RRID:AB_322219 IF (1:100)

Peptide,
recombinant
protein

Recombinant Mouse
M-CSF Protein

R and D Systems Cat#416 ML-050

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Commercial
assay or kit

RNeasy Plus
micro kit

Qiagen Cat#74034

Commercial
assay or kit

Direct-zol RNA
Miniprep Plus kit

Zymo Research Cat#R2072

Commercial
assay or kit

iScript cDNA
synthesis kit

Bio-Rad Cat#1708891

Commercial
assay or kit

Power SYBR
Green PCR
Master Mix

Thermo
Fisher Scientific

Cat#4367659

Commercial
assay or kit

ProcartaPlex
multiplex
assay

Thermo
Fisher Scientific

Cat#PPX

Chemical
compound,
drug

Alexa Fluor
594 Phalloidin

Thermo
Fisher Scientific

Cat#A12381, RRID:AB_2315633

Chemical
compound,
drug

LPS Sigma Cat#L3024

Chemical
compound,
drug

Pam3CSK4 Invivogen Cat#tlrl-pms

Chemical
compound,
drug

(R)-Hydroxybutyric Acid (BHB) Sigma Cat#54920–1 G-F

Chemical
compound,
drug

Disuccinimidyl suberate (DSS) Thermo Fisher Scientific Cat#21655

Software,
algorithm

Image J NIH https://imagej.
nih.gov/ij/

Software,
algorithm

Prism 7 Graphpad https://www.
graphpad.com/

Software,
algorithm

FlowJo Treestar https://www.
flowjo.com/

Software,
algorithm

Cell Ranger
Single-Cell Software
Suite (v3.0.2)

10x genomics https://support.
10xgenomics.com

Software,
algorithm

R (v3.5.0)
package
Seurat (v3.1.1)

Butler et al., 2018 https://cran.r-project.
org/web/packages/
Seurat/index.html

Software,
algorithm

MAST Finak et al., 2015 https://github.
com/RGLab/MAST

Software,
algorithm

clusterProfiler
package (v3.12.0)

Yu et al., 2012 http://bioconductor.
org/packages/release/
bioc/html/cluster
Profiler.html

Software,
algorithm

STAR (v2.7.3a) Dobin et al., 2013 http://code.google.
com/p/rna-star/

Software,
algorithm

MultiQC (v1.9) Ewels et al., 2016 http://multiqc.info

Software,
algorithm

HTSeq
framework (v0.11.2)

Anders et al., 2015 http://www-huber.
embl.de/HTSeq

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

DeSeq2
package
(v1.24.0)

Love et al., 2014 http://www.
bioconductor.
org/packages/release/
bioc/html/
DESeq2.html

Software,
algorithm

fgsea R
package
(v1.10.0)

Sergushichev, 2016 https://github.
com/ctlab/fgsea

Study design
The object of this study was to investigate whether KD affects defense response of mice against

MHV-A59 along with identification of underlying mechanism. Mice were randomized for all experi-

ments groups. For experiments with mice provided with different diets, mice were fed with chow

diet or KD for 5 days before infection following phenotype observation. It was not possible that

investigators were blinded for KD experiments because appearance of KD was different from chow

diet, while investigators were blinded for experiments and data analysis. Number of samples are

indicated in each figure legend. Sample size for experiments was decided based on power calcula-

tion from previous experiments and experiences. No data points were excluded in this study. All

experiments were repeated independently at least two times. Bulk RNA-sequencing experiment was

performed once with biologically independent samples. Single-cell RNA-sequencing experiment was

done once with pooling biologically independent samples per group.

Animal models
All mice used in this study were C57BL/6 mice. Old mice (20–24 month old) were received from NIA,

maintained in our laboratory. Young mice (2–6 months old) were from NIA or purchased from Jack-

son Laboratories or bred in our laboratory. The mice were housed in specific pathogen-free facilities

with free access to sterile water through Yale Animal Resources Center. Mice were fed a standard

vivarium chow (Harlan 2018s) or a ketogenic diet (Envigo, TD.190049) for indicated time. The mice

were housed under 12 hr light/dark cycles. All experiments and animal use were conducted in com-

pliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals and

were approved by the Institutional Animal Care and Use Committee (IACUC) at Yale University.

Viral infection
MHV-A59 was purchased from Bei resources (NR-43000) and grown in BV2 cells. Mice were anesthe-

tized by intraperitoneal injection of ketamine/xylazine. 700, 7000, or 106 PFU of MHV-A59 was deliv-

ered in 40 ml PBS via intranasal inoculation. Vital signs were measured before and after infection.

Arterial oxygen saturation, breath rate, heart rate, and pulse distention were measured in conscious,

unrestrained mice via pulse oximetry using the MouseOx Plus (Starr Life Sciences Corp.).

