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Aims An artificial intelligence-augmented electrocardiogram (AI-ECG) algorithm can identify left ventricular systolic dys-
function (LVSD). We sought to determine whether this AI-ECG algorithm could stratify mortality risk in cardiac in-
tensive care unit (CICU) patients, independent of the presence of LVSD by transthoracic echocardiography (TTE).

...................................................................................................................................................................................................
Methods
and results

We included 11 266 unique Mayo Clinic CICU patients admitted from 2007 to 2018 who underwent AI-ECG after
CICU admission. Left ventricular ejection fraction (LVEF) data were extracted for patients with a TTE during hospi-
talization. Hospital mortality was analysed using multivariable logistic regression. Mean age was 68 ± 15 years,
including 37% females. Higher AI-ECG probability of LVSD remained associated with higher hospital mortality
[adjusted odds ratio (OR) 1.05 per 0.1 higher, 95% confidence interval (CI) 1.02–1.08, P = 0.003] after adjustment
for LVEF, which itself was inversely related with the risk of hospital mortality (adjusted OR 0.96 per 5% higher,
95% CI 0.93–0.99, P = 0.02). Patients with available LVEF data (n = 8242) were divided based on the presence of
predicted (by AI-ECG) vs. observed (by TTE) LVSD (defined as LVEF <_ 35%), using TTE as the gold standard. A
stepwise increase in hospital mortality was observed for patients with a true negative, false positive, false negative,
and true positive AI-ECG.

...................................................................................................................................................................................................
Conclusion The AI-ECG prediction of LVSD is associated with hospital mortality in CICU patients, affording risk stratification

in addition to that provided by echocardiographic LVEF. Our results emphasize the prognostic value of electrocar-
diographic patterns reflecting underlying myocardial disease that are recognized by the AI-ECG.
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Introduction

The degree of medical complexity and prevalence of critical care
diagnoses are increasing in the cardiac intensive care unit (CICU)
population over time.1,2 Intensive care unit (ICU) severity of illness
scores have very good discrimination for hospital mortality in CICU
cohorts but lack optimal calibration.3–7 Clinical measurements
intended for other uses have been repurposed to predict mortality in
CICU patients. The Braden Skin Score, which was developed to

predict pressure injuries in hospitalized patients, is a potent predictor
of mortality in CICU patients and is included in a novel CICU-specific
mortality risk prediction score.8,9

Currently, available risk stratification algorithms do not integrate
markers of cardiac function, which could further refine risk stratifica-
tion in CICU patients.3–6,9,10 Left ventricular systolic dysfunction
(LVSD), defined as a reduced left ventricular ejection fraction (LVEF)
on transthoracic echocardiography (TTE), is a major determinant of
outcomes in patients with cardiovascular disease.11 Unexpectedly,
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LVSD has not been consistently associated with outcomes in all
CICU patient subgroups.12–15 This highlights the limitations of LVEF
as a definitive assessment of myocardial function.15,16

Artificial intelligence-augmented electrocardiogram (AI-ECG)
algorithms can recognize patterns characteristic of underlying myo-
cardial disease using a standard, 10-s, 12-lead electrocardiogram
(ECG).17–20 One novel AI-ECG algorithm provided excellent dis-
crimination for LVSD with an overall accuracy of >85% in more than
100 000 total patients.17–19 Insofar as the AI-ECG identifies ECG cor-
relates of underlying myocardial disease, AI-ECG algorithms can iden-
tify underlying subtle patterns associated with mortality risk.21

Although the AI-ECG algorithm retained very good discrimination
for LVSD in a CICU population with a high prevalence of LVSD, the
association between AI-ECG parameters and outcomes has not
been described for CICU patients. The aim of this study was to evalu-
ate the ability of the AI-ECG algorithm to predict mortality in CICU
patients, and to determine if this mortality prediction was affected by
the presence of LVSD on TTE.

Methods

Study population
This retrospective database study was approved by the Institutional
Review Board of Mayo Clinic Rochester under a waiver of informed con-
sent as minimal risk to patients. Consecutive unique adults admitted to
the CICU at Mayo Clinic Rochester from 1 January 2007 to 30 April 2018
were included in the database if they had not previously declined consent
for their medical records to be used for research.1,9 The study population
included patients with an ECG performed after CICU admission and dur-
ing hospitalization.

Data sources
Demographic, clinical, vital sign, laboratory, outcome, and diagnosis data
were extracted from the electronic medical record using the
Multidisciplinary Epidemiology and Translational Research in Intensive
Care (METRIC) Data Mart, along with data on critical care procedures
and therapies. Admission diagnoses were defined as all ICD-9/-10 diagno-
sis codes recorded within 1 day before or after CICU admission.7,9 The
Charlson comorbidity index, individual comorbidities, and severity of ill-
ness scores, including the Sequential Organ Failure Assessment and
APACHE-III and IV scores, were extracted from the electronic medical
record using previously validated algorithms.3,4,6,7

The Mayo Clinic Cardiovascular Data Mart was queried electronically
for the TTE closest to CICU admission, and available LVEF data from this
TTE were included if it was performed during or within 1 day before or
after hospitalization. The LVEF value was determined hierarchically: calcu-
lated Simpson’s biplane method was used preferentially; if this was not
available, then other calculated LVEF methods were used; and finally, if
LVEF could not be calculated, then visual LVEF estimation was used.10,12

