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Abstract

The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy 

(DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional 

surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of 

migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The 

quantitative phase information from DHM may accurately classify adhesive cancer cell 

subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-

MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen 

hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin 

and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell 

division, and during matrix adhesion, relating them to F-actin features. Support vector machine 

learning algorithms were trained and tested using parameters from holographic phase 

reconstructions and cell geometric features from conventional phase images, and used to 

distinguish between elongated and rounded cell morphologies. DHM was able to distinguish 

between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, 

compared to 83% accuracy using cell geometric features from conventional brightfield 

microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell 

morphologies relevant to cell cycle phase status, substrate adhesion, and motility.
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DIGITAL holographic microscopy (DHM) creates quantitative phase image maps from light 

transmitted through cells, and is useful for studying cell morphological alterations during 

division (1–3), differentiation (4), death (5,6), migration (7,8), and motility (9). Most cells 

have an index of refraction of n ~ 1.38, mismatched from the surrounding culture media at n 
~ 1.33, and thickness in the range of 1–20 μm (10). These properties create an optical 

pathlength (OPL) difference that forms the basis for phase signal from cells in DHM. 

Despite sensitivity to alterations in OPL (of a few nanometers), DHM lacks specificity for 

cellular subcomponents, although the nucleus has a large phase signal and can be segmented 

from the rest of the cell (11,12). Multimodal DHM and epifluorescence microscopy systems 

(13) hold the promise of identifying subcellular determinants of phase signal by comparing 

optical phase and fluorescence label signals. Linking quantitative phase parameters to 

subcellular features would increase the utility of DHM to study in vitro cell behavior.

Cancer cells phase signatures from DHM reveal clinically relevant information about the 

imaged cells. Studies of cancer cells using DHM track cell response to toxic agents (14,15), 

distinguish the histological grade of the cancer (16), monitor substrate adhesion (14), and 

identify differences between cancer/non-cancer and metastatic/nonmetastatic cells (17). For 

example, the phase profile of adherent pancreatic tumor cells is lower following transfection 

of the cells with the tumor suppressor E-cadherin (14). Further, treatment of the tumor cells 

with an actin-depolymerizing toxin, latrunculin B, results in a mottled texture of the cell’s 

phase reconstruction, with a higher standard deviation (SD) across a lateral profile of the cell 

(14). Phase features from DHM images of cervical biopsies distinguished between grade 1 

and 3 cervical intraepithelial neoplasias (16), and from cell suspensions distinguished 

between normal skin cells versus melanoma, and primary versus metastatic melanoma (17) 

and colon adenocarcinoma (11,17) cell lines. These studies suggest that DHM phase 

signatures are sensitive to the organization of the actin cytoskeleton, and that these 

quantitative metrics distinguish between cells of differing metastatic potential.

Highly invasive MDA-MB-231 breast cancer cells migrate on adherent substrates using 

several modes, which demonstrate adaptable extracellular matrix invasion strategies and 

possess distinct morphologies (18). Mesenchymal migration consists of elongated cells 

extending and retracting actin-rich protrusions, using cytoskeletal contractility to translate 

the cell by pushing against cell-matrix adhesions. Many viable MDA-MB-231 cells in vitro 

also possess rounded morphologies, some of which possess features of amoeboid migration, 

consisting of cytoplasmic streaming into pseudopodia, footlike extensions that allow the cell 

to translate by sliding along or squeezing through the local microenvironment (19). Cells 

which are mitotic, dead, or have temporarily lost substrate adhesions also appear round, 

preventing a clear assignment of phenotype related to morphology using single images. 

Time-lapse microscopy resolves this ambiguity and reveals aspects of both of these modes of 

migration and their control by microenvironmental factors such as pore size, extracellular 

matrix compliance, enzymatic degradation and microscale alignment (20,21). However, 

time-lapse microscopy experiments have low throughput since the same cells must be 

tracked for hours, limiting the amount of data that can be collected in a single experiment. 

Further, images of cancer cells using conventional phase contrast microscopy suffer from 

bright artefacts around the cell border that can obscure fine details of that region (22), while 
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fluorescence microscopy requires exogenous labeling, or in the case of endogenous 

autofluorescence imaging, may induce photodamage caused by intense light fluence from 

the excitation source through the cell (23). In contrast, DHM delivers extremely low incident 

light power to imaged cells, and leaves the cell borders free of artefacts.

These previous studies plus the quantitative, noninvasive nature of DHM create the potential 

for experiments to determine the sensitivity of quantitative phase parameters to cell 

morphologies influenced by migration mode, cytoskeletal organization, substrate 

attachment, and the cell cycle. Such determinations, performed on cancer cells, would lead 

to quantitative understanding of processes relevant to cancer growth and invasiveness. 

