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Summary

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) has become the 

preferred method for mapping chromatin accessibility, due to its time and input material 

efficiency. However, it can be difficult to evaluate data quality and identify sources of technical 

bias across samples. Here, we present ataqv, a computational toolkit for efficiently measuring, 

visualizing, and comparing quality control (QC) results across samples and experiments. We use 

ataqv to analyze 2,009 public ATAC-seq datasets; their QC metrics display a ten-fold range. Tn5 

dosage experiments and statistical modeling show that technical variation in the ratio of Tn5 

transposase to nuclei and sequencing flowcell density induces systematic bias in ATAC-seq data 

by changing the enrichment of reads across functional genomic annotations including promoters, 

enhancers, and transcription factor bound regions, with the notable exception of CTCF. Ataqv can 

be integrated into existing computational pipelines and is freely available at https://github.com/

ParkerLab/ataqv/.

Introduction

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) is the current 

preferred method for mapping chromatin accessibility due to its simplicity, speed, and low 

input material requirements (Buenrostro et al., 2013). In ATAC-seq, intact nuclei are 

exposed to Tn5 transposase, which preferentially cuts protein-free unprotected DNA to 

ligate sequencing adapters to the cleaved ends. After sequencing, the reads are aligned to a 

reference genome and peak calling is performed to determine the regions of the genome 

enriched for transposase-accessible DNA. This information can be used to inform the 
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prediction of active regulatory regions (Buenrostro et al., 2013), nucleosome positioning 

(Schep et al., 2015), and transcription factor binding (Quach and Furey, 2016; Schmidt et al., 

2017).

The number of publicly-available ATAC-seq datasets is rapidly growing, but the quality of 

these datasets can vary widely. ATAC-seq libraries may differ in PCR amplification bias, 

fragment length distribution, transcription start site (TSS) enrichment, nuclei prep quality, 

proportion of mitochondrial reads, and other variables (Benjamini and Speed, 2012). ATAC-

seq involves a number of experimental and computational steps which may introduce such 

heterogeneity. Some of these confounders are shared with many other high-throughput 

sequencing-based assays (e.g., PCR amplification bias), while others are more ATAC-seq 

specific (e.g., potentially high proportions of mitochondrial reads and variable nuclei prep 

quality). Identifying these confounders and adjusting for them in downstream analyses is an 

important part of reproducible and rigorous ATAC-seq analyses.

Few computational quality control (QC) tools exist for ATAC-seq, and each of the existing 

tools have notable limitations. The ENCODE ATAC-seq processing pipeline includes a 

script (ATAqC; https://github.com/kundajelab/ataqc) that produces a QC report, but this 

script is difficult to utilize as a standalone tool. Considerable effort is required to integrate it 

into a custom pipeline as one must install a complete conda environment, and it supports 

only the human and mouse reference genomes. It produces one report per sample (rather 

than a unified report for multiple samples), complicating cross-sample comparisons. A 

second tool, ATACseqQC (Ou et al., 2018), exists as an R Bioconductor package. This 

package provides R functions for QC of BAM files and preprocessing for common 

downstream analyses. Because it provides functions rather than generating a single report, it 

is a flexible framework but places additional work on the end user and renders the package 

inaccessible to those unfamiliar with R. Like ATAqC, it generates separate plots for each 

bam file, making it less practical for cross-sample comparisons. Alfred (Rausch et al., 2019) 

is a third tool with ATAC-seq QC functionality. It is run on the command line and a web 

server is available for visualizing the results. It is quick to set up and run, but does not have 

an option to visualize several libraries simultaneously, and can handle only three read groups 

per bam file in the case that the user wishes read groups to be analyzed separately.

Several additional software packages built to assist in ATAC-seq data processing and 

analysis exist, and these each include QC steps; however, they are not meant to provide 

comprehensive QC on bam files. These packages include ATAC-pipe (Zuo et al., 2019), 

which supports only two reference genomes (hg19 and mm9) and does not perform QC on a 

user-provided bam file (the primary QC function accepts raw fastq files, tying read mapping 

and QC together); and esATAC (Wei et al., 2018), which similarly provides few read 

mapping statistics when starting from a bam file (rather than a fastq file) and produces 

individual QC plots (e.g., fragment length distribution and TSS coverage) for each sample/

replicate, complicating cross-sample comparisons.

In order to address these shortcomings, and to facilitate the unified analysis of thousands of 

ATAC-seq datasets, we developed a new ATAC-seq QC and visualization software package, 

ataqv (Fig. S1). Ataqv overcomes the primary limitations of existing packages. It eases 
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cross-sample and cross-experiment comparisons, can easily be integrated into existing data 

processing pipelines, and produces interactive reports that are easy to share. We apply ataqv 

to thousands of publicly-available libraries and observed a broad range of results across 

diverse QC metrics. We therefore carefully constructed Tn5 dosage experiments to explore 

the influence of technical variation on ATAC-seq profiles and find that experimental 

conditions that influence the ATAC-seq fragment length distribution, such as sequencing 

lane cluster density and Tn5:nuclei ratio, robustly skew QC metrics and alter the biological 

interpretation of ATAC-seq results. QC reports and metrics from the ataqv package can help 

identify these technical biases and adjust for them in downstream analyses.

Results

Ataqv is a modular and accessible tool for ATAC-seq quality control and visualization

Ataqv allows quick visualization and comparison of 35 metrics and potential confounders 

across samples (Table S1; Fig. S2). It produces both machine-readable (JSON format) 

metrics and an interactive HTML report (Fig. S1b) that is accessible to experimental 

scientists and easy to share. It is simple to integrate into existing ATAC-seq pipelines and 

can handle thousands of samples, an important consideration as single-cell analyses come of 

age and sample sizes grow. The only inputs are a BAM file of aligned reads, an optional 

BED file of peaks, and the name of the organism to which they were aligned (Fig. S1a). 