The severity of LVSD was defined according to American Society of
Echocardiography (ASE) guidelines: mild LVSD (LVEF 41–51% for males
and 41–53% for females), moderate LVSD (LVEF 30–40%), and severe
LVSD (LVEF < 30%).16

AI-ECG algorithm
The novel proprietary AI-ECG algorithm for detection of LVSD used in
this analysis was derived and validated in nearly 100 000 patients from the
Mayo Clinic with a paired ECG and echocardiogram.17–19 A deep

convolutional neural network was trained to identify LVEF <_35% by
echocardiography using digitized raw data from a standard 10-s, 12-lead
ECGs sampled at 500 Hz from�36 000 patients using the GE-Marquette
(Marquette, WI, USA) platform.17,18 The AI-ECG algorithm used a neural
network to transform and integrate raw ECG data using 2-s segments
with 1-s overlap from each individual ECG lead to produce a single out-
put variable. The output of this AI-ECG algorithm provides a probability
(between 0 and 1) that LVSD (i.e. LVEF <_35% by echocardiography) is
present, without providing data about which ECG features contributed
to this probability.17,18 The AI-ECG data were obtained for the first ECG
performed after CICU admission electronically, without manual ECG
review.

AI-ECG and TTE LVSD groups
Among patients with available LVEF data from TTE, the optimal AI-ECG
cut-off for LVSD was used to classify patients based on the presence of
observed LVEF <_35% by TTE as the ‘gold standard’. If the AI-ECG prob-
ability of LVSD was below the cut-off, a true negative (TN) AI-ECG was
defined as LVEF >35% by TTE and false negative (FN) was defined as
LVEF <_35% by TTE. If the AI-ECG probability of LVSD was above the
cut-off, a true positive (TP) AI-ECG was defined as LVEF <_35% by TTE
and false positive (FP) was defined as LVEF >35% by TTE (Supplementary
material online, Figure S1).

Statistical analysis
All-cause CICU, hospital, 1-year mortality were determined using elec-
tronic review of medical records for notification of patient death and last
follow-up date. Mortality data were extracted from Mayo Clinic electron-
ic databases, the state of Minnesota electronic death certificates, and the
Rochester Epidemiology Project database. Data are reported as number
(percent) for categorical variables and mean ± standard deviation for
continuous variables. Patients were divided based on quintiles of the AI-
ECG predicted probability of LVSD. Groups were compared using the
Pearson v2 test for categorical variables and the Wilcoxon rank-sum test
for continuous variables. To assess discrimination, receiver-operator
characteristic (ROC) curves were generated using logistic regression, and
the area under the ROC curve (AUC) value was determined with 95%
confidence intervals (CIs) via 1000-sample bootstrapping. The optimal
cut-off was defined as the highest value of Youden’s J index = (sensitivity
þ specificity) – 1 on ROC analysis. Odds ratio (OR) and 95% CI values
for hospital mortality were determined using logistic regression before
and after adjustment for demographics, comorbidities, severity of illness
scores, and CICU procedures and therapies (Supplementary material on-
line, Table S1). One-year mortality was assessed using Kaplan–Meier sur-
vival analysis, and groups were compared by the log-rank test. Hazard
ratio (HR) values for 1-year mortality were determined using Cox
proportional-hazards analysis before and after adjustment for these same
variables. Separate logistic regression and Cox proportional-hazards
models were constructed including LVEF in the subgroup of patients with
available TTE data. Two-tailed P-values <0.05 were considered significant.
Statistical analysis was performed using JMP version 14.0 Pro (SAS
Institute, Cary, NC, USA).

Results

Study population
Using a pre-existing CICU database of 12 428 unique patients
(Supplementary material online, Figure S1), we excluded 1162
patients: 424 without an ECG after CICU admission and 738 whose
first ECG after CICU admission was not during hospitalization. The
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final study population of 11 266 patients had a mean age of
67.6± 15.0 years and included 37.3% females (Table 1). Admission
diagnoses included: acute coronary syndrome (ACS), 45.2%; heart
failure (HF), 48.3%; cardiogenic shock, 12.5%; and cardiac arrest,
12.2% (Table 1).

AI-ECG and LVSD by TTE
The AI-ECG was performed during the CICU stay in 92.3% of
patients, including the day of CICU admission in 77.9% of patients.
The mean probability of LVSD by AI-ECG was 0.352± 0.373. LVEF
data from TTE were available in 8242 patients (73.2% of the study
population), and the mean LVEF was 47.3 ± 16.5%; LVEF was meas-
ured by the biplane method in 2095 (25.4%) patients. The AI-ECG
and TTE were separated by a mean of 0.8± 5.2 days, and 54.2% of
patients had the TTE and AI-ECG on the same day. LVSD by ASE cri-
teria was present in 53.3% of patients: mild LVSD, 18.3%; moderate
LVSD, 17.8%; severe LVSD, 17.2%. The AI-ECG had an AUC of 0.83
(95% CI 0.82–0.84) for predicting LVEF <_35% by TTE. At the optimal
cut-off of 0.389, the AI-ECG had a sensitivity and specificity of 75.1%
and 76.1% for LVEF <_35% by TTE, respectively; overall accuracy was
75.8% with a positive and negative predictive value of 54.5% and
88.9%, respectively. The AI-ECG predicted LVEF <_35% in 37.8% of
patients, and 27.6% of patients had observed LVEF <_35% by TTE
(Table 1). Based on predicted vs. observed LVEF <_35% by TTE,
patients were classified as TP, 20.7%; TN, 55.1%; FP, 17.3%; and FN,
6.9% (Supplementary material online, Figure S1 and Table 2). There
were substantial differences in baseline characteristics across these
predicted versus observed LVEF <_35% groups (Table 2).