Electron microscopy
Lungs were fixed in 10% formaldehyde, osmicated in 1% osmium tetroxide, and dehydrated in etha-

nol. During dehydration, 1% uranyl acetate was added to the 70% ethanol to enhance ultrastructural

membrane contrast. After dehydration, the lungs were embedded in Durcupan, and ultrathin sec-

tions were cut on a Leica Ultra-Microtome, collected on Formvar-coated single-slot grids, and ana-

lyzed with a Tecnai 12 Biotwin electron microscope (FEI).

Histology and immunohistochemistry
H and E and MSB staining of lung tissues were performed on sections of formalin-fixed paraffin-

embedded at the Comparative Pathology Research core at Yale School of Medicine. For immunohis-

tochemistry, the hearts were harvested from MHV-A59-infected mice, fixed in 4% PFA overnight,

and embedded in OCT after dehydration with 30% sucrose, and serial sections of aortic root were

cut at 6 mm thickness using a cryostat. Sections were incubated at 4˚C overnight with CD68 (Serotec;
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#MCA1957) and Alexa Fluor 594 Phalloidin (ThermoFisher, A12381) after blocking with blocker

buffer (5% Donkey Serum, 0.5% BSA, 0.3% Triton X-100 in PBS) for 1 hr at RT, followed by incuba-

tion with Alexa Fluor secondary antibody (Invitrogen, Carlsbad, CA) for 1 hr at RT. The stained sec-

tions were captured using a Carl Zeiss scanning microscope Axiovert 200M imaging system, and

images were digitized under constant exposure time, gain, and offset. Results are expressed as the

percent of the total plaque area stained measured with the Image J software (ImageJ version 1.51).

Plaque assay
L2 cell (1.5 ml of 6 � 105 cells/ml) were seeded on six-well plates (Corning, 3516) in supplemented

DMEM and allowed to adhere overnight. Tissue samples were homogenized in unsupplemented

DMEM and spun down at 2000 rpm for 5 min. Supernatant was serially diluted and 200 mL of each

sample was added to aspirated L2 cells in six-well plates. Plates were agitated regularly for 1 hr

before adding overlay media consisting of 1 part 1.2% Avicel and 1 part 2� DMEM (Thermo Fisher,

12800) supplemented with 4% FBS (Thermo Fisher, A3840301), penicillin-streptomycin (Gibco,

15140122), MEM Non-Essential Amino Acids Solution (Gibco, 11140050), and HEPES (Gibco,

15630080). After a 4-day incubation, cells were fixed in 10% formaldehyde (Sigma-Aldrich,

8187081000) diluted with PBS for 1 hr. Cells were then stained in 1% (w/v) crystal violet (Sigma

Aldrich, C0775) for 1 hr, washed once in distilled water, and then quantified for plaque formations.

Multiplex cytokine analyses
Serum cytokine and chemokine level was measured by ProcartaPlex multiplex assay (Thermo Fisher

Scientific). Assay was prepared following manufacture’s instruction. Twenty-five microliters of col-

lected serum from each mice in this study was used. Customized assay including IL-1b, TNFa, IL-6,

MCP-1, and MIP-1b was used. Luminex xPONENT system was used to perform the assay.

Quantitative PCR
To extract and purify RNA from tissues, RNeasy Plus micro kit (Qiagen) and Direct-zol RNA Miniprep

Plus kit (Zymo Research) were used according to manufacturer’s instructions. cDNA was synthesized

with isolated RNA using iScript cDNA synthesis kit (Bio-Rad). To quantify amount of mRNA, real-

time quantitative PCR was done with the synthesized cDNA, gene-specific primers, and Power SYBR

Green detection reagent (Thermo Fischer Scientific) using the LightCycler 480 II (Roche). Analysis

was done by DDCt method with measured values from specific genes, the values were normalized

with Gaphd gene as an endogenous control. Primer information is described in Supplementary file

1.

BMDM culture and in vitro viral infection
BMDM was cultured by collecting mouse femurs and tibias in complete collecting media containing

RPMI (Thermo Fischer Scientific), 10% FBS (Omega Scientific), and 1% antibiotics/antimycotic

(Thermo Fischer Scientific). Using needle and syringe, bone marrow was flushed into new complete

media, followed by red blood cells lysis by ACK lyses buffer (Quality Biological). In six-well plate, the

collected cells were seeded to be differentiated into macrophages incubated with 10 ng/ml M-CSF

(R and D) and L929 (ATCC) conditioned media. Cells were harvested on day 7 and seeded as 1 �

106 cell/well in 24-well plate for experiments. To infect BMDM, MHV-A59 was incubated with

BMDM as a MOI 1 (1:1) for 24 hr. For inflammasome activation, LPS (1 mg/ml) or Pam3CSK4 (1 mg/

ml) was pre-treated with or without BHB (1, 5, and 10 mM) for 4 hr before MHV-A59 infection for 24

hr or ATP (5 mM) treatment for 1 hr.

