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Three paralogous clusters of the miR-17~92 family of
microRNAs restrain IL-12-mediated immune defense
Xiang Zhang 1,2,3, Sinead M. Smith 4, Xi Wang5, Baohong Zhao6,7, Li Wu1,2,3 and Xiaoyu Hu 1,2,3

MicroRNAs (miRNAs) have been widely implicated in immune regulation, but evidence for the coordinated function of paralogous
miRNA clusters remains scarce. Here, by using genetically modified mice with individual or combined cluster deficiencies, we found
that three paralogous clusters of the miR-17~92 family of miRNAs collectively suppressed IL-12 production in macrophages.
Accordingly, miR-17~92 family miRNAs deficiencies resulted in heightened production of IL-12 and thus enhanced the host defense
against intracellular pathogen Listeria monocytogenes in vivo. Mechanistically, different members of the miR-17~92 family of
miRNAs acted on a common target, PTEN, to inhibit IL-12 expression by modulating the PI3K-Akt-GSK3 pathway. In addition, the
expression of miR-17~92 family miRNAs was collectively inhibited by the transcription factor RBP-J, and RBP-J-associated
macrophage functional defects were genetically rescued by deleting three clusters of miR-17~92 family miRNAs on a RBP-J null
background. Thus, our results illustrated key roles of three clusters of miR-17~92 family miRNAs in cooperatively controlling IL-12-
mediated immune responses and identified miR-17~92 family miRNAs as functional targets of RBP-J in macrophages.

Keywords: miR-17~92 family miRNAs; microRNA; IL-12; RBP-J; Macrophages

Cellular & Molecular Immunology (2021) 18:1751–1760; https://doi.org/10.1038/s41423-020-0363-5

INTRODUCTION
MicroRNAs (miRNAs) are a class of approximately 22-nucleotide-
long noncoding RNAs that posttranscriptionally regulate gene
expression in metazoan organisms by pairing with messenger
RNAs to inhibit protein translation and/or promote mRNA
degradation.1 miRNAs are generated from primary miRNA
precursors (pri-miRNAs) that are cleaved by Drosha into ~70
nucleotide pre-miRNAs that are further processed by Dicer into
mature miRNAs.2 Thus, the biogenesis of miRNAs can be
controlled at multiple steps, including through the regulation
of pri-miRNA transcription and miRNA processing.3 For approxi-
mately 25–40% of miRNAs, the pri-miRNAs are located in close
proximity to several neighboring pri-miRNAs on chromatin to
form miRNA clusters,4,5 which typically yield mature miRNAs
with distinct seed regions that may either promote diverse
effects or act in a coordinated manner to accomplish common
functions. The miR-17~92 family of miRNAs consists of three
paralogous miRNA clusters: miR-17~92, miR-106a~363, and miR-
106b~25 (Fig. 1a, upper panel).6 Moreover, miR-17~92 family
miRNAs comprise a total of 15 miRNA stem loops that represent
13 distinct mature miRNAs, which can be categorized into four
different families according to the sequence alignment of their
“seed” regions (a schematic depiction is presented in the lower
panel of Fig. 1a).7,8 To date, miR-17~92 family miRNAs have
reportedly played an important role in development and are
regarded as oncogenes during tumorigenesis.7,8 It has been

reported that, in the immune system, miR-17~92 family miRNAs
are critical for lymphocyte homeostasis maintenance, T-follicular
helper cell differentiation, B-cell development, invariant natural
killer T (iNKT) cell ontogenesis, and monocyte differentiation
and maturation.9–15 However, despite extensive investigation
into individual miRNAs, relatively little is known about whether
and how related miRNA clusters coordinate to regulate immune
responses, and little is known about the specific functions of
miR-17~92 family miRNAs in macrophage activation.
Macrophages play an essential role in the maintenance of host