Human, mouse, rat, worm, fly, and yeast reference metadata is built in; metadata for other 

organisms (autosomal and mitochondrial chromosome names) can be easily supplied. If 

desired, metrics can be calculated separately for each read group in a BAM file (facilitating 

the processing of BAM files that may contain many libraries, as is often the case for single-

cell data). A demonstration of the interactive ataqv HTML report is at https://

parkerlab.github.io/ataqv/demo/ and the ataqv source code is freely available under the 

GPL3 license at https://github.com/ParkerLab/ataqv/.

To demonstrate the utility of ataqv and assess the heterogeneity of publicly-available 

datasets, we downloaded and uniformly processed 2,009 human and mouse ATAC-seq 

libraries (Table S2 and Fig. 1a-c). The fragment length distributions (FLDs) and TSS 

enrichment for these libraries display over ten-fold variability (Fig. 1d), and considerable 

heterogeneity exists even between libraries from the same study (Fig. 1c,d, S3). Links to the 

interactive ataqv sessions for these uniformly processed data sets are available in the 

Methods section. These sessions make clear the heterogeneity in public ATAC-seq data and 

may be helpful as a point of reference to compare new ATAC-seq datasets.

QC of single-cell ATAC-seq (scATAC-seq) data is especially critical to ensure meaningful 

and reproducible results, as a portion of the sequencing reads produced in scATAC-seq 

experiments may be derived from background DNA released by non-viable cells. Per-cell 

scATAC-seq fragment counts, sometimes in combination with TSS enrichment, is commonly 

used to filter the data to those reads derived from high-quality cells (Rai et al., 2020; 

Satpathy et al., 2019). Ataqv introduces another metric that we believe will be useful in 

filtering single-cell data in particular: the maximum fraction of autosomal sequencing reads 

derived from a single autosome. Most scATAC-seq data is produced using microfluidics 

platforms, and in such systems free DNA from dead or dying cells may end up being 
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transposed and barcoded, perhaps in close proximity to (and with the same barcodes as) 

healthy cells. As a result some cellular barcodes that appear to represent healthy cells and 

could pass common QC thresholds may contain reads from this free DNA. If large, free-

floating chromosomal segments are represented in such barcodes, the observed distribution 

of reads across chromosomes would not match the expected distribution. To demonstrate 

this, we examined the maximum fraction of autosomal sequencing reads derived from a 

single chromosome for all cells in public scATAC-seq data (Fig. 1e). This metric illuminated 

extreme chromosomal read imbalance in some of the cells. Plotting the read coverage in 

genomic bins across each chromosome for some of these cells frequently showed that large 

contiguous segments of the chromosomes have increased coverage relative to the rest of the 

chromosomes (Fig. 1f), consistent with a scenario in which broken chromosome(s) derived 

from another cell received the same barcode as the reads from a potentially healthy cell. 

Such cases should be filtered out during QC of scATAC-seq data. We additionally examined 

this metric in the public bulk ATAC-seq libraries, where outliers may reflect abnormal 

karyotypes (Fig. S4). Consistent with this notion, the outliers we observed (e.g., K562 and 

mESCs) tended to be cell lines with known abnormal karyotypes (Naumann et al., 2001; 

Rebuzzini et al., 2008; Sugawara et al., 2006).

To explore the relationship between QC metrics, we calculated the correlation between all 

QC metric pairs across the public bulk libraries analyzed (Fig. 1g). We find that TSS 

enrichment positively correlates with % of reads in peaks, and negatively correlates with 

median fragment length. Read count positively correlates with the number of peaks called, 

likely because greater read count increases the statistical power to call peaks (Landt et al., 

2012). A few metrics show such high correlation that they may be considered somewhat 

redundant for the purposes of standard QC; e.g., the number of peaks unsurprisingly shows 

very high correlation with peak territory (the amount of the genome covered by peaks). The 

ataqv software includes an option to output a reduced set of QC metrics by pruning out 

several metrics that tend to show very high correlation with other metrics. Ataqv metrics can 

be correlated with principal component (PC) scores in order to determine which 

characteristics of the libraries may be contributing most to the variance in the data across 

libraries. To demonstrate this, we performed a principal component analysis on the project 

with the most bulk ATAC-seq libraries from a single cell type and correlated the PC1 scores 

against ataqv metrics (Fig. 1h; we selected data from a single project and cell type because 

in a cross-project or cross-cell-type analysis PC1 would capture project or cell type). TSS 

enrichment showed the highest correlation with PC1 scores (Figs. 1h, S5), indicating that 

TSS enrichment may be a particularly important variable to examine during QC.

Ataqv metrics may be useful as covariates in downstream analysis, in part because they may 

reflect latent variables. For example, while examining a subset of ATAC-seq libraries from 

one study, we noticed that half of the libraries displayed a considerably different fragment 

length distribution than the other half. Through inspection of the sequencing read names we 

inferred the sequencing run and flowcell that each library was sequenced on and found that 

the median fragment lengths of each library covaried with the sequencing flowcell (Fig. 

S6a), suggesting that the QC metric was capturing a batch effect that otherwise may not 

have been apparent from the metadata (public metadata is frequently difficult to parse or 

missing altogether). Running a differential peak analysis with and without the QC metric 
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median fragment length as a covariate, we found a robust shift towards more extreme p-

values from the analysis when the covariate was included (Fig. S6b), which indicates 

increased statistical power after controlling for the batch effect.