Therefore, the hypothesis of the current study was that quantitative metrics from DHM 

phase maps of invasive breast cancer cells reflect cell morphological and cytoskeletal 

features, and distinguish between motile phenotypes characterized by different levels 

substrate attachment and modes of migration. Further, rounded/motile and dividing cells are 

distinguishable from single DHM phase reconstructions. To test this, MDA-MB-231 cells 

were plated on glass, tissue culture-treated polystyrene, and collagen hydrogels polymerized 

at two temperatures, and imaged using single-frame and time-lapse DHM and conventional 

phase contrast microscopy, followed by F-actin and nuclear staining, and epifluorescence 

microscopy. Phase maps of the adherent cells revealed morphology and motile phenotypes 

that depended on the type of substrate, the mode of migration, and the level of adhesion to 

the substrate. Some F-actin features and the nucleus were apparent in DHM maps of cells. A 

machine learning algorithm confirmed the high sensitivity and specificity of DHM phase 

signatures for distinguishing between rounded and elongated cells with different patterns of 

motility. These findings define the relationship between specific phase parameters and 

cancer cell behavior, and support the use of DHM to better understand cancer cell migration 

and substrate adhesion, in vitro behaviors with clinical relevance.

MATERIALS AND METHODS

Brief Theory of Telecentric DHM

Figure 1 shows a bi-telecentric-DHM (BT-DHM) system in vertical transmission and afocal 

configuration, used for the quantitative analysis of biological samples (24–27), including this 

study. An extensive background of telecentric DHM theory is presented in Supporting 

Information, Section 5.1. Aspects of the DHM set-up and phase reconstruction have been 

previously published (24,25,27–29). In the afocal configuration (the back focal plane of the 

microscope objective (MO) coincides with the front focal plane of the tube lens (fo ≡ fTL)) 

the biological sample is placed at the front focal plane of the MO. This results in the optical 

mitigation of the bulk of the spherical phase curvature normally present in traditional 

nontelecentric DHM systems. A HeNe laser is used as a coherent optical source and is 

collimated using a combination of a spatial filter and a collimating lens to produce a plane 

wave beam. The collimated beam is split into a reference beam and an object beam. The 

object beam is focused on the biological sample using the afocal configuration. The two 

beams are then made to interfere with each other on a charge-coupled device (CCD) camera 

to generate an off-axis hologram. The resultant magnification of the BT-DHM system is 

M = − fTL/fo. In this work the digital holograms are reconstructed by an angular spectrum 
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technique (30,31). In a DHM system the pixel size in the image plane (the resolution with 

which the magnified image of the object is reconstructed), Δξmag and Δηmag scales according 

to: Δξmag = λd/(NΔxM), Δηmag = λd/(NΔyM), where Δx=Δy=L/N is the camera pixel size, 

L is the dimension of the CCD sensor, and N is the number of pixels in one dimension. In a 

DHM system, the spatial resolution is limited by the diffraction limit of the MO used in the 

optical setup which is: λ/(2nmedNA), where NA is the numerical aperture (NA) of the MO. 

For a transmissive biological phase object in a transmissive medium, the phase change is 

related to the sample thickness T and the change in index Δn = nsamp − nmed between the 

biological sample and the medium which can be expressed as: φsamp ξ, η = 2π
λ T ξ, η Δn. In a 

regular DHM system the total phase of the object beam is expressed as: 

φob ξ, η = φsamp ξ, η + jk
2R ξ2 + η2  where R is the radius of curvature of the spherical 

curvature of the MO which superpose and obscure the phase due to the sample. The 

proposed bi-telecentric configuration optically compensates for the bulk of the parabolic 

curvature due to the MO, reducing the complexity of precisely measuring the optical setup 

parameters and of digital post-processing compensation.

To obtain aberration-free reconstructed holograms, two post-processing techniques are 

employed sequentially. The first technique is fully automated and is based on principal 

component analysis (PCA) (31). This technique is only used to compensate for the 

remaining quadratic phase due to the MO and the tilt phase due to the angle of the reference 

beam: exp −jφ k, l = exp −jπ
λd k2Δx2 + l2Δy2 exp −j kx0kΔx + ky0lΔy . This phase 

aberration can be written in a matrix format as: 

exp −jφ k, l = exp −jφx k exp −jφy∗ l = exp −jπ
λd k2Δx2

exp −jkx0kΔx exp jπ
λd l2Δy2 exp jky0lΔy

, where * denotes the complex 

conjugate operator, and exp −jφx k , exp −jφy∗ l  are two phase vectors. PCA is used to 

minimize the error orthogonal to the model. Since the phase of the biological sample φob (x, 
y) is small, it is considered to be a small perturbation obscured by the quadratic phase due to 

the MO and tilt due to the reference phase and hence can be written as: 

exp −jφob k, l ⋅ exp −jφ k, l . In the PCA technique, aberration compensation reduces to 

computing the first principal component (PC) of the exponential term of the filtered 

hologram. The following steps summarize the algorithm: (a) Perform singular value 

decomposition (SVD) to obtain the first dominant PC, (b) obtain the linear and quadratic 

coefficients of the phase vectors from least square fitting of the two dominant singular 

vectors, (c) use these coefficients to compute φ(k, l), and (d) multiply the conjugate φ*(k, l) 
with the hologram to obtain exp −jφob k, l  which is the phase due to the biological sample 

without MO and tilt.