Western blotting
To prepare samples for western blotting, tissues were snap frozen in liquid nitrogen. RIPA buffer

with protease inhibitors was used to homogenize the tissues. After cell supernatant was collected,

cells were harvested by directly adding RIPA buffer on cell culture plate. After quantification of pro-

tein amount by the DC protein assay (Bio-Rad), the same amount of protein was run on SDS–PAGE

gel followed by transferring to nitrocellulose membrane. Specific primary antibodies and appropriate

secondary antibodies (Thermo Fisher Scientific) were used to probe blots, and bands were detected

by ECL Western Blotting Substrate (Pierce). The following primary antibodies were used for
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experiments: Antibodies to caspase-1 (1:250, Genentech), b-actin (1:1,000, 4967L; Cell Signaling), IL-

1b (1:1000, GTX74034, GeneTex), and ASC (1:1000, AG-25B-0006, AdipoGen).

ASC oligomerization assay
To detect ASC oligomers, cells were harvested in NP-40 lysis buffer that contains 20 mM HEPES–

KOH (pH 7.5), 150 mM KCl, 1% NP-40, 0.1 mM PMSF, and protease inhibitors. The cells in lysis

buffer were incubated on ice for 15 min and centrifuged at 6000 rpm at 4˚C for 10 min. Supernatant

was collected and kept for cell lysate western blotting. The pellet was vortexed with 1 ml of NP-40

lysis buffer and centrifuged at 6000 rpm at 4˚C for 10 min. The pellet was incubated with 50 ml of

NP-40 lysis buffer and 1 ml of 200 mM disuccinimidyl suberate for 30 min at room temperature and

then centrifuged at 6000 rpm at 4˚C for 10 min. The pellet with SDS sample buffer and reducing

reagent was loaded for western blotting.

Flow cytometry
Lung was digested in RPMI (Thermo Fisher) with 0.5 mg/ml Collagenase I (Worthington) and 0.2 mg/

ml DNase I (Roche) for 1 hr. Digested lung tissues were minced through 100 mm strainer. Spleen was

directly minced through 100 mm strainer. Minced tissues were additionally filtered with 40 mm

strainer after red blood cell lysis by ACK lysing buffer (Quality Biological). After incubation with Fc

Block CD16/32 antibodies (Thermo Fisher Scientific), the cells from lung and spleen were further

incubated with surface antibodies for 30 min on ice in the dark. Washed cells were stained with

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific). BD LSRII was used for flow

cytometry, and results were analyzed by FlowJo software. The following antibodies were used for

flow cytometry analysis to detect CD4 T cell, CD8 T cell, gd T cell, neutrophil, eosinophil, and macro-

phage: CD45-BV711, MerTK-FITC, CD64-BV605, F4/80-eFluor450, Ly6C-PerCP-Cy5.5, CD11c-APC,

CD169-PE, CD86-PE-Cy7, CD3-BV605, CD4-PE-Cy7, CD8-eFluor450, TCR g/d-PE, Ly6G-APC,

SiglecF-BV605, CD62L-PerCP-Cy5.5, CD44-APC-Cy7.

Single-cell RNA-sequencing
Lung cells were prepared as mentioned above for flow cytometry and equal amount of cells were

pooled as indicted in the experiments. Single-cell RNA-sequencing libraries were prepared at Yale

Center for Genome Analysis following manufacturer’s instruction (10� Genomics). NovaSeq6000

was used for sequencing library read.

Alignment, barcode assignment, and unique molecular identifier
counting
The Cell Ranger Single-Cell Software Suite (v3.0.2) (available at https://support.10xgenomics.com/

single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger) was used to perform sam-

ple demultiplexing, barcode processing, and single-cell 3’ counting. Cellranger mkfastq was used to

demultiplex raw base call files from the NovaSeq6000 sequencer into sample-specific fastq files.

Subsequently, fastq files for each sample were processed with cellranger counts to align reads to

the mouse reference (version mm10-3.0.0) with default parameters.

Preprocessing analysis with Seurat package
For the analysis, the R (v3.5.0) package Seurat (v3.1.1) (Butler et al., 2018) was used. Cell Ranger fil-

tered genes by barcode expression matrices were used as analysis inputs. Samples were pooled

together using the merge function. The fraction of mitochondrial genes was calculated for every cell,

and cells with high (>5%) mitochondrial fraction were filtered out. Expression measurements for

each cell were normalized by total expression and then scaled to 10,000, after that log normalization

was performed (NormalizeData function). Two sources of unwanted variation – unique molecular

identifier (UMI) counts and fraction of mitochondrial reads – were removed with ScaleData function.