Hospital mortality
A total of 979 (8.7%) patients died in the hospital, including the 589
(5.2%) that died during the CICU stay. Hospital survivors differed
substantially from inpatient deaths (Table 1). Inpatient deaths had a
higher AI-ECG probability of LVSD (0.490 ± 0.378 vs. 0.339 ± 0.370,
P < 0.001) and a lower LVEF (40.4± 18.5% vs. 47.9± 16.1%,
P < 0.001). LVEF was inversely associated with hospital mortality (un-
adjusted OR 0.88 per 5% higher, 95% CI 0.86–0.90, P < 0.001; AUC
0.62, 95% CI 0.59–0.64; optimal cut-off 40%). The AI-ECG probability
of LVSD was directly associated with hospital mortality (unadjusted
OR 1.11 per 0.1 higher, 95% CI 1.09–1.13, P < 0.001; AUC 0.63, 95%
CI 0.61–0.65; optimal cut-off 0.075). Addition of the AI-ECG prob-
ability of LVSD to the LVEF increased the AUC for discrimination of
hospital mortality (AUC 0.64 vs. 0.60, P < 0.001 by De Long test).
Addition of the AI-ECG probability of LVSD to the APACHE-III score
modestly increased the AUC value for discrimination of hospital
mortality (AUC 0.83 vs. 0.82, P < 0.001 by De Long test). CICU and
hospital mortality increased with the severity of LVSD (Figure 1A)
and with increasing AI-ECG probability of LVSD (Figure 1B) or higher
AI-ECG probability of LVSD quintile (Supplementary material online,
Figure S2). Among patients with ACS, both AI-ECG probability of
LVSD (unadjusted OR 1.07 per 0.1 higher, 95% CI 1.04–1.11,
P < 0.001) and LVEF by TTE (unadjusted OR 0.82 per 5% higher, 95%
CI 0.78–0.86, P < 0.001) were both associated with hospital mortality;
associations were not significant among patients with HF (P = 0.05 for
LVEF by TTE and P = 0.09 for AI-ECG probability of LVSD).

Hospital mortality was higher in patients with either LVEF <_35%
predicted by AI-ECG (12.4% vs. 6.4%, P < 0.001) or LVEF <_35%
observed by TTE (14.3% vs. 6.2%, P < 0.001). CICU and hospital mor-
tality varied based on the presence of predicted (by AI-ECG) or
observed (by TTE) LVEF <_35% (Figure 2). Patients with a TN AI-ECG
had the lowest hospital mortality (all P < 0.001). Patients with a TP
AI-ECG had higher hospital mortality than patients with an FP AI-
ECG (P < 0.001) and similar hospital mortality to patients with an FN
AI-ECG (P = 0.05); patients with an FP or FN AI-ECG had similar hos-
pital mortality (P = 0.10). The AI-ECG probability of LVSD was incre-
mentally associated with hospital mortality (Figure 3) among patients
with normal LVEF (unadjusted OR 1.13 per 10% higher, 95% CI
1.08–1.18, P < 0.001) or mild LVSD (unadjusted OR 1.08 per 10%
higher, 95% CI 1.02–1.15, P = 0.005), but not in patients with moder-
ate or severe LVSD (P > 0.1).

After multivariable adjustment, the AI-ECG probability of LVSD
remained directly associated with hospital mortality (adjusted OR
1.05 per 0.1 higher, 95% CI 1.03–1.08, P < 0.001). This persisted after
adjustment for LVEF (adjusted OR 1.05 per 0.1 higher, 95% CI 1.02–
1.08, P = 0.003); LVEF remained inversely associated with hospital
mortality (adjusted OR 0.96 per 5% higher, 95% CI 0.93–0.99,
P = 0.02) (Supplementary material online, Table S1). After multivari-
able adjustment, patients with a TP AI-ECG had higher hospital mor-
tality than patients with either an FN AI-ECG (adjusted OR 1.79, 95%
CI 1.24–2.59, P = 0.002) or FP AI-ECG (adjusted OR 1.56, 95% CI
1.18–2.06, P = 0.002), whereas patients with an FP AI-ECG had simi-
lar adjusted hospital mortality to patients with an FN AI-ECG
(P = 0.49) or TN AI-ECG (P = 0.25).