After canceling the main aberrations of the DHM system, higher order aberrations remain 

uncompensated for, optically or digitally. The second technique is semiautomatic and based 

on 2D polynomial model to perform surface fitting. To cancel the remaining phase 

aberration, the phase data was chosen manually at locations with a known, sample-free 
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phase region. Then, 2D surface fitting is used to generate a phase mask based on the sample-

free phase region. A 2D polynomial of Mth order has the following form:

S x, y = ∑
l = 0

M
∑

k = 0

M − l
plkxlyk, l + k ≤ M, (1)

where x and y represent pixel coordinates. To relate the regular polynomial fitting to the 

well-known Zernike polynomial fitting, two arrays are defined as: P = p00 p10⋯plk⋯p0M
and A = a0a1⋯a 2 + M 1 + M /2 − 1 , hold the polynomial model’s coefficients and the 

Zernike model’s coefficients, respectively, where l, k represent the polynomial order in x and 

y, respectively. The (2 + M)(1 + M)/2 coefficients of the P polynomial are used to calculate 

the coefficients of the Zernike polynomial model as shown in the following matrix format:

A = zl, k, p
−1 ⋅ P , (2)

where zl.k,p is a matrix of size 2 + M 1 + M /2 × 2 + M 1 + M /2. Finally, the Zernike 

polynomials are used to construct the phase φ′ m, n = exp −j∑k = 0
2 + M 1 + M /2 − 1akZk

where Zk coefficients are expressed according to the Zemax® notation. In all the 

calculations discussed here M was set to 5. The refractive index of cells was assumed to be 

1.381.

Preparation of Cancer Cell Cultures

As a first experiment, cancer cells from the highly invasive MDA-MB-231 breast cancer cell 

line were seeded in 35 mm diameter Petri dishes on glass, tissue-culture polystyrene 

(TCPS), and type I collagen hydrogels polymerized at 4 mg/ml and temperatures of 4 and 

37°C. The gel polymerized at low temperature produced a coarse collagen network (CCN) 

with larger fiber and pore diameters than the fine collagen network (FCN) produced at 37°C. 

The MDA-MB-231 cell line was a generous gift from Dr. Zaver Bhujwalla (Johns Hopkins 

School of Medicine, Baltimore, MD). The cells on collagen were incubated for 24 hours in 

Dulbecco’s modified essential medium (DMEM, Sigma-Aldrich) containing 10% fetal 

bovine serum (FBS, Corning), 100 units/ml penicillin, and 100 μg/ml streptomycin 

(Corning) in standard tissue culture conditions of 37°C, 5% CO2, and 100% humidity.

DHM and Time-Lapse Brightfield Microscopy

Cells were taken from the incubator and imaged with the DHM setup described above. 

Image reconstruction was performed as described above to produce phase reconstruction 

maps depicting cells and collagen in a phase-cancelled background. For time-lapse DHM 

experiments, cells were imaged for 80–174 min at 2 min intervals. The lateral pixel size of 

the reconstruction was 0.19 μm, determined by imaging a resolution target, which 

oversampled the lateral resolution of 1.2 μm for the imaging system. The laser wavelength 

was 633 nm and imaging objective NA was 0.25. The surface power density at the specimen 

plane was measured to be < 0.1 mW/cm2. In separate time-lapse microscopy experiments, 

MDA-MB-231 cells cultured on glass, FCN, and CCN were placed on the CytoSMART® 
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device (Lonza Group, Basel, Switzerland), an in-incubator brightfield imaging system, and 

imaged for 24 h at 5 min intervals.

Fluorescence Labeling and Epifluorescence Microscopy of Cancer Cells

After DHM imaging, MDA-MB-231 cells cultured on glass, polystyrene and collagen were 

fixed in 3.7% formaldehyde. Fixed cells were permeabilized in 0.1% Triton X-100 (Sigma) 

and incubated in PBS with 1% bovine serum albumen containing fluorescently labeled 

phalloidin (CytoPainter Phalloidin-iFluors 488, Abcam) and DAPI (Life Technologies) to 

stain F-actin and nuclei, respectively, according to the manufacturer’s protocol. 

Epifluorescence microscopy was performed on the cells using an Olympus BX60 

microscope. Images were collected using 60×, NA 1.25 and 100×, NA 1.35 oil-immersion 

Plan Apo objectives, and a Photometrics CoolSNAP HQ2 high resolution camera with Meta-

Morph software.

To co-register DHM, phase contrast, and epifluorescence microscopy images, two thin 

pieces of cellulose acetate tape were placed on the underside of a glass-bottomed petri dish, 

forming a long, ~2 mm narrow tape-free window in between. After 24 h of culturing, cells 

were imaged using DHM. The dish was placed so as to image cells between the tape strips. 

Immediately following imaging with DHM, cells were fixed with 4% paraformaldehyde, 

stained with phalloidin and DAPI, and imaged over a large region with a low-powered 

objective using phase contrast microscopy. Cells captured by DHM were noticed on the 

phase contrast images, after which higher resolution phase contrast and epifluorescence 

images of the cell were captured using the BX60 microscope and 60× objective. Digital 

images from DHM, epifluorescence, and conventional phase contrast microscopy were co-

registered manually using ImageJ.

Image Analysis and Machine Learning from DHM Phase Maps

Cell segmentation, parameter quantification, and machine learning were all performed using 

custom-written codes and built-in functions and apps in MATLAB (2015a, Natick, MA). 