To further demonstrate the utility of ataqv in identifying problematic variance, we used it to 

systematically explore two potential sources of bias. ATAC-seq experiments produce a 

stereotypical FLD, distinguished by many short (< 100 bp) fragments and a tail of longer (> 

147 bp) fragments in multiples of the nucleosomal unit size. Because chromatin structure 

differs across classes of regulatory elements, different regulatory elements produce different 

local FLDs (Buenrostro et al., 2013). We therefore hypothesized that variables perturbing the 

FLD will systematically change ATAC-seq results. We therefore designed experiments to 

test the influence of two technical variables: Tn5:nuclei ratio and sequencing lane cluster 

density. As noted in (Buenrostro et al., 2015), the ratio of Tn5 enzyme to nuclei number is a 

determining factor in the experiment FLD. Increasing this variable should shift the FLD 

toward shorter fragments. Sequencing lane cluster density also affects the length distribution 

of sequenced fragments, with high cluster density generally favoring shorter fragments 

(Bronner et al., 2014; Gohl et al., 2019). Importantly, while both of these variables affect the 

FLD, they do so in different ways. In the case that the Tn5:nuclei ratio changes, both the 

global (genome-wide) as well as local (locus-specific) FLDs should shift. When the 

sequencing lane cluster density changes, the true underlying global and local FLDs do not 

change; however, they are subsampled in different manners between the sequencing runs 

(high cluster density runs should sample more from the left-most part of the FLD than do 

low cluster density runs).

To quantify the influence of cluster density and Tn5:nuclei ratio, we performed two sets of 

ATAC-seq experiments. In one, we performed ATAC-seq on GM12878 using seven different 

Tn5 concentrations all using 50k nuclei as input, and sequenced each library on two separate 

sequencing runs, one run having 124% the cluster density of the other (411M vs 508M 

clusters passing filtering; Fig. S7a; n = 3 independent nuclear isolations, producing a total of 

21 libraries). Importantly, during this experiment we observed that the number of PCR 

cycles required for each library strongly covaried with Tn5 concentration (Fig. S8). Because 

PCR amplification can influence the fragment length distribution (Frohman et al., 1988) and 

introduce other biases, we designed a second experiment in which we again performed 

ATAC-seq on GM12878 nuclei using seven different concentrations of Tn5 while holding 

the number of nuclei constant at 50k (n = 6 independent nuclear isolations, producing a total 

of 42 libraries; Fig. 2a, b) but additionally held the number of PCR cycles constant across 

libraries (Fig. S9). We refer to these experiments as the ‘PCR-variable’ and ‘PCR-constant’ 

experiments, respectively. The interactive ataqv reports for both of these experiments are 

available online (see Methods).

Sequencing lane cluster density biases ATAC-seq library fragment length metrics and TSS 
enrichment

First, we examined the effect of sequencing lane cluster density on ATAC-seq results. As 

expected, despite the fact that the same libraries were sequenced in both runs, the fragment 

length distributions from the high cluster density run were consistently shifted toward 
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shorter fragments relative to the low cluster density run (Fig. S7b). The average difference in 

median fragment length between sequencing runs was 12 bps. Interestingly, TSS enrichment 

was consistently higher in the high cluster density sequencing run (average difference of 

1.83; Fig. S7c). Other QC metrics differed consistently but to a lesser degree (see ataqv 

HTML report). We conclude that sequencing run cluster density has a systematic effect on 

ATAC-seq QC metrics, likely because different cluster densities effectively ‘subsample’ the 

actual library fragment length distribution in a biased manner and this changes the 

representation of different functional regions (like the TSS) across the genome.

ATAC-seq results are sensitive to Tn5:nuclei ratio

Next, we examined the effect of the Tn5:nuclei ratio, using the results of the PCR-constant 

experiment and of the high cluster density sequencing run of the PCR-variable experiment. 

As expected, when the number of PCR cycles was held constant, the fragment length 

distribution shifted toward a greater proportion of shorter fragments as Tn5 concentration 

increased (Fig. 2c, S10a). This correlation was attenuated when PCR cycles were allowed to 

vary, likely reflecting the influence of PCR cycles on FLDs (Fig. S11a). Furthermore, in 

both experiments we found that increasing Tn5 concentration negatively correlated with the 

percent of mitochondrial sequencing reads (Fig. S10b, S11b). We speculate that as Tn5 

concentrations increase, an increasing proportion of mitochondrial DNA (which competes 

with nuclear DNA for the pool of Tn5) (Montefiori et al., 2017) is digested to the extent that 

it is no longer effectively sequenced. Alternatively, it may be that an increasing proportion of 

nuclear genomic DNA is digested sufficiently to be effectively sequenced. As mitochondrial 

reads are typically filtered out during standard ATAC-seq data processing, reducing 

mitochondrial reads increases the amount of sequence available for downstream analysis. 

Read duplication rate negatively correlated with Tn5 in both experiments (Fig. S10d, S11e). 

Overall, increasing the amount of Tn5 resulted in a considerably greater proportion 

(approximately four-fold higher comparing the extremes of Tn5 concentration) of reads 

surviving filtering in both experiments (Fig. S10e, S11f). Additionally, we found Tn5 

concentration positively correlated with the enrichment of fragments around TSSs (Fig. 2d) 

in the PCR-constant experiment but not in the PCR-variable experiment (Fig. S11c). The 

enrichment of reads in ATAC-seq peaks increased approximately 1.75-fold from the lowest 

Tn5 concentration to the highest (Fig. 2e, S11d). Examining the peaks called for each 

library, we found that the number of peaks increases with Tn5 concentration, and that this 

relationship is not solely due to differences in the number of reads surviving bioinformatic 

filtering at each Tn5 concentration (Fig. S12). Furthermore, we found that as Tn5 

concentration increases, peak calls become more reproducible, such that the mean Jaccard 

index between peak calls from two replicates increases as Tn5 concentration increases (Fig. 

S13). We performed a principal component analysis and found that the first principal 

component correlated with Tn5 concentration (Fig. S14), confirming that this technical 

variable has a systematic effect on ATAC-seq results.