One-year mortality
A total of 2459 (21.8%) patients died within 1 year after CICU admis-
sion (including hospital deaths), and 1244 (11.0%) had a follow-up
duration of less than 1 year but were alive at last follow-up. One-year
survival was progressively lower as a function of increasing AI-ECG
probability of LVSD quintile (Supplementary material online, Figure
S3A; P < 0.001 by log-rank). One-year survival was lower in patients
with moderate or severe LVSD by TTE (Supplementary material on-
line, Figure S3B; P < 0.001 by log-rank), although patients with normal
LVEF and mild LVSD had similar 1-year mortality (P = 0.26). Patients
with either observed LVEF <_35% by TTE or predicted <_35% by AI-
ECG had higher 1-year mortality (P < 0.001 by log-rank). The associ-
ation between AI-ECG predicted probability of LVSD and 1-year
mortality was greater among patients with mild or no LVSD by TTE
(Supplementary material online, Figure S4). One-year mortality varied
based on the presence of predicted (by AI-ECG) or observed (by
TTE) LVEF <_35% (Figure 4). Patients with TN AI-ECG had the lowest
1-year mortality, and patients with TP AI-ECG had the highest 1-year
mortality, while patients with either FN or FP AI-ECG had similar 1-
year mortality (P = 0.48); the results did not change when the analysis
was limited to hospital survivors.

After multivariable adjustment, AI-ECG probability of LVSD
remained associated with higher 1-year mortality (adjusted HR 1.04
per 0.1 higher, 95% CI 1.03–1.05, P < 0.001), even after adjusting for
LVEF in patients with available data (adjusted HR 1.03 per 0.1 higher,
95% CI 1.01–1.04, P = 0.003); LVEF remained inversely associated
with 1-year mortality (adjusted HR 0.97 per 5% higher, 95% CI 0.95–
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Table 1 Baseline characteristics of the final study population, hospital survivors, and inpatient deaths

Variables Final study population

(n 5 11 266)

Inpatient deaths

(n 5 979)

Hospital survivors

(n 5 10 287)

P-value

Demographics

Age (years) 67.6 ± 15.0 71.6 ± 13.7 67.2 ± 15.1 <0.001

Female, n (%) 4202 (37.3%) 393 (40.1%) 3809 (37.0%) 0.05

Caucasian, n (%) 10 410 (92.6%) 881 (90.0%) 9529 (92.6%) 0.003

CICU length of stay (days) 2.6 ± 4.4 3.4 ± 4.3 2.5 ± 4.5 <0.001

Hospital length of stay (days) 8.2 ± 13.8 9.6 ± 19.7 8.1 ± 13.1 <0.001

CICU mortality 589 (5.2%) 589 (60.2%) 0 (0%) NA

Hospital mortality 979 (8.7%) 979 (100%) 0 (0%) NA

One-year mortality 2459 (21.8%) 979 (100%) 1480 (14.4%) NA

Comorbidities

Charlson comorbidity index 2.3 ± 2.6 3.1 ± 2.9 2.3 ± 2.6 <0.001

Prior myocardial infarction 2085 (18.5%) 194 (19.8%) 1891 (18.4%) 0.28

Prior heart failure 2146 (19.1%) 259 (26.5%) 1887 (18.4%) <0.001

Prior stroke 1324 (11.8%) 167 (17.1%) 1157 (11.3%) <0.001

Prior diabetes mellitus 3199 (28.4%) 328 (33.5%) 2871 (28.0%) <0.001

Prior lung disease 2129 (18.9%) 244 (24.9%) 1885 (18.4%) <0.001

Prior chronic kidney disease 2248 (20.0%) 279 (28.5%) 1969 (19.2%) <0.001

Prior dialysis 564 (5.0%) 103 (10.5%) 461 (4.5%) <0.001

Admission diagnosesa

Acute coronary syndrome 5056 (45.2%) 420 (42.9%) 4636 (45.5%) 0.13

Heart failure 5398 (48.3%) 643 (65.8%) 4755 (46.6%) <0.001

Shock 1724 (15.4%) 525 (53.7%) 1199 (11.8%) <0.001

Cardiogenic shock 1395 (12.5%) 424 (43.4%) 971 (9.5%) <0.001

Cardiac arrest 1357 (12.2%) 432 (44.2%) 925 (9.1%) <0.001

Ventricular fibrillation arrest 710 (6.4%) 173 (17.7%) 537 (5.3%) <0.001

Respiratory failure 2723 (24.4%) 631 (64.5%) 2092 (20.5%) <0.001

Sepsis 730 (6.5%) 218 (22.3%) 512 (5.0%) <0.001

Severity of illness scores

Day 1 SOFA score 3.5 ± 3.2 7.7 ± 4.2 3.1 ± 2.8 <0.001

APACHE-III score 61.0 ± 25.1 93.0 ± 33.4 57.9 ± 21.8 <0.001

APACHE-IV predicted death (%) 17.0 ± 19.9 44.1 ± 28.9 14.4 ± 16.6 <0.001

Admission Braden Skin Score 17.7 ± 3.4 14.1 ± 3.6 18.0 ± 3.2 <0.001

Procedures and therapies

Inpatient coronary angiogram 6807 (60.4%) 443 (45.2%) 6364 (61.9%) <0.001

Inpatient PCI 4148 (36.8%) 228 (23.3%) 3920 (38.1%) <0.001

IABP in CICU 1024 (9.1%) 163 (16.6%) 861 (8.4%) <0.001

Pulmonary artery catheter 1047 (9.3%) 162 (16.6%) 885 (8.6%) <0.001

Red blood cell transfusion 1306 (11.6%) 228 (23.3%) 1078 (10.5%) <0.001

Dialysis in CICU 545 (4.8%) 175 (17.9%) 370 (3.6%) <0.001

CRRT 229 (2.0%) 109 (11.1%) 120 (1.2%) <0.001

Non-invasive ventilator 1747 (15.5%) 232 (23.7%) 1515 (14.7%) <0.001

Invasive ventilator 1913 (17.0%) 538 (55.0%) 1375 (13.4%) <0.001

Vasoactive drugs

# vasoactive drugs

2830 (25.1%)