Other platforms such as Cell Profiler Analyst (Broad Institute, MA, http://cellprofiler.org/) 

are available and have been used for similar purposes (32). A MATLAB-based approach was 

chosen because of the ease of code construction and code segment testing in the MATLAB 

workspace, and extensive information available about built-in function libraries. Regardless 

of software used, image processing and machine learning results must be reproducible from 

methods presented (below), codes, and raw data (presented in the Supporting Information, 

Sections 5.3 and 5.4). One novel aspect of this study is in the application of texture analysis 

and PCA-SVM to classify the morphology of MDA-MB-231 cells.

To quantify cell shape and phase texture parameters from DHM phase maps, a custom-

written Matlab code was used. Eleven shape and phase parameters were calculated from 

cells segmented by background subtraction (the mean from a background region of interest 

containing no cells), binary thresholding at a level of one SD above the mean background, 

followed by edge detection of the cell border and filling in of any low-signal holes in the cell 

object using morphological image processing techniques. The average cell phase height, 

first-order pixel statistics of SD, kurtosis, and skew, second order pixel texture statistics of 
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contrast, correlation, homogeneity, and energy, and the shape parameters of area, 

eccentricity, and perimeter were calculated. The texture parameters calculated from the gray 

level co-occurrence matrix have been described elsewhere (33), and applied previously to 

DHM phase maps of cells (17). The Supporting Information Section 5.2 contains further 

explanation of first and second-order texture parameters, and texture analysis using the gray-

level co-occurrence matrix. From brightfield microscopy images, the following cell 

geometric parameters were calculated, using built-in ImageJ measurements of background-

subtracted, segmented images: cell area (A), perimeter (p), aspect ratio (AR = major axis/

minor axis), circularity (4πA/p2), and solidity (area/convex area).

To distinguish between MDA-MB-231 cancer cells with elongated and rounded 

morphologies, cells were first classified as elongated, rounded/motile, rounded/dividing, and 

rounded/nonmotile (Fig. 2), by examining cells from the time-lapse brightfield microscopy 

data sets over 4 h. These cells were easily classified based on shape and movement, tracked 

over several hours (Fig. 3). Further, it was noticed that rounded/dividing and rounded/

nonmotile cells combined to be < 15% of all cells cultured on the tested substrates (Fig. 2e), 

and that these cells always had smooth, unruffled borders, whereas rounded/motile cells 

usually had rough borders with a ruffled appearance (Fig. 2b–d). The appearance of MDA-

MB-231 cells using these two modes of motility has been confirmed previously (34). 

Therefore, machine learning was performed on data sets containing only elongated or 

rounded/motile cells, determined either from time-lapse images (for conventional brightfield 

microscopy), or by visually comparing the cell to previously classified cells from time-lapse 

brightfield imaging (for single DHM phase maps). This visual comparison of cells from 

DHM phase maps to cells of known morphology and motility from time-lapse brightfield 

imaging was deemed sufficient for accurate assignment of cells from DHM images captured 

at single instants of time, especially considering the scarcity of dead and pre- or post-mitotic 

cells (Fig. 2e), which reduced the chances of visual misclassification. The data sets consisted 

of n = 150 cells for DHM, and n = 148 cells on glass imaged with conventional brightfield 

microscopy. For each data set, PCA extracted 2–8 features for learning, and the algorithm 

was evaluated using fivefold cross-validation. An initial cross-validation was used to 

determine how many principal components to use in the predictors from each cell. Then, the 

data sets were divided into roughly one-third for cross-validation, with two-thirds (n = 100 

cells per data set) reserved as a data set naïve to the algorithm, and used for final testing of 

machine learning performance. This naïve testing data set was used to avoid overestimating 

the classification power of the machine learning algorithm.

A linear support vector machine learning algorithm was used based on excellent 

classification performance in previous studies using DHM data sets (17,35). Further, the 

method of PCA to reduce the dimensionality of features extracted for machine learning is 

well-established in the literature (36–39). The use of principal components reduced co-

linearity of features used as predictors for machine learning, and avoided overfitting error. 

Further, only those parameters that were different between the two groups by t test were 

used to compute standardized feature scores from the principal components. The true 

positive rate was defined as the number of elongated cells identified over total number in the 

test set, and the false positive rate was the number of rounded cells identified as elongated. 
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Receiver operating characteristic (ROC) curves were plotted from these tests, and the area 

under the curve was determined for each plot.

RESULTS

Phase Signatures from DHM Assess Cell Morphology and Movement

Distinct phase features of typical elongated, rounded motile, rounded mitotic, and rounded 

nonmotile MDA-MB-231 cells appear in DHM phase maps on glass substrate (Fig. 2). 

Elongated cells possess a large central phase signal with tapering protrusions with smaller 

phase further from the cell body (Fig. 2a). Rounded motile cells also have a large central 

phase signal, but with an irregular and asymmetrical perimeter (Fig. 2b). Dividing cells are 

rounded but with smoother edges, and are larger before cytokinesis and smaller afterward 

(Fig. 2c). Rounded nonmotile cells also possess smooth phase borders, but do not divide or 

migrate in subsequent time-lapse image frames (Fig. 2d). Time-lapse microscopy revealed 

the proportion of each of these morphological subpopulations in MDA-MB-231 cells 

cultured on glass, a FCN and a CCN of equal collagen density (Fig. 2e). The proportion of 

dividing cells was 12%, 7%, and 9% for cells on glass, FCN, and CCN, respectively. The 

proportion of rounded motile cells was 48% on glass, dropping to 30% on both collagen 

substrates.