homeostasis and in innate immune responses to various patho-
gens. Upon pathogen insult, the activation of macrophages by
pathogen-associated molecular patterns, such as lipopolysacchar-
ides (LPSs), leads to the production of a plethora of immune and
inflammatory effector molecules, including those promoting
subsequent adaptive responses such as interleukin 12 (IL-12).
Bioactive IL-12, commonly designated IL-12p70, is a heterodimeric
complex composed of the IL-12p40 subunit encoded by the Il12b
gene and the IL-12p35 subunit encoded by the Il12a gene.16 IL-12
serves as a bridge between innate and adaptive immunity by
promoting the differentiation of Th1 cells16 and thus is critically
involved in host defense against intracellular pathogens such as
Listeria monocytogenes.17 Nevertheless, despite the beneficial
effects of IL-12 in host defense, overproduction of IL-12 has been
observed in a number of human disease conditions and
contributes to the pathogenesis of autoimmune and inflammatory
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disorders such as Crohn’s disease (CD) and rheumatoid arthritis
(RA).18 Therefore, to ensure sufficiently robust responses while
avoiding unnecessary inflammation, the production of IL-12 is
tightly controlled by a variety of positive and negative regulatory
mechanisms. As a secondary response gene, full-fledged induction
of IL-12 genes is dependent on chromatin modification events
involving the activation of the SWI/SNF complex19 and the
stabilization of histone demethylase,20 which is accompanied by
the recruitment of sequence-specific transcription factors in
the NF-κB and IRF families.21 In addition, abundant inhibitory
mechanisms are in place to curtail IL-12 expression at multiple
levels, including signaling inhibition, epigenetic modification, and
posttranscriptional regulation.16,22

In this study, using rigorous genetic approaches, we found that
multiple miRNAs in the miR-17~92 family act in concert to inhibit
IL-12 production by targeting key upstream signaling molecules,
which has a significant biological impact on the host defense
against intracellular bacteria. Moreover, we identified RBP-J as an
inhibitor of miR-17~92 family miRNAs and miR-17~92 family
miRNAs as alternative functional targets for RBP-J during the
promotion of inflammatory macrophage polarization. These
results revealed the critical roles of three paralogous clusters of
miR-17~92 family miRNAs in cooperatively controlling IL-12-
mediated immune responses.

RESULTS
miR-17~92 family miRNAs inhibit IL-12 production in
macrophages
To study the functions of miR-17~92 family miRNAs in macro-
phages, we first generated mir-106a~363−/− mir-106b~25−/−

mir-17~92flox/flox Lyz2-Cre triple knockout (TKO) mice by crossing
mir-106a~363−/− mir-106b~25−/− mir-17~92flox/flox mice with Lyz2-
Cre mice (Fig. 1b), and efficient deletion of all miR-17~92 family
miRNAs was observed in the macrophages (Supplementary Fig. 1).
Macrophage populations in homeostasis appeared grossly normal
in the myeloid-specific TKO animals (Supplementary Fig. 2).
To investigate whether miR-17~92 family miRNAs play a role in
macrophage activation, we stimulated bone marrow-derived
macrophages (BMDMs) obtained from the TKO and control Lyz2-
Cre mice treated with LPS or untreated and performed
high-throughput RNA sequencing. Interestingly, analysis of the
resulting RNA-seq data revealed that the expression of genes
(Il12a and Il12b) encoding the critical inflammatory cytokine IL-12
was upregulated in the TKO BMDMs upon LPS stimulation (Fig. 1c
and Supplementary Fig. 3). Then, we experimentally confirmed
that the expression of both Il12a and Il12b was significantly
increased in the TKO BMDMs after LPS stimulation (Fig. 1d, e).
Consistent with the mRNA expression results, we also detected the
expressed protein level of IL-12p70 and found that IL-12p70 was
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Fig. 1 miR-17~92 family miRNAs inhibit IL-12 production in macrophages. a Schematic representation of the three miRNA clusters of miR-
17–92 family miRNAs (upper panel) and their target sequences (lower panel). The mature miRNAs in different families are shown in different
colors. Yellow: members of the miR-17 family; red: members of the miR-18 family; blue: members of the miR-19 family; green: members of the
miR-25 family. The “seed region” of each mature miRNA is shown in white. b Outline of the mouse breeding strategy. mir-106a~363−/−