0.5 ± 1.0

640 (65.4%)

1.5 ± 1.5

2190 (21.3%)

0.4 ± 0.8

<0.001

<0.001

In-hospital cardiac arrest 284 (2.5%) 127 (13.0%) 157 (1.5%) <0.001

Echocardiographic and AI-ECG findings

Inpatient TTE 9582 (87.2%) 779 (85.6%) 8803 (87.3%) 0.14

TTE within 1 day of CICU admission 6963 (61.8%) 574 (58.6%) 6389 (62.1%) 0.03

LVEF (%)a 47.3 ± 16.5 40.5 ± 18.5 47.9 ± 16.1 <0.001

Normal LVEF for sexa 3843 (46.6%) 219 (31.3%) 3624 (48.0%) <0.001

Mild LVSDa 1514 (18.4%) 101 (14.4%) 1413 (18.7%)

Continued

AI-ECG and mortality in CICU 535



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
0.99, P < 0.001). After multivariable adjustment, patients with a TP
AI-ECG had higher 1-year mortality than patients with either an FN
AI-ECG (adjusted HR 1.29, 95% CI 1.07–1.55, P = 0.008) or FP AI-
ECG (adjusted HR 1.35, 95% CI 1.18–1.55, P < 0.001), whereas
patients with an FP AI-ECG had similar mortality to patients with an
FN AI-ECG (P = 0.62) or TN AI-ECG (P = 0.13).

Discussion

In this analysis of more than 11 000 CICU patients, we demonstrate
that an AI-ECG algorithm designed to identify LVSD can also identify
patients with an increased risk of dying during and after hospitaliza-
tion. While the AI-ECG algorithm only identified echocardiographic
LVSD with moderate accuracy, the mortality association of the AI-
ECG probability of LVSD extended beyond what could be explained
by reduced LVEF alone. Indeed, the AI-ECG prediction of LVSD had
a stronger association with mortality in patients without significant
LVSD, highlighting the prognostic importance of subclinical myocar-
dial disease. Even after adjustment for relevant covariates and LVEF, a
higher AI-ECG probability of LVSD remained associated with an
increased risk of hospital and 1-year mortality. Our findings in
patients with concordant versus discordant AI-ECG and TTE suggest
that the ECG patterns recognized by the AI-ECG algorithm that can
predict LVSD are reflective of underlying myocardial disease with
prognostic relevance even in a critically-ill CICU cohort. This suggests
that a myopathic process detected by the AI-ECG may be impacting
cardiac electrical activity and outcomes prior to the development of
overt mechanical dysfunction identified by imaging.17–19 The AI-ECG
may complement TTE for mortality risk stratification by evaluating
components of myocardial electrical functioning that are not readily
assessed (particularly for patients with mild or no LVSD).

A recent study by Raghunath et al.21 showed that an AI-ECG algo-
rithm could be trained to predict death during follow-up in nearly 1.8
million unselected patients. As a model designed to predict mortality,
their AI-ECG algorithm had substantially higher discrimination for 1-

year mortality (AUC 0.85) than we observed using our AI-ECG
model, even among patients whose ECG was interpreted as ‘normal’
by a cardiologist.21 The AI-ECG can identify prognostically relevant
ECG findings that may not be discernable to the human eye. Deriving
and validating an AI-ECG model specifically for prediction of mortal-
ity might improve the mortality prediction performance in the CICU.
A substantial limitation of most AI-ECG algorithms (including the one
evaluated in this study) is the focus only on the ECG itself, without
integrating other clinically relevant patient-level data that could im-
prove prediction and risk-stratification; future iterations of AI-ECG
algorithms ideally would include clinical information. While our study
was built to further validate the utility and reproducibility of this ECG
AI algorithm amongst CICU patients, as algorithms such as these
reach routine clinical implementation, following standards being
developed by consensus bodies will be important to ensure consist-
ency and scientific reliability.22,23

Discrimination of hospital mortality by the AI-ECG probability of
LVSD remained modest (AUC 0.64) albeit slightly superior to LVEF
by TTE; neither of these measures alone is ideal for prediction of hos-
pital mortality in CICU patients. More sophisticated TTE
modalities including Doppler and strain imaging can improve mortal-
ity risk-stratification in critically-ill patients beyond standard 2D TTE
measures such as LVEF, and it will be necessary for future studies to
demonstrate additive prognostic value of the AI-ECG beyond of
these advanced imaging techniques.10,13,14,24 The AI-ECG is expected
to be less sensitive to image quality, which can preclude use of
advanced TTE imaging modalities in some critically-ill patients.