Time-Lapse DHM of Cancer Cells Reveal Aspects of Cell Motility and Substrate Adhesion

The appearance and motion of cancer cells is different on glass and collagen substrates as 

revealed by time-lapse DHM maps. The movement of MDA-MB-231 cells on glass and 

collagen hydrogels with two distinct microstructures was observed from DHM phase 

reconstructions acquired at two minute intervals (Fig. 3). Qualitative differences in cell 

morphology and movement on the substrates were apparent from the phase reconstructions. 

In particular, cells on glass had more prominent membrane ruffling at leading and trailing 

edges than on other substrates (Fig. 3a, Video 1). Cells were most motile on glass, less 

motile on collagen polymerized at 37°C (Fig. 3b, Video 2), and least motile on collagen 

polymerized at 4°C (Fig. 3c, Video 3). The background phase texture of the collagen 

hydrogel polymerized at 4°C, which possesses collagen fibers of larger diameter than those 

formed at 37°C, revealed a network of collagen fibers not apparent in phase maps from the 

other substrates. Cell morphologies varied from round (r) to elongated (e) on each substrate, 

with some cells undergoing shape transitions of round to elongated or elongated to round 

during the course of time-lapse DHM imaging. Other cells were dividing (d) or rounded and 

nonmotile (n).

Eleven geometric and texture parameters were measured from segmented cells in the phase 

reconstruction maps (Fig. 4). Using a semiautomated routine, isolated cancer cells were 

selected by tracing around the cell border (Fig. 4a), applying a threshold (Fig. 4b) to 

segment the cell (Fig. 4c). For each cell, an average phase height, SD of phase height, 

kurtosis, skew, area, perimeter, and eccentricity were calculated. Additionally, a gray-level 

co-occurrence matrix was calculated for the cell (Fig. 4d), clipping the first row and column 

that count neighboring pixels with values of 0 and x, where x > 1, to avoid edge effects, and 
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the second-order texture parameters of contrast, correlation, energy, and homogeneity were 

calculated. All eleven phase signatures from the cell in Fig. 4c are listed in Fig. 4e.

Cell phase signatures from segmented DHM phase maps had characteristic trends during 

matrix adhesion, deadhesion, and cell motility requiring generation of traction force. A 

dividing cancer cell was imaged with DHM and trends in phase signatures were identified 

(Fig. 5). The dividing cell was initially elongated and attached to the underlying glass 

substrate (Fig. 5a.i), but released attachments over the course of 52 min, becoming round 

(Fig. 5a.ii) and with 90% higher phase height and 41% smaller projected area than initially 

(Fig. 5b). Over the next 24 min the cell phase height and projected area remained fairly 

constant while cytokinesis occurred (Fig. 5a.iii,b,c). After cell division, over the remaining 

94 min of DHM image acquisition (Fig. 5a.iv), the daughter cell average phase height 

decreased and projected area increased as substrate adhesion was re-established, 30% and 

63% lower than the initial adherent parent cell and final premitotic parent cell phase height, 

respectively, and 51% and 18% lower than the initial adherent parent cell and final 

premitotic parent cell projected area, respectively. Three of the four second order contrast 

parameters were altered between the time periods predivision (0–52 min), during cytokinesis 

(52–76 min), post-division (78–138 min), and during re-adhesion to the substrate (138–172 

min, Fig. 5d). The contrast parameter was 220 ± 19 predivision, 213 ± 20 during cytokinesis, 

and 330 ± 29 post-division. The energy parameter was 2.2 × 10−4 ± 3 × 1025 predivision, 2.6 

× 10−4 ± 4 × 10−5 during cytokinesis, and 2.1 × 10−4 ± 4 × 10−5 post-division. The 

correlation parameter was 0.25 ± 0.01 predivision, 0.24 ± 0.01 during cytokinesis, and 0.21 

± 0.01 post-division. Over the final 34 min, as the cell was spreading on the substrate the 

contrast parameter decreased, while the energy and homogeneity parameters increased.

Similar trends of phase signatures with substrate attachment and de-attachment were found 

in time-lapse DHM of a cancer cell undergoing morphological changes during migration. A 

partially elongated cell with prominent lamellipodia (Fig. 6a.i) becomes more elongated 

(Fig. 6a.ii) and then retracts, becoming round with a broad lamella (Fig. 6a.iii). The cell 

mean phase height becomes lower with greater elongation (i→ii), and following release of 

the cell edges (ii→iii), the average phase height becomes higher. Similar to the de-attaching 

cell precytokinesis, the second order contrast parameter decreased, while the energy and 

homogeneity parameters increased.