mir-106b~25−/− mir-17~92flox/flox mice were bred with Lyz2-Cre mice to obtain mir-106a~363−/− mir-106b~25−/− mir-17~92flox/flox Lyz2-Cre (TKO)
mice. c RNA-seq analysis showing RNA expression in the TKO BMDMs versus the Lyz2-Cre cells after treatment with LPS for 3 h. RNAs
upregulated in the TKO BMDMs are red, whereas the RNAs downregulated are blue. Gene Il12a is green, and gene Il12b is cyan. d–e qPCR
analysis of Il12a and Il12b mRNA in the Lyz2-Cre and TKO BMDMs stimulated for the indicated periods with LPS. f–g ELISA results showing IL-
12p70 in the supernatants from the Lyz2-Cre and TKO BMDMs stimulated for the indicated periods with LPS. Data are representative of
six (d and f) or are pooled from six (e and g) independent experiments. Data are presented as the means ± SD; *P < 0.05, **P < 0.01 (paired
Student’s t test)
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significantly upregulated in the supernatants of the TKO BMDMs
stimulated with LPS compared with the supernatants from the WT
BMDMs (Fig. 1f, g). Thus, these results revealed that miR-17~92
family miRNAs inhibit IL-12 production in macrophages.
As miR-17~92 family miRNAs are composed of three paralogous

clusters (Fig. 1a), we next distinguished the contribution of each
miRNA cluster in the suppression of IL-12 production. As the mir-
17~92−/− mice are not viable,6 we first generated mir-17~92flox/flox

Lyz2-Cre (17/92 KO) mice in which the miR-17~92 cluster was
specifically deleted in myeloid cells. We stimulated Lyz2-Cre and
17/92 KO BMDMs with LPS and examined the expression levels of
Il12a and Il12b mRNA. We found that 17/92 KO BMDMs expressed
higher levels of Il12a and Il12b than did cells from the Lyz2-Cre
control mice (Fig. 2a, b). Concomitantly, the IL-12p70 protein
concentration in the supernatants of the 17/92 KO BMDMs was
enhanced compared with that of the Lyz2-Cre control BMDMs
(Fig. 2c, d). Next, we determined the mRNA levels of Il12a and Il12b
in mir-106a~363−/− (106a KO) and mir-106b~25−/− (106b KO)
BMDMs upon LPS stimulation, and similar to the results obtained
for the 17/92 KO BMDMs, we found that the expression levels of
both Il12a and Il12b were increased in the 106a KO and 106b KO
BMDMs compared with the WT cells (Fig. 2e, f, i, j). Consistent with
these changes in mRNA levels, the protein level of IL-12p70 was
also upregulated in the supernatants of the 106a KO and 106b KO
BMDMs compared to the supernatants of the WT cells (Fig. 2g, h,
k, l). Taken together, these results indicated that three paralogous
clusters of miR-17~92 family miRNAs collectively restrain IL-12
production in macrophages.

miR-17~92 family miRNA deficiency protects the host from
intracellular bacterial infection
Having established that miR-17~92 family miRNAs suppress IL-12
production in vitro, we wished to determine the in vivo function of

miR-17~92 family miRNAs and therefore subjected TKO mice to
infection by L. monocytogenes, with a host defense that is
dependent on IL-12-driven Th1 responses.17,23,24 Upon challenge
with either a low dose or a high dose of L. monocytogenes, the TKO
mice exhibited enhanced survival (Fig. 3a, b) and reduced body
weight loss (Fig. 3c) compared with the survival and weight loss
observed for the control animals. Moreover, the bacterial burden
in the spleens and livers of the TKO mice was significantly lower
than that in the Lyz2-Cre mice (Fig. 3d, e), and the spleens of the
TKO mice were also smaller than were those of the Lyz2-Cre mice
post infection (Fig. 3f, g), indicating more efficient bacterial
clearance by the TKO mice. These enhanced immune responses in
the TKO mice were likely not due to altered immune cell
populations, as the splenocyte subsets were not apparently
different in the Lyz2-Cre- and TKO-infected mice (Supplementary
Fig. 4A–C). In line with the finding of heightened immunity, IFNγ
production by CD4+ and CD8+ T cells in the TKO mice had a
tendency to increase compared with that in Lyz2-Cre mice
(Supplementary Fig. 5A, B). In addition, consistent with the in vitro
results, both Il12a and Il12b were overexpressed in the peritoneal
macrophages taken from the TKO mice post infection (Fig. 3h, i). In
summary, these data suggest that miR-17~92 family miRNAs
compromise the host defense against intracellular bacterial
infections, possibly by curbing IL-12 expression.