In order to determine whether there is a subset of peaks that are Tn5 sensitive or whether 

Tn5 sensitivity is a shared property of all peaks, we used a negative binomial generalized 

linear model (GLM) to model the number of reads in an ATAC-seq peak as a function of the 

Tn5 concentration, controlling for replicate and using the PCR-constant experiment. At a 
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false discovery rate (FDR) of 5%, we identified 49,989 Tn5 sensitive peaks (of 70,658 total 

and 62,576 for which the model converged; Fig. S15, top panel; Fig. 2f,g, Fig. S16-18), of 

which the overwhelming majority (99%) displayed a positive relationship between Tn5 

concentration and peak signal (49,443 of the 49,989 5% FDR peaks). Similar results were 

obtained in the PCR-variable experiment (29,355 peaks significant of 43,447 that converged; 

Fig. S19). This massive shift (79.9% of converged peaks in PCR-constant experiment) 

indicates that Tn5 sensitivity is a common quantitative trait of peaks across the genome. 

Adding a covariate summarizing the fragment length distribution of each library to the GLM 

reduced the number of Tn5 sensitive peaks detected in the PCR-constant experiment (Fig. 

S15; of the 62,576 peaks that converged in all models, 79.9% were Tn5 sensitive at 5% FDR 

when using no covariate and 8.3% were sensitive after adding median fragment length to the 

model as a covariate). Such covariates had no effect in the PCR-variable experiment (Fig. 

S19).

Our results suggest that higher Tn5 concentration increases the ATAC-seq signal-to-noise 

ratio (at least over the tested range of Tn5 concentrations). In order to determine if this holds 

for both promoter and enhancer regions, we calculated the proportion of reads that 

overlapped with chromHMM-derived GM12878 chromatin states (Fig. 2f,g,h, S20). (Ernst 

and Kellis, 2012; Parker et al., 2013). We found that the percentage of reads falling in strong 

enhancer and active promoter chromatin states increases with increasing Tn5 (Bonferroni-

adjusted p-values of 6.34e-22 and 1.2e-16, respectively, in the PCR-constant experiment; 

2.61e-9 and 3.87e-7 in the PCR-variable experiment), and that this is accompanied by a 

decrease in the proportion of reads falling in the low signal state (Bonferroni-adjusted p = 

1.04e-21 and p = 1.2e-8 in the PCR-constant and PCR-variable experiments, respectively). 

This increase in signal-to-noise due to a technical variable is therefore observed for both 

TSS-proximal and TSS-distal regulatory elements.

To determine if the binding of certain transcription factors (TFs) might influence the change 

in ATAC-seq signal, we examined ATAC-seq reads and peaks in relation to ENCODE 

GM12878 reproducible ChIP-seq peaks (ChIP-seq experiments on 85 TFs; Table S3) 

(ENCODE Project Consortium, 2012; Sloan et al., 2016). For all TFs, the proportion of 

ATAC-seq reads overlapping with ChIP-seq peaks increased as the Tn5 concentration 

increased (Fig. S21). This is consistent with our chromatin state findings (Fig. 2h), given 

that TF binding will commonly overlap with enhancers and promoters which themselves 

show increased signal with increasing Tn5 concentration. In order to determine if the 

binding of certain TFs correlates with Tn5 sensitivity, we examined the probability that a 

peak is Tn5 sensitive given that it is bound by a certain TF, controlling for peak size (Fig. 

S22). We performed logistic regression and discovered that binding of nearly all TFs (82 out 

of 85) are significantly (Bonferroni adjusted p < 0.05) associated with increased Tn5 

sensitivity. The only exceptions are CTCF, RAD21, and REST. These factors are commonly 

associated with strongly phased nucleosomes (Fu et al., 2008; Harwood et al., 2019; Sadeh 

and Allis, 2011; Wiechens et al., 2016); we speculate that this may render regions bound by 

them less sensitive to variability in Tn5 concentration. Overall, these results show that 

technical variation in ATAC-seq data is associated with selectively biased profiling of 

functional genomic regions.

Orchard et al. Page 7

Cell Syst. Author manuscript; available in PMC 2021 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

We conclude that ATAC-seq experiments performed for the purpose of identifying enhancers 

and promoters will likely achieve better signal-to-noise with increased Tn5 concentration. 

We note that while this relationship holds over the 25-fold range of Tn5 concentrations we 

have tested, it is likely that continuing to increase Tn5 concentration beyond a certain point 

will begin to reduce data quality as highly accessible regions are digested to an extent that 

they can no longer be effectively sequenced. We have not, however, reached this 

concentration in the data presented here. Another important caveat is that these relationships 

may change when nuclei numbers are limiting. The ATAC-seq protocol published in 

(Buenrostro et al., 2015) states that when “too few” cells are used, the proportion of reads 

derived from inaccessible regions of the genome increases. Our data was generated using a 

large enough number of cells that Tn5, rather than cell number, appears to be the limiting 

factor in library complexity. When this is the case, we find that increasing the Tn5 

concentration increases the proportion of reads in peaks, in enhancer and promoter 

chromatin states, and in most TF bound regions. These findings are generally consistent with 

another recent publication, which adjusted several experimental variables in cell lines and 

generally found that increasing Tn5 concentration yielded more peaks and greater 

enrichment of reads around TSS (Fujiwara et al., 2019); however another publication, 

utilizing mouse embryonic stem cells, concluded that changing Tn5 concentration had little 

effect on ATAC-seq results (Corces et al., 2017).