Cancer Cell Phase Reconstructions Reflect Features of the F-Actin Cytoskeleton

Phase reconstructions from DHM of single cancer cells revealed several morphological 

variants associated with distinct F-actin features (Fig. 7). Similarly shaped cells from the 

same cultures on glass, TCPS, and the surfaces of type I collagen gels polymerized at 37°C 

and 4°C were imaged with DHM and epifluorescence microscopy. On glass, the selected cell 

is stellate in shape (Fig. 7a), and possesses several actin-rich lamellipodia containing 

multiple filopodia (Fig. 7b). On TCPS, the selected cell is oval-shaped (Fig. 7c), and 

possesses a ring of rich, cortical F-actin and multiple stress fibers (Fig. 7d). On collagen 

polymerized at 37°C, the selected cell is fan-shaped (Fig. 7e) and possesses a broad lamella 

with numerous filopodia and microspikes (Fig. 7f). Finally, on collagen polymerized at 4°C, 

the selected cell is spindle-shaped (Fig. 7g) and possesses stress fibers spanning substrate 
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attachments at the leading and trailing edge (Fig. 7h). Additionally, punctate actin features 

indicative of smaller F-actin rich structures, such as podosomes and invadopodia, were 

located on cells in all conditions.

To confirm the relation of DHM phase features to the nucleus, actin cytoskeleton, and 

overall cell morphology, several DHM cell maps were co-registered with epifluorescence 

images of DAPI and phalloidin staining, and with conventional phase contrast microscopy 

(Fig. 8), for elongated (Fig. 8a,c,e,g) and rounded (Fig. 8b,d,f,h) cells. The DHM maps (Fig. 

8e,f) noticeably lack artefacts present in conventional phase contrast (Fig. 8g,h), possess 

higher phase at positions containing nuclei (Fig. 8a,b), and possess textural features that 

overlap F-actin and phase contrast features (Fig. 8c–h).

Machine Learning Distinguishes between Elongated and Rounded Cell Morphologies

A support vector machine (SVM) algorithm distinguished between cells adherent to glass 

with elongated and rounded morphologies with higher accuracy based on DHM phase 

signatures than cell geometrical parameters (Table 1, Fig. 9). Using DHM phase signatures, 

an SVM algorithm was performed with fivefold cross-validation on two to six principal 

components derived from eight of the eleven phase signatures which were significantly 

different by t test. A plateau in predictive power of the classification was reached when 

using six principal components (Table 1, misclassifications indicated, Fig. 9a). In 

comparison, cell geometrical features from conventional brightfield microscopy reached a 

plateau in predictive power with four principal components, (Table 1, Fig. 9b). Classification 

accuracy and predictive power were higher using cell phase signatures from DHM, at 94% 

and AUC = 0.943, than using cell geometrical parameters from brightfield microscopy, at 

83% and AUC = 0.838 (Table 1). These results were from testing of a naïve data set of n = 

100 cells per imaging modality following fivefold cross-validation on n = 48–50 cells.

DISCUSSION

DHM is sensitive to cancer cell morphology and motility related to F-actin cytoskeletal 

features and substrate adhesion. Specifically, time-lapse sequences of DHM phase maps 

revealed membrane ruffling in lamellipodia of cells on glass substrates, higher motility on 

glass than on collagen substrates, and lamellipodia, lamellae, cortical actin, filopodia, and 

microspikes, discernable as features in DHM maps, as well as the underlying texture of a 

collagen network polymerized at 4°C to comprise fibers of ~3 pm diameter. Phase signatures 

quantitatively assess processes associated with cytoskeletal activity and altered substrate 

attachment, including cell division, elongation and retraction. The sensitivity of DHM to cell 

morphology and phase profile features permitted training of an SVM learning algorithm 

with high accuracy to distinguish between elongated and rounded/motile cancer cells.

The main strength of this study was in quantitative comparison of DHM phase maps of 

cancer cells to specific cytoskeletal features and substrate attachment patterns relevant to 

cancer cell migration and matrix invasion. The relation of phase map features to F-actin 

features associated with substrate adhesion (Figs. 7 and 8) suggests that DHM detects cancer 

cell cytoskeletal features responsive to the surrounding microenvironment. Further, 

quantitative phase parameters (Fig. 4e) help distinguish between elongated and rounded/

Lam et al. Page 10

Cytometry A. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motile cells with higher accuracy than cell geometric features only, from conventional 

brightfield microscopy (Table 1 and Fig. 9), suggesting the pixel phase values add additional 

information relevant to cell phenotypes, beyond cell geometry. The main study limitations 

were poor subcellular specificity of DHM phase signal to F-actin, and inadequate sample 

size of dividing and rounded/nonmotile cells to perform machine learning to distinguish 

between these subpopulations and rounded motile cells (Fig. 2). To work around the first 

limitation, serial DHM and epifluorescence microscopy was performed on the same 

specimens, so similar cells could be identified using phase and F-actin fluorescence signals. 

To mitigate the second limitation, dividing and nonmotile cells, comprising < 15% of the 

total, were excluded from the data sets used to cross-validate the machine learning 

classification algorithms, based on the smooth and even appearance of the borders of these 

cells. In the future, a multimodal instrument as described in Ref. 40 would facilitate 

comparison of fluorescently labeled subcellular components to their phase profiles. 