AI algorithms can predict death among hospitalized patients,
including ICU patients and patients with HF by identifying patterns of
vital sign and laboratory abnormalities.25,26 There is precedent for
the use of prolonged ECG monitoring data to predict mortality in
critically-ill patients.27 Our AI-ECG algorithm utilizes a standard 12-
lead ECG without the need for prolonged monitoring, leveraging a
ubiquitous clinical test for mortality risk stratification without the
need for additional cost or personnel time. The AI-ECG should be

....................................................................................................................................................................................................................

Table 1 Continued

Variables Final study population

(n 5 11 266)

Inpatient deaths

(n 5 979)

Hospital survivors

(n 5 10 287)

P-value

Moderate LVSDa 1470 (17.8%) 137 (19.6%) 1333 (17.7%)

Severe LVSDa 1415 (17.2%) 242 (24.6%) 1173 (15.6%)

LVEF <_35% by TTEa 2277 (27.6%) 326 (46.6%) 1951 (25.9%) <0.001

AI-ECG probability of LVSD 0.352 ± 0.373 0.490 ± 0.378 0.339 ± 0.370 <0.001

Predicted LVEF <_35% 4257 (37.8%) 529 (54.0%) 3728 (36.2%) <0.001

True negativea 4540 (55.1%) 240 (34.3%) 4300 (57.0%) <0.001

False positivea 1425 (17.3%) 133 (19.0%) 1292 (17.1%)

False negativea 567 (6.9%) 67 (9.6%) 500 (6.6%)

True positivea 1710 (20.8%) 259 (37.0%) 1451 (19.2%)

Data displayed as n (%) for categorical variables or mean ± standard deviation for continuous variables. Reported P-value is for between-groups comparison using Pearson v2

test (categorical variables) or Wilcoxon rank-sum test (continuous variables) comparing hospital survivors and inpatient deaths.
ACS, acute coronary syndrome; AI-ECG, artificial intelligence-enhanced electrocardiogram; APACHE, Acute Physiology and Chronic Health Evaluation; CICU, cardiac intensive
care unit; CRRT, continuous renal replacement therapy; ECG, electrocardiogram; IABP, intra-aortic balloon pump; LVEF, left ventricular ejection fraction; LVSD, left ventricular
systolic dysfunction; PCI, percutaneous coronary intervention; SOFA, Sequential Organ Failure Assessment; TTE, transthoracic echocardiogram.
aAdmission diagnoses were not mutually-exclusive and may sum to greater than 100%.
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Table 2 Baseline characteristics of the 8242 patients with LVEF data from TTE based on the concordance or discord-
ance between AI-ECG and TTE for LVEF �35%

Variables True negative

(n 5 4540)

False positive

(n 5 1425)

False negative

(n 5 567)

True positive

(n 5 1710)

P-value

Demographics

Age (years) 66.9 ± 15.0 71.1 ± 13.6 68.0 ± 15.2 68.0 ± 13.9 <0.001

Female, n (%) 1780 (39.2%) 546 (38.3%) 250 (44.1%) 441 (25.8%) <0.001

Caucasian, n (%) 4211 (92.8%) 1333 (93.5%) 521 (91.9%) 1552 (90.8%) 0.02

CICU length of stay (days) 2.3 ± 4.0 3.0 ± 7.0 3.2 ± 3.1 3.7 ± 5.5 <0.001

Hospital length of stay (days) 6.9 ± 10.9 9.8 ± 20.2 9.7 ± 10.7 12.4 ± 16.5 <0.001

CICU mortality 131 (2.9%) 78 (5.5%) 39 (6.9%) 152 (8.9%) <0.001

Hospital mortality 240 (5.3%) 133 (9.3%) 67 (11.8%) 259 (15.2%) <0.001

One-year mortality 693 (15.3%) 371 (26.0%) 152 (26.8%) 597 (34.9%) <0.001

Comorbidities

Charlson comorbidity index 1.9 ± 2.4 2.7 ± 2.7 2.2 ± 2.5 2.9 ± 2.7 <0.001

Prior myocardial infarction 615 (13.6%) 308 (21.7%) 98 (17.3%) 489 (28.6%) <0.001

Prior heart failure 440 (9.7%) 349 (24.6%) 86 (15.2%) 597 (35.0%) <0.001

Prior stroke 423 (9.3%) 191 (13.5%) 69 (12.2%) 246 (14.4%) <0.001

Prior diabetes mellitus 1127 (24.9%) 482 (34.0%) 155 (27.4%) 597 (35.0%) <0.001

Prior lung disease 774 (17.1%) 26 (18.8%) 122 (21.6%) 333 (19.5%) <0.001

Prior chronic kidney disease 645 (14.2%) 355 (25.0%) 108 (19.1%) 459 (26.9%) <0.001