For both datasets, platelet clusters as well as a cluster of degraded cells (no specific signature and

low UMI count) were removed and data was re-normalized without them. In case of Old-Keto and

Old-Chow dataset, we additionally removed neutrophils, doublets, and red blood cells. Doublets

were manually defined as cells that were positive for two or more marker sets.
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Dimensionality reduction and clustering
The most variable genes were detected using the FindVariableGenes function. Principal components

analysis (PCA) was run only using these genes. Cells are represented with >Uniform Manifold

Approximation and Projection (UMAP) plots. We applied RunUMAP function to normalized data,

using first 15 PCA components. For clustering, we used functions FindNeighbors and FindClusters

that implement shared nearest neighbor modularity optimization-based clustering algorithm on top

20 PCA components using resolution of 0.3 for both datasets.

Identification of cluster-specific genes and marker-based classification
To identify marker genes, FindAllMarkers function was used with likelihood-ratio test for single-cell

gene expression. For each cluster, only genes that were expressed in more than 10% of cells with at

least 0.1-fold difference (log-scale) were considered. For heatmap representation, mean expression

of markers inside each cluster calculated by AverageExpression function was used.

Single-cell RNA-seq differential expression
To obtain differential expression between clusters, MAST test was performed via FindMarkers func-

tion on genes expressed in at least 1% of cells in both sets of cells, and p-value adjustment was

done using a Bonferroni correction (Finak et al., 2015). Pathway analysis was performed using clus-

terProfiler package (v3.12.0) (Yu et al., 2012), with Hallmark gene sets from MSigDB. Significantly

different genes were used (padj<0.05) if percent difference between conditions (|pct.1 – pct.2|) was

over 1%. To visualize pathway expression for each cell z-scores of all pathways, genes were

averaged.

Cell subsets analysis
To separate ab T cells and gs T cells, we subset raw values of T cell (cluster 2), normalized and clus-

tered corresponding data separately as described above with clustering resolution 0.2. Obtained

subclusters were projected on the original UMAP, splitting cluster 2 in 2_1 (ab T cells) and 2_2 (gs T

cells). Monocyte clusters 0 and 1 were subset and re-analyzed in the same manner with clustering

resolution 0.3. UMAP was recalculated for monocytes only as shown in Figure 6F.

Bulk RNA-sequencing of sorted gd T cells
Cells from lung were prepared as mentioned above for flow cytometry, and gd T cell was sorted by

flow cytometry (live CD45+CD3+CD4 CD8� TCR g/d+). RNA was isolated from sorted cells using

RNeasy Plus micro kit (Qiagen). Quality checked RNA was used for RNA-sequencing library prepara-

tion at Yale Center for Genome Analysis following manufacturer’s instruction (Illumina). Nova-

Seq6000 was used for sequencing library read.

Fastq files for each sample were aligned to the mm10 genome (Gencode, release M25) using

STAR (v2.7.3a) with the following parameters: STAR –genomeDir $GENOME_DIR –readFilesIn

$WORK_DIR/$FILE_1 $WORK_DIR/$FILE_2 –runThreadN 12 –readFilesCommand zcat –outFil-

terMultimapNmax 15 –outFilterMismatchNmax 6 –outReadsUnmapped Fastx –outSAM-

strandField intronMotif –outSAMtype BAM SortedByCoordinate –outFileNamePrefix. /$

(Dobin et al., 2013). Quality control was performed by FastQC (v0.11.8), MultiQC (v1.9)

(Ewels et al., 2016), and Picard tools (v2.21.6). Quantification was done using htseq-count function

from HTSeq framework (v0.11.2): htseq-count -f bam -r pos -s no -t exon $BAM $ANNOTATION >

$OUTPUT (Anders et al., 2015). Differential expression analysis was done using DESeq function

from DeSeq2 package (Love et al., 2014) (v1.24.0) with default settings. Significance threshold was

set to adjusted p-value<0.05. Gene set enrichment analysis via fgsea R package

(Sergushichev, 2016) (v1.10.0) was used to identify enriched pathways and plot enrichment curves.

Statistical analysis
To calculate statistical significance, two-tailed Student’s t-test was used. Level of significance was

indicated as follows: *p<0.05; **p<0.005; ***p<0.001; ****p<0.0001. All statistical tests used 95%

confidence interval, and normal distribution of data was assumed. Biological replication numbers for

each experiment were indicated in each figure and figure legend. Data were shown as mean ± S.E.

M. GraphPad Prism software was used for all statistical tests to analyze experimental results.
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