Collection of approximately 1,000 cells per culture condition would yield enough dividing 

cells (~ 100) for training and testing of machine learning algorithms to distinguish dividing 

from rounded/motile cells. Further time-dependent phase parameters could be determined 

from time-lapse DHM data sets which could improve the classification accuracy, although 

single-frame imaging and classification allows higher sample throughput and more cells to 

be imaged. An important aspect of DHM is the lack of phase artefacts, such as nonlinear 

shade-off near cell and organelle edges, compared to conventional phase contrast 

microscopy. Enhanced phase contrast of DHM would likely reveal more subtle 

morphological distinctions between cells cultured on different substrates and at different 

phases. This could be achieved in the future through improvements to reconstruction 

algorithms and DHM optical systems (41), including using super-resolution set-ups (42–47).

The DHM phase signal reveals information about the actin cytoskeleton and substrate 

adhesion status primarily through cell phase map morphology, profile, and texture (Figs. 4 

and 7). The eleven quantitative parameters from this study overlap in part with 

morphological and phase parameters found to be useful in other DHM studies of cancer cells 

(17,35,48). Several other groups using holographic microscopy techniques have tracked 

migrating cancer cells (9), and identified phase textures of adherent cancer cells (11,14). 

Cancer cells from more advanced or metastatic disease have larger and more irregular nuclei 

(16), higher nuclear disorder parameters on the nanoscale, and higher micron-scale variation 

(11). Besides DHM, other label-free optical methods, including Raman spectroscopy (49) 

and Fourier transform light scattering (50) are useful for cell classification using machine 

learning techniques. Label-free, quantitative imaging methods such as DHM have several 

advantages in analyzing single cells, including the ease of spatial analysis of the optical 

signal from different regions of the cell, and the ability to directly compare with other 

imaging modalities, such as epifluorescence microscopy.

DHM and machine learning together form a powerful way to identify aspects of cancer cell 

behavior in transparent media, including morphologically distinct modes of motility. 

Numerous learning approaches are available and have been used on DHM data sets, 

including deep learning neural networks to distinguish SW480 colon cancer cells in 

suspension from white blood cells (48), anthrax from related microorganisms (51), and to 

detect and compensate for DHM background and phase aberrations (28). Machine learning 
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paired with DHM has also recently been used to detect red blood cell infection by P. 
falciparum (52), discriminate between isogenic cell lines of differing metastatic stage (17), 

distinguish cancer grades from prostate biopsy microarrays (53), and distinguish healthy and 

nutrient-deprived cancer cells (35), and live and dead yeast cells (54). Recent commentaries 

and reviews highlight recent studies combining these two techniques to advance cancer 

research (55,56).

This study highlights that DHM is sensitive to cytoskeletal as well as nuclear and general 

cytoplasmic features, with special relevance to cancer cell motility. The MDA-MB-231 cell 

line is highly invasive, with switchable migration behavior depending on the 

microenvironment and protease activity (34). In the conditions studied, it is expected that 

about 50% of the cells are moving in a mesenchymal fashion, and the rest in an amoeboid 

mode (34), consistent with the proportions (Fig. 2) and appearance of elongated and 

rounded/motile morphologies observed in this study. Trends in DHM phase signatures 

during division (Fig. 5), motility (Fig. 6), and adhesion to different substrates relate to 

organization of the F-actin cytoskeleton (Figs. 7 and 8). Filopodia, lamellar structures, 

microspikes, and structures interface with substrate adhesion sites, are visible in phalloidin-

labeled epifluorescence images and in DHM phase maps, indicating the mode of motility 

and quality of substrate attachment of each imaged cell. Relative to cell classification in a 

flow-based system (17), DHM of adherent cells on native biopolymers such as collagen 

captures functional aspects of cell behavior, such as division (Fig. 5) and motility (Fig. 2, 3, 

and 6). Given the ability of DHM to track cells migrating in three-dimensional (8), DHM of 

cells in a well-designed sample chamber could be used to develop a more quantitative matrix 

invasion assay than the conventional Boyden chamber assay (57). The relation of phase 

signatures to actin cytoskeletal features supports DHM as a tool to study mechanisms of 

cancer cell migration and invasiveness in vitro.

These data also indicate the possibility of tracking of cancer cell cycle status using DHM, 

relevant to studying mechanisms of cancer growth and response to therapeutic agents. 

Although only elongated and rounded/motile cells were classified from DHM phase 

parameters with machine learning algorithms, dividing, premitotic, mitotic, and post-mitotic 

cancer cells also appear to have distinct phase features. For example, the bright linear phase 

signal apparent in the middle of joined parent and daughter cells (Fig. 5.a.iii) could originate 

from centrosome-aligned chromosomes (1). Osmotic swelling of the cell during mitosis can 

also alter the phase signal (1). Indeed, DHM was found to monitor cell cycle phase 

distribution of etoposide-treated L929 cells with similar accuracy to flow cytometry, through 

measurement of cell phase volume (58). The use of DHM to distinguish stages of cell 

division is important for DHM-based cytometry, to segment cells in G1, G2, S, and M 

phases, or cells with subtly altered cell cycle induced by photodamage in time-lapse imaging 

experiments (23). With accurate DHM-based tracking of the cell cycle, the effects of kinase 

inhibitors targeting cell cycle regulation proteins as anti-cancer agents could be 

quantitatively determined (59).