We note that, although we generated our data under a large range (25X) of Tn5:nuclei ratios, 

considerable differences are apparent even over lower ranges that are likely to be 

encountered in real-world lab settings. Differences between samples in the number of input 

cells and the efficiency of nuclear isolation can easily generate two-fold or greater 

differences in Tn5:nuclei ratio (Fig. S23). We expect that these differences may be 

especially extreme in cases of variable sample quality, or when working with tissues for 

which nuclear isolation is especially difficult (e.g., adipose tissue). Accordingly, nuclei 

counting should be a standard step in the ATAC-seq protocol to ensure consistent results.

The observed relationship between Tn5:nuclei ratio and PCR cycles is also an important 

finding. When the ratio is low, additional PCR cycles may be necessary in order to further 

enrich for short fragments in the library. This is another reason to control the Tn5:nuclei 

ratio, as failure to do so may lead one to differentially amplify libraries later in the protocol, 

which may introduce additional PCR-related biases.

Another recent publication (Gohl et al., 2019) found considerable differences in the 

fragment length biases of different Illumina sequencing machines, and flagged this as a point 

of concern for those performing ATAC-seq. Our results build on and extend these published 

results, as we find that cluster density differences across runs on the same type of 

sequencing machine systematically perturb fragment length as well. Therefore, both the type 

of sequencing machine and the loading concentration of sequencing libraries should be 

taken into account when planning and analyzing ATAC-seq experiments.
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When performing QC before proceeding with data analysis, a common question involves 

which QC metrics to focus on and which thresholds to select. We urge caution in following 

such hard- and-fast rules for several reasons. First, QC metrics may differ systematically 

according to factors like cell type. For example, embryonic stem cells are thought to have 

greater genome-wide chromatin accessibility than more differentiated cells (Aughey et al., 

2018; Le Gros et al., 2016) which could result in a significantly different distribution of 

ATAC-seq reads and therefore differences in TSS enrichment, number of peaks, percent of 

reads in peaks, etc. Similarly, cell types vary in their mitochondrial DNA copy numbers 

(Kelly et al., 2012; Sun and St John, 2018) which may lead to different levels of 

mitochondrial reads in different cell types, and sample heterogeneity (e.g., a homogenous 

cell line vs a tissue sample composed of several different cell types) likely affects many of 

these metrics. Second, ideal QC metrics may depend on analysis goals. For example, if one 

wishes to map precise nucleosome positions adjacent to open chromatin using a method 

such as NucleoATAC (Schep et al., 2015), a mix of shorter and longer reads are favorable, 

and therefore a library with very high TSS enrichment but short median fragment length 

(few reads longer than 150 bps) might be considered a “poor” library for this purpose. These 

study-specific goals are therefore different, and the associated QC metrics that indicate 

‘good’ may not be shared. Third, one’s threshold for “acceptable” data will realistically vary 

depending on sample availability and analysis needs. If working with valuable clinical 

samples or very rare, hard-to-obtain cell types, the amount of material per sample or the 

number of samples available may be a limiting factor. In this case, one may settle for 

relatively lower-quality data than one would accept if one were creating abundant cell line 

ATAC-seq data (for which sample availability is not likely to be an issue). Lastly, we have 

found that the details of the calculation of a metric can make a significant difference in the 

resulting QC values. The calculation of TSS enrichment is a prime example. A variety of 

methods for calculating TSS enrichment exist among the QC packages and pipelines 

available. Ataqv calculates coverage around the TSS using entire ATAC-seq fragments, 

while other packages calculate coverage using only the cutsite or by shifting and extending 

individual sequencing reads such that the reads are centered on the cutsite. We have found 

that different methods can result in considerably different TSS enrichment values for the 

same library (Fig. S24). Unsurprisingly, the TSS list used for calculation of TSS enrichment 

can change results as well (Fig. S25) (Corces et al., 2017). Given all of the above factors, we 

believe that when selecting QC thresholds researchers should look at the distribution of 

many QC metrics calculated uniformly across libraries, and use those distributions to 

determine reasonable thresholds. To demonstrate this and provide one point of reference to 

users, we have plotted the distributions of several QC metrics in the different cell types from 

the analyzed public bulk ATAC-seq data (Fig. S26). Similarly, if researchers wish to 

compare the characteristics of their ATAC-seq libraries to previously-generated libraries, a 

suitable reference library is probably one that is species- and cell type-matched, was 

processed using the same genome annotations, and that has already been shown to give 

quality results in the downstream analyses that the author(s) plan to utilize the newer 

libraries for. The ataqv packages facilitates easy implementation of all these considerations.

The systematic relationships between technical variance and change in ATAC-seq signal 

highlighted here demonstrate the importance of identifying and adjusting for heterogeneity 
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in ATAC-seq data. The heterogeneity of the data may also inform one’s choice of 

downstream methods. For example, several existing methods leverage the characteristic 

ATAC-seq fragment length distribution to call peaks (Tarbell and Liu, 2019), predict TF 

binding (Li et al., 2019), or determine nucleosome positioning (Schep et al., 2015). Cross-

sample heterogeneity in FLDs may confound such analyses.

It has become increasingly clear that rigorous analysis of quantitative chromatin signatures 

will be critical for understanding complex human traits and diseases (Alasoo et al., 2018; 

Khetan et al., 2018; Kumasaka et al., 2019; Varshney et al., 2019). We expect ataqv to be 

useful for scrutinizing confounding heterogeneity and it will therefore be an important tool 

in dissecting biological mechanisms.

STAR Methods

Lead contact and materials availability

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Stephen C.J. Parker (scjp@umich.edu). This study did not 

generate new unique reagents.

Experimental model and subject details

We cultured GM12878 cells following the ENCODE GM12878 cell culture protocol (https://

www.encodeproject.org/documents/1bb75b62-ac29-4368-9855-68d410e1963a/), except that 

we added plasmocin (Invivogen, San Diego, CA; 50 ug/mL) to the growth media to prevent 

mycoplasma contamination. The cell line was not authenticated.