Prior dialysis 159 (3.5%) 101 (7.1%) 31 (5.5%) 119 (7.0%) <0.001

Admission diagnosesa

Acute coronary syndrome 2534 (56.4%) 716 (50.5%) 347 (61.5%) 745 (43.8%) <0.001

Heart failure 1379 (30.7%) 819 (57.7%) 425 (75.6%) 1504 (88.3%) <0.001

Shock 466 (10.4%) 243 (17.1%) 186 (33.1%) 512 (30.1%) <0.001

Cardiogenic shock 339 (7.5%) 191 (13.5%) 163 (29.0%) 464 (27.2%) <0.001

Cardiac arrest 426 (9.5%) 182 (12.8%) 117 (20.8%) 300 (17.6%) <0.001

VF arrest 211 (4.7%) 87 (6.1%) 78 (13.9%) 174 (10.2%) <0.001

Respiratory failure 902 (20.1%) 453 (31.9%) 214 (38.1%) 628 (36.9%) <0.001

Sepsis 252 (5.6%) 115 (8.1%) 62 (11.0%) 164 (9.6%) <0.001

Severity of illness scores

Day 1 SOFA score 2.9 ± 2.9 4.0 ± 3.4 4.6 ± 3.7 4.7 ± 3.5 <0.001

APACHE-III score 56.2 ± 22.9 66.1 ± 25.4 69.1 ± 28.1 69.1 ± 25.8 <0.001

APACHE-IV predicted death (%) 13.8 ± 17.3 20.8 ± 21.7 22.9 ± 23.2 23.2 ± 22.7 <0.001

Admission Braden Score 18.1 ± 3.2 17.1 ± 3.4 16.4 ± 3.6 16.9 ± 3.5 <0.001

Procedures and therapies

Inpatient coronary angiogram 2947 (64.9%) 852 (59.8%) 405 (71.4%) 1097 (64.2%) <0.001

Inpatient PCI 2072 (45.6%) 532 (37.3%) 234 (41.3%) 503 (29.4%) <0.001

IABP in CICU 283 (6.2%) 133 (9.3%) 105 (18.5%) 338 (19.8%) <0.001

Pulmonary artery catheter 239 (5.3%) 118 (8.3%) 82 (14.5%) 345 (20.2%) <0.001

Red blood cell transfusion 461 (10.2%) 216 (15.2%) 102 (18.0%) 228 (13.3%) <0.001

Dialysis in CICU 136 (3.0%) 96 (6.7%) 35 (6.2%) 156 (9.1%) <0.001

CRRT 64 (1.4%) 40 (2.8%) 17 (3.0%) 73 (4.3%) <0.001

Non-invasive ventilator 588 (13.0%) 276 (19.4%) 108 (19.0%) 376 (22.0%) <0.001

Invasive ventilator 565 (12.4%) 294 (20.6%) 175 (30.9%) 455 (26.6%) <0.001

Vasoactive drugs 761 (16.8%) 372 (26.1%) 209 (36.9%) 768 (44.9%) <0.001

# vasoactive drugs 0.3 ± 0.8 0.5 ± 1.0 0.7 ± 1.2 0.9 ± 1.2 <0.001

In-hospital cardiac arrest 72 (1.6%) 41 (2.9%) 26 (4.6%) 64 (3.8%) <0.001

Continued
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..thought of as a complementary modality to TTE, rather than a
replacement.

Our AI-ECG algorithm was originally designed to identify patients
with significant LVSD (defined as LVEF <_35%) based on subtle and
prognostically relevant ECG changes caused by underlying myocar-
dial disease.17–20 We observed an incremental association between
the AI-ECG predicted probability of LVSD and mortality beyond that
conferred by LVEF, which is one of the best-established markers of
mortality risk among patients with cardiovascular disease.11 We
believe that the independent and additive associations of LVEF by
TTE and AI-ECG probability of LVSD with mortality reflect their
complementary abilities to characterize distinct aspects of myocardial
disease that are associated with mortality.12,13,15,16 The overall accur-
acy of the AI-ECG for identifying LVSD was modest, with only
76% diagnostic accuracy for LVEF <_35% and a substantial number of
FP and FN results. Patients with discordant AI-ECG and TTE for

LVSD (FP or FN) had similar outcomes, providing further evidence of
the clinical relevance of the ECG features identified by the AI-ECG
algorithm; the prevalence of discrepant TTE and AI-ECG almost
certainly would have differed if biplane LVEF measurements were
uniformly available.

Limitations
This retrospective cohort analysis has important limitations, including
potential bias resulting from missing data and unmeasured confound-
ing variables, and our results should be considered hypothesis-
generating rather than definitive. Our CICU population differs from
other CICU cohorts, most notably due to the lower number of racial
and ethnic minorities represented; external validation in a distinct
CICU cohort would strengthen our findings.28 Notably, this CICU
population differs from the mixed inpatient/output populations used
to derive and validate the AI-ECG for identification of LVSD, with

....................................................................................................................................................................................................................