In conclusion, DHM is an effective tool to assess cancer cell morphology and motility, 

especially in relation to substrate adhesion and de-adhesion. Machine learning applied to 

DHM data sets potentially separates cells based on behavior including cell division, mode of 
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migration on substrates, and morphologies characteristic of distinct cancer phenotypes. 

These behaviors relate to the contractile and force-bearing actin cytoskeleton, which is most 

prominent in phase signal from the cell border, and with the nucleus contributes part of the 

total phase signal of the cell. Given a number of cytoskeletal proteins implicated as cancer 

biomarkers in vivo but with unknown effects on cancer cell behavior in vitro (60), DHM 

might reasonably provide a quantitative means to distinguish between the differential effects 

of these genetic markers on cancer cell behavior. Because DHM is nondamaging with very 

low power density at the sample (< 0.1 mW/cm2 in this study), is label-free, and has fast 

acquisition rates, it is an excellent tool for long-term time-lapse imaging of cancer cells to 

determine clinically relevant behavior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The BT-DHM system in transmission configuration. MO, beamsplitters (BS), object beam 

(O), reference beam (R), and CCD camera are labeled. [Color figure can be viewed at 

wileyonlinelibrary.com]
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Figure 2. 
Phenotype of MDA-MB-231 cells on 2D substrates by DHM and time-lapse microscopy. 

DHM phase maps of typical (a) elongated motile, (b) rounded motile, (c) dividing, and (d) 

rounded/nonmotile cells cultured on glass. Scale bar is indicated. (e) The proportion of these 

four phenotypes in MDA-MB-231 cell populations cultured on glass, a FCN, and a CCN, 

visually assessed from in-incubator brightfield videomicroscopy, with the number of cells 

quantified in each condition listed.
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Figure 3. 
Phase maps from time-lapse DHM experiments of MDA-MB-231 cells on (a) glass (Video 

1, MPEG, 1.8 MB), (b) a 4 mg/ml collagen hydrogel polymerized at 37°C (Video 2, MPEG, 

1.6 MB), and (c) a 4 mg/ml collagen hydrogel polymerized at 4°C (Video 3, MPEG, 2.2 

MB). Labels to the upper right of each cell indicate phenotype: elongated motile (e), 

rounded motile (r), rounded/dividing (d), and rounded/nonmotile (n). Scale is indicated.
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Figure 4. 
Cell segmentation and texture analysis. (a) A typical phase reconstruction of cultured MDA-

MB-231 cells, with one cell outlined by a region of interest. (b) The binary threshold of the 

cell, used to create (c) the segmented cell. (d) The gray-level co-occurrence matrix with first 

row and column removed to avoid quantifying edge effects. (e) Eleven parameters were 

automatically recorded from each cell, including mean phase height (μ), SD, kurtosis (kurt), 

skew (sk), cell projected area (Ar), perimeter (Per), eccentricity (Ecc), and the texture 
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parameters of contrast (Cn), correlation (Cr), energy (En), and homogeneity (Hm). [Color 

figure can be viewed at wileyonlinelibrary.com]
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Figure 5. 
Quantitative phase parameters from a dividing cancer cell. (a) DHM phase reconstructions 

(i) before mitosis, (ii) during prophase-metaphase, (iii) anaphase, and (iv) post-mitosis. (b) 

The cell mean phase height and SD, (c) cell area, and (d) normalized texture parameters are 

plotted over the entire time-lapse acquisition duration, with arrows indicating timepoints of 

the frames in (i–iv).
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Figure 6. 
Quantitative phase parameters from a motile adherent cancer cell. (a) DHM phase 

reconstructions (i) at the beginning, (ii) end of an extension phase, and (iii) after retraction 

of membrane protrusions. (b) The cell mean phase height, (c) perimeter, and (d) normalized 

texture parameters are plotted over the entire time-lapse acquisition duration, with arrows 

indicating time-points of the frames in (i–iii).
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Figure 7. 
Comparing phase reconstructions to subcellular features. Cells with similar shape were 

imaged on (a,b) glass, (c,d) TCPS, and collagen gels polymerized at (e,f) 37°C and (g,h) 

4°C, creating (a,c,e,g) DHM phase maps and (b,d,f,h) epifluorescence micrographs of 

nuclear (blue) and F-actin (green) fluorescence labels. The scale bar is indicated. [Color 

figure can be viewed at wileyonlinelibrary.com]
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Figure 8. 
Co-registered DHM, epifluorescence, and phase contrast images of MDA-MB-231 cells. 

Epifluorescence images of (a,b) DAPI, and (c,d) phalloidin stains, as well as (e,f) DHM 

phase maps, and (g,h) conventional phase contrast microscopy images of the same cells 

were co-registered. Cells of (a,c,e,g) elongated, and (b,d,f,h) rounded morphologies cultured 

on glass were chosen. The scale bar is indicated.
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Figure 9. 
ROC curves for linear support vector machine learning classification of elongated versus 

rounded motile cells using PCA feature extraction of (a) cell morphological features and 

phase parameters from DHM and (b) cell morphological features from brightfield 

microscopy. Features derived from the first two (dotted line), four (dashed line) and five-six 

(solid line) principal components are used to generate the ROC curves.
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