C2C12 cells were proliferated at 37 degrees Celsius in growth media (DMEM + 20% FBS + 

1% penicillin streptomycin) in a CO2 incubator (5% CO2). The cell line was not 

authenticated.

Method details

ATAC-seq experiments—We conducted ATAC-seq as described in Buenrostro et al. 

(2015) using a home-made Tn5 that we synthesized as described in (Picelli et al., 2014). We 

isolated nuclei from three independent cultures (“replicates”) for the ‘PCR-variable’ 

experiment and six additional cultures for the ‘PCR-constant’ experiment. For each replicate 

we incubated 50,000 nuclei with various concentrations of enzyme (⅕X, ½X, ⅔X, 1X, 

1.5X, 2X, 5X; 1X corresponds to 2.5 uL of 1:1 Tn5-A/B mix) at 37°C for 30 minutes in a 50 

uL reaction. We column-purified the tagmented DNA using the Zymo DNA Clean & 

Concentrator-5 kit (Zymo Research, Irvine, CA). In the PCR-variable experiment, we PCR-

amplified the entire eluate until amplification curve reached its mid-log phase (⅓ to ½ of 

max signal; the number of PCR cycles required to reach this phase differed among groups, 

see Results section); whereas in the PCR-constant experiment, we amplified the entire eluate 

with a fixed number of PCR cycles (16) for all samples. We purified the products using 

SPRI beads prepared as in (Rohland and Reich, 2012) and eluted in 20 uL of TE buffer with 

Tween-20 (10 mM Tris-HCl, 0.1 mM EDTA, 0.05% Tween-20, pH 8). Libraries were 

multiplexed and sequenced on an Illumina NextSeq 500 instrument.
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GM12878 ATAC-seq data processing—All reads were trimmed to 36 bps using 

fastx_trimmer (from fastx-toolkit v 0.0.14). Adapters were trimmed using cta (v. 0.1.2; 

https://github.com/ParkerLab/cta). Reads were aligned to hg19 (Lander et al., 2001) using 

bwa mem (v. 0.7.15; flags: -M) (Li and Durbin, 2009). For the ATAC-seq experiments that 

were used to observe the effect of Tn5 concentration, each library was sequenced on two 

sequencing runs; bam files from the two sequencing runs were merged using samtools 

merge. Picard MarkDuplicates (v. 2.18.27; http://broadinstitute.github.io/picard) was used 

for duplicate removal (options: VALIDATION_STRINGENCY=LENIENT) and samtools 

(v. 1.7) (Li et al., 2009) was used to filter for autosomal, properly-paired and mapped read 

pairs with mapping quality >= 30 (samtools view -b -h -f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 

-q 30). Peak calling was performed using MACS2 callpeak (v. 2.1.1.20160309; options: --

nomodel --broad --shift −100 --extsize 200 --keep-dup all) (Zhang et al., 2008). Peaks were 

filtered against ENCODE blacklists (ENCODE Project Consortium, 2012) (downloaded 

from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeDacMapabilityConsensusExcludable.bed.gz and http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeDukeMapabilityRegionsExcludable.bed.gz) using bedtools intersect (option -v; v. 

2.27.1) (Quinlan, 2014). Ataqv (v. 1.1.0) was run on the bam files with duplicates marked, 

and the blacklists were passed as excluded regions. For the TSS file, we took the 

hg19.tss.refseq.housekeeping.ortho.bed.gz TSS file packaged with ataqv (representing TSS 

for genes with 1:1:1 human:mouse:rat orthologues where the human gene is a housekeeping 

gene (Eisenberg and Levanon, 2013); GitHub commit f4b655) and further filtered the list to 

remove genes that had more than one TSS in human, mouse, or rat. One library from the 

PCR-variable experiment had very few reads (~0.5M in one sequencing run and ~0.25M in 

the second) and was excluded from downstream analysis. For figures displaying ATAC-seq 

coverage, we normalized the signal to account for differences in library size and all signal 

track plots show the same range. Normalization was performed on the MACS2-created 

*treat_pileup.bdg bedgraph files. The script used for normalization is available on GitHub 

(https://github.com/porchard/normalize_bedgraph; commit 82ab906; run with parameters ‘--

to-number-reads 10000000’). The normalized bedgraph files were then converted to bigwig 

format using bedGraphToBigWig (v. 4) (Kent et al., 2010).

Public ATAC-seq data (mouse and human) processing—The processed read 

groups/libraries are listed in Table S2. Libraries were processed in the same manner as the 

GM12878 ATAC-seq libraries (mapping to mm9 or hg19 as appropriate) (Lander et al., 

2001; Mouse Genome Sequencing Consortium et al., 2002). For mm9 we used the blacklist 

available at http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm9-mouse/mm9-

blacklist.bed.gz (downloaded on Jan. 25, 2013) (ENCODE Project Consortium, 2012) and 

the mm9.tss.refseq.housekeeping.ortho.bed.gz TSS file packaged with ataqv, further filtered 

as described above for hg19.tss.refseq.housekeeping.ortho.bed.gz.

Determination of high-confidence peaks—To generate the list of peaks used in 

downstream analyses, we used bedtools merge to calculate the union of the FDR 1%, 

blacklist-filtered peaks from libraries created using the 1X Tn5 concentration for each of the 

two experiments. We then kept, as master peaks, those intervals that overlapped with FDR 

Orchard et al. Page 11

Cell Syst. Author manuscript; available in PMC 2021 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ParkerLab/cta
http://broadinstitute.github.io/picard
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz
https://github.com/porchard/normalize_bedgraph
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm9-mouse/mm9-blacklist.bed.gz
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm9-mouse/mm9-blacklist.bed.gz


1%, blacklist-filtered peak calls from at least two of the 1X Tn5 libraries from that 

experiment.