Table 2 Continued

Variables True negative

(n 5 4540)

False positive

(n 5 1425)

False negative

(n 5 567)

True positive

(n 5 1710)

P-value

Echocardiographic and AI-ECG findings

TTE within 1 day of CICU admission 3549 (78.2%) 1069 (75.0%) 482 (85.0%) 1277 (74.7%) <0.001

AI-ECG on day of CICU admission 3688 (81.2%) 1131 (79.4%) 454 (80.1%) 1310 (76.6%) <0.001

TTE and AI-ECG same day 1861 (41.0%) 572 (40.1%) 319 (56.3%) 727 (42.5%) <0.001

LVEF (%) 57.3 ± 9.3 50.5 ± 9.8 28.4 ± 6.4 24.1 ± 7.4 <0.001

AI-ECG probability LVSD 0.076 ± 0.093 0.726 ± 0.189 0.135 ± 0.110 0.850 ± 0.168 <0.001

Data displayed as n (%) for categorical variables or mean ± standard deviation for continuous variables. Reported P-value is for between-groups comparison using Pearson v2

test (categorical variables) or Wilcoxon rank-sum test (continuous variables) across groups.
ACS, acute coronary syndrome; AI-ECG, artificial intelligence-enhanced electrocardiogram; APACHE, Acute Physiology and Chronic Health Evaluation; CICU, cardiac intensive
care unit; CRRT, continuous renal replacement therapy; ECG, electrocardiogram; IABP, intra-aortic balloon pump; LVEF, left ventricular ejection fraction; LVSD, left ventricular
systolic dysfunction; PCI, percutaneous coronary intervention; SOFA, Sequential Organ Failure Assessment; TTE, transthoracic echocardiogram; VF, ventricular fibrillation.
aAdmission diagnoses were not mutually-exclusive and may sum to greater than 100%.

Figure 1 CICU and hospital mortality as a function of LVSD based on current ASE guidelines16 (A) and the AI-ECG probability of LVSD (B).
P < 0.001 for trends across categories. AI-ECG, artificial intelligence-augmented electrocardiogram; ASE, American Society of Echocardiography;
CICU, cardiac intensive care unit; ECG, electrocardiogram; LVSD, left ventricular systolic dysfunction; TTE, transthoracic echocardiogram.
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Figure 2 CICU and hospital mortality based on predicted (by AI-ECG) and observed (by TTE) LVEF <_35%. *P < 0.001 compared with all other
groups. #P < 0.001 compared with false positive AI-ECG and P = 0.05 compared with false-negative ECG. P = 0.10 for comparison of false-positive and
false-negative AI-ECG. AI-ECG, artificial intelligence-augmented electrocardiogram; CICU, cardiac intensive care unit; ECG, electrocardiogram; LVEF,
left ventricular ejection fraction; TTE, transthoracic echocardiogram.

Figure 3 Heat map demonstrating hospital survival (A) and 1-year survival (B) as a function of LVSD on TTE based on current ASE guidelines16

(Y axis) and AI-ECG probability of LVSD quintile (X axis). Darker colours represent a higher risk of hospital death. AI-ECG, artificial intelligence-
augmented electrocardiogram; LVSD, left ventricular systolic dysfunction; TTE, transthoracic echocardiogram.
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..higher patient acuity and a greater prevalence of LVSD.17–19 The auto-
mated AI-ECG algorithm provides a probability of LVSD without
providing details regarding which ECG characteristics contributed
to prediction, and our analysis was performed without manually
over-reading of the ECG or TTE; likewise, we did not have avail-
able data on the heart rate, rhythm or clinical interpretation of the
ECG itself. The LVEF cut-off <_35% used in the original derivation
and validation studies for the AI-ECG algorithm was specifically
chosen to identify patients with asymptomatic LVSD that might
warrant further evaluation and initiation of evidence-based thera-
pies, yet fails to capture a substantial number of patients with clin-
ically significant LVSD of lesser severity.17–19 Importantly, the AI-
ECG and TTE were not simultaneous and performed on different
days in almost half of patients, and it is conceivable that changes in
either LVEF or ECG findings between the ECG and TTE could
have led to misclassification of LVSD by the AI-ECG; serial AI-
ECG data were not available to assess whether the association be-
tween the AI-ECG findings and mortality changes over time.
Furthermore, various methods of LVEF assessment were used and
only one in four patients had LVEF quantified using the biplane
method—while this does reflect clinical practice in CICU patients
who often have poor image quality precluding quantitative meth-
ods of LVEF measurement, this variability in LVEF measurement
could have impacted our results. Given the limited use of biplane
LVEF measurement, we cannot be sure that cases of discrepant
TTE LVSD and AI-ECG LVSD are not due to misclassification of
patients by TTE, or that the additive prognostic value of AI-ECG
over TTE does not simply reflect identification of patients with in-
accurate LVEF measurements. Finally, we did not adjudicate post-
discharge deaths using national vital statistics, so our 1-year sur-
vival analysis should be considered exploratory due to potential
bias from patients lost to follow-up.

Conclusions

A novel AI-ECG algorithm developed for prediction of LVSD pro-
vided robust mortality risk stratification in a CICU population beyond
that conferred by the echocardiographic LVEF. Automated integra-
tion of AI-ECG data into the electronic health record could
leverage this technology to facilitate LVSD identification and mortal-
ity risk-stratification in CICU patients. Future research is needed to
understand how best to prevent adverse events in patients with an
abnormal AI-ECG in the absence of LVSD. Prospective validation
studies are needed to confirm the association between AI-ECG and
mortality.

Supplementary material

Supplementary material is available at European Heart Journal: Acute
Cardiovascular Care online.
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