Ataqv metrics—Ataqv collects many common measurements of ATAC-seq results, as well 

as several new metrics that are illuminating when comparing experiments. These metrics are 

listed in Table S1.

One of the metrics, fragment length distribution (FLD) distance, quantifies the similarity 

between each experiment’s FLD and a reference FLD (“distance to reference distribution”; 

Fig. S2). This provides a quantitative indicator of over- or under-transposition of samples 

and may be used as a covariate in downstream analyses. The distance to reference 

distribution metric is similar to a signed Kolmogorov-Smirnov statistic, with the magnitude 

representing the maximum vertical difference between the empirical distribution functions 

of the reference distribution and the experiment’s distribution. It is calculated as:

S =
max

x
(Fe(x) − Fr(x)) if max

x
(Fe(x) − Fr(x)) > ∣ min

x
(Fe(x) − Fr(x)) ∣

min
x

(Fe(x) − Fr(x)) otherwise

Where S is the statistic, x represents a fragment length, and Fe and Fr represent the empirical 

distribution functions of the experiment’s fragment length distribution and the reference 

fragment length distribution, respectively. The greater the magnitude of this metric, the less 

similar the experiment’s FLD is to the reference FLD. A positive value indicates over-

transposition relative to the reference FLD (a greater proportion of short fragments in the 

distribution relative to nucleosomal fragments), while a negative value indicates under-

transposition relative to the reference. The interactive ataqv report includes plots of these 

FLD metrics, allowing for the quick visual identification of outliers.

Ataqv calculates TSS enrichment using fragments. Fragment coverage over the TSS +/− 1kb 

is computed, and the enrichment for each position is calculated by dividing this coverage by 

the average coverage over the outermost 200 bps in the 2kb interval (100 bp upstream, 100 

bp downstream).

Overlap of reads with chromatin states—Chromatin states were downloaded from 

https://research.nhgri.nih.gov/manuscripts/Collins/islet_chromatin/hg19/ChromHMM/

GM12878_chromHMM.bb (Parker et al., 2013). The bigBed file was converted to bed 

format using bigBedToBed (v. 1) (Kent et al., 2010). Reads were filtered against ENCODE 

blacklist regions using bedtools intersect prior to the analysis. Each read was assigned to the 

chromatin state with which it showed the most overlap (according to bedtools intersect). To 

determine the statistical significance of the relationship between Tn5 concentration and the 

percentage of reads falling in each chromatin state, we ran one linear model per chromatin 

state, modeling proportion_of_reads_in_chromatin_state ~ replicate + log2(relative Tn5 

concentration). P-values for the Tn5 concentration coefficient were Bonferroni adjusted.

Overlap of reads with ChIP-seq peaks—IDR ChIP-seq peaks were downloaded from 

ENCODE (Table S3) (ENCODE Project Consortium, 2012; Li et al., 2011; Sloan et al., 
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2016). Reads were filtered against ENCODE blacklist regions prior to the analysis. Bedtools 

intersect was used for the overlap; a single base pair was considered sufficient to call a read 

overlapping with a peak.

Estimating the efficiency of nuclear isolation—10 nuclear isolations were performed 

using C2C12 cells in order to characterize the variability in nuclear isolation efficiency. 

Cells were trypsinized and washed, and 250K cells were used for each nuclear isolation. 

Nuclear isolation was performed as in Supplementary Protocol 1 of (Corces et al., 2017). 

For each of the 10 replicates, nuclei were counted twice using trypan blue dye in a Countess 

II FL instrument, and the average of the two counts used to determine the number of final 

nuclei.

Quantification and statistical analysis

Modeling Tn5-sensitive peaks—To detect Tn5-sensitive peaks, we used the glm.nb 

function in the MASS R package (v. 7.3-50) (Venables and Ripley, 2002). We used the 

following model: Reads in peak ~ replicate + log2(relative Tn5 concentration) + 

offset(log(size_factor)) Where replicate represents the nuclear isolation (of which there were 

6), relative Tn5 concentration is one of (0.2, 0.5, 0.66, 1, 1.5, 2, 5), and size_factor is the 

total number of reads after filtering the bam file (the ‘offset’ term adjusts for the variable 

number of reads in each library after filtering). The ‘reads in peak’ value was determined by 

passing the bed file of high-confidence peaks and each filtered bam file to bedtools’ 

coverageBed (‘-counts’ option). In the case that the model did not converge, we excluded the 

peak from the downstream analysis. For the PCR-constant experiment, all 42 libraries were 

used. For the PCR-variable experiment, the 20 libraries that passed QC were used.

Logistic regression to estimate TF ChIP-seq peak sensitivity—To determine if 

binding of each TF is associated with increased Tn5 sensitivity, we modeled 

(peak_is_tn5_sensitive ~ median_atac_peak_signal + overlaps_TF_chipseq_peak) using R’s 

glm function. The median_atac_peak_signal term controls for differences in NB GLM 

power as peak size increases. To calculate this term, we first gathered read counts for all Tn5 

= 1X libraries in all peaks, and normalized these counts by the median count within each 

library to get a peak signal score for each peak in each library. We then took the median 

signal score across libraries for each peak. P-values for each TF were Bonferroni adjusted. 

Peak signal and whether or not the peak was Tn5 sensitive was derived from the PCR-

constant experiment.

Data and code availability

All raw and processed data generated during this study have been deposited to GEO under 

the accession: GSE130450. We have created a GitHub repo containing the code necessary to 

reproduce the analyses in this work (https://github.com/ParkerLab/ataqv-2019). Interactive 

QC reports for previously-published ATAC-seq libraries are available at https://

theparkerlab.med.umich.edu/data/porchard/ataqv-public-survey/. Interactive QC reports for 

our original data are available at at https://theparkerlab.med.umich.edu/data/porchard/ataqv-

tn5-series-pcr-controlled (PCR-constant experiment, with six replicates per Tn5 
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concentration) and https://theparkerlab.med.umich.edu/data/porchard/ataqv-tn5-series-not-

pcr-controlled (PCR-variable experiment, and sequencing at high and low cluster density).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Survey of public ATAC-seq data.
(a) 2,009 public ATAC-seq libraries representing 23.4 billion read pairs were downloaded 

and uniformly processed. (b) Number of libraries and total read pairs per species and project 

(colors represent different projects). (c) ATAC-seq signal at promoters of two housekeeping 

genes (GAPDH and VCP) across human bulk libraries with at least 5M reads post-filtering. 

Colors along the y-axis represent project. (d) TSS enrichment and median fragment length 

for the 693 processed bulk (not single cell) datasets. (e) Maximum fraction of autosomal 

reads derived from a single autosome for public human single-cell ATAC-seq data. (f) 

Normalized read coverage in 2Mb windows (with 1Mb steps between them) across 

chromosomes for the outlier circled in red from (e) and for a set of 90 non-outlier cells from 

the same cell type (GM12878; all lying within the dotted box in (e)). The outlier’s read 

coverage is represented by the red line; non-outliers are shown in gray. One arm of 

chromosome 1 shows abnormally high coverage in the outlier cell. (g). Correlation between 

ataqv metrics across public bulk ATAC-seq datasets. Metric abbreviations are listed in Table 

S1 (h). Correlation between PC1 and ataqv metrics in project PRJNA259243.
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Figure 2. Tn5 concentration systematically alters ATAC-seq results.
(a) ATAC-seq was performed on GM12878 cells, using seven different concentrations of 

Tn5 transposase while keeping the number of nuclei constant. Six replicates were 

performed. (b) GAPDH locus coverage. (c) Increasing Tn5 concentration shifts the fragment 

length distribution towards shorter fragments. (d) Increasing Tn5 concentration increases 

TSS enrichment. (e) Increasing Tn5 concentration increases the percentage of high-quality, 

autosomal reads overlapping peaks. (f) UCSC genome browser screenshot displaying a Tn5-

sensitive promoter peak (http://genome.ucsc.edu/)(Casper et al., 2018; Kent et al., 2002). (g) 

UCSC genome browser screenshot displaying a Tn5-sensitive enhancer peak. (h). The 

percentage of ATAC-seq reads falling into enhancer and active TSS chromatin states 

increases with increasing Tn5, while the percentage of reads falling into low signal regions 

decreases. Values shown represent the median values across replicates in the PCR-constant 

experiment.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Plasmocin Invivogen ant-mpt-1

Tn5 transposase Synthesized using protocol 
in Picelli et al., 2014

N/A

SPRI beads GE Healthcare Life 
Sciences; prepared as in 
(Rohland and Reich, 2012)

#65152105050250

Critical Commercial Assays

Zymo DNA Clean & 
Concentrator-5 kit

Zymo Research D4013

Deposited Data

Raw and analyzed data This paper GEO: GSE130450

Human reference genome hg19 Lander et al., 2001 http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

Mouse reference genome mm9 Mouse Genome 
Sequencing Consortium et 
al., 2002

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/

ENCODE human genome (hg19) 
blacklists

ENCODE Project 
Consortium, 2012

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeMapability/
wgEncodeDacMapabilityConsensusExcludable.bed.gz, http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeMapability/
wgEncodeDukeMapabilityRegionsExcludable.bed.gz

ENCODE mouse genome (mm9) 
blacklist

ENCODE Project 
Consortium, 2012

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm9-
mouse/mm9-blacklist.bed.gz

List of human housekeeping genes Eisenberg and Levanon, 
2013

http://www.tau.ac.il/~elieis/HKG/HK_genes.txt

GM12878 chromatin states Parker et al., 2013 https://research.nhgri.nih.gov/manuscripts/Collins/islet_chromatin/hg19/
ChromHMM/GM12878_chromHMM.bb

ENCODE IDR ChIP-seq peaks ENCODE Project 
Consortium, 2012; Li et al., 
2011; Sloan et al., 2016

https://www.encodeproject.org

Public human and mouse ATAC-
seq data

See Table S2 See Table S2

Experimental Models: Cell Lines

Human GM12878 cells Coriell GM12878 https://www.coriell.org/0/Sections/Search/
Sample_Detail.aspx?Ref=GM12878

Experimental Models: Organisms/Strains

Oligonucleotides

Recombinant DNA

Software and Algorithms

Ataqv (v. 1.1.0) This paper https://github.com/ParkerLab/ataqv

fastx-toolkit (v. 0.0.14) Not published http://hannonlab.cshl.edu/fastx_toolkit/

cta (v. 0.1.2) Not published https://github.com/ParkerLab/cta
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bwa (v. 0.7.15) Li and Durbin, 2009 https://sourceforge.net/projects/bio-bwa/

samtools (v. 1.7) Li et al., 2009 https://github.com/samtools/samtools

Picard MarkDuplicates (v. 2.18.27) Not published http://broadinstitute.github.io/picard

MACS2 (v. 2.1.1.20160309) Zhang et al., 2008 https://github.com/taoliu/MACS

Bedtools (v. 2.27.1) Quinlan, 2014 https://github.com/arq5x/bedtools2

bigBedToBed (v. 1) Kent et al., 2010 http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64.v369

bedGraphToBigWig (v. 4) Kent et al., 2010 http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64.v369

MASS R package (v. 7.3-50) Venables and Ripley, 2002 https://cran.r-project.org/

Other

Resource website for the ataqv 
manuscript

This paper https://github.com/ParkerLab/ataqv-2019
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