miR-17~92 family miRNAs inhibit IL-12 production by alleviating
the PTEN-mediated suppression of the Akt-GSK3 pathway
Next, we sought to investigate the mechanisms by which
miR-17~92 family miRNAs suppress IL-12 production. First, we
examined TLR4-induced canonical signaling pathways such as the
NF-κB and MAPK pathways25 and found that their activation was
not altered in the TKO BMDMs (Supplementary Fig. 6). Along with
others, we previously described another pathway that regulates
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the TLR-induced production of cytokines, including IL-12: the PI3K-
Akt-GSK3 axis.26,27 Therefore, in this study, we analyzed the
activation of Akt and glycogen synthase kinase 3 (GSK3) and
found that the phosphorylation of Akt and GSK3 was reduced in
the TKO BMDMs (Fig. 4a). As phosphorylation of GSK3 is negatively
correlated with its activity28,29 and because GSK3 has been shown
to promote IL-12 expression,27 the observed decrease in GSK3
phosphorylation was consistent with the results above showing
overproduction of IL-12 in the TKO BMDMs (Fig. 1d–g). To further
investigate the mechanisms that regulate activation of the Akt
pathway, we screened the expression of several well-characterized
regulators of Akt and found that the protein level of phosphatase
and tensin homolog (PTEN), a negative regulator of the PI3K-Akt
pathway,30 was enhanced in the TKO BMDMs in the presence and
absence of LPS stimulation (Fig. 4b). This increase in the basal
protein expression of PTEN in resting macrophages prior to
activation was consistently observed in multiple independent
experiments (Fig. 4c). We next sought to determine whether the
enhanced expression of PTEN in the TKO BMDMs contributed to
the overproduction of IL-12 in these cells; therefore, we decreased
PTEN expression using RNA interference (Supplementary Fig. 7A,
B) and inhibited PTEN phosphatase activity by using a chemical
inhibitor. Both knocking down the PTEN level (Fig. 4d–g) and
inhibiting PTEN phosphatase activity (Fig. 4h–k) significantly
reduced the expression of both Il12a and Il12b in the TKO
BMDMs, indicating that the upregulated IL-12 expression in the
TKO cells was PTEN dependent. Then, we further investigated the
mechanisms of PTEN regulation and found that Pten mRNA levels
were comparable in the Lyz2-Cre and TKO BMDMs (Fig. 4l),

implying posttranscriptional regulation of PTEN by miR-17~92
family miRNAs. It has been reported that PTEN is a direct target
of several miRNAs in the miR-17~92 cluster,6,9 and the results from
our bioinformatics analysis using TargetScan 7.231 further
suggested that PTEN was a predicted target of all the miRNAs in
the miR-17~92 family. Next, we experimentally confirmed that
PTEN was, indeed, the direct target of miR-17~92 family miRNAs
by showing that overexpression of the miRNAs from each cluster
of the miR-17~92 family reduced the activity level of a Renilla
luciferase reporter containing the Pten 3′UTR (Fig. 4m). To further
determine the role of GSK3 in IL-12 overexpression, we abrogated
GSK3 activity by pharmacological inhibition and found inhibiting
GSK3 led to significantly decreased Il12a and Il12b expression in
the TKO BMDMs (Fig. 4n–q), indicating that GSK3 contributed to
triple miRNA cluster-regulated IL-12 production. Overall, these
data demonstrated that miR-17~92 family miRNAs inhibit IL-12
production by targeting PTEN to subsequently modulate the PI3K-
Akt-GSK3 pathway.

RBP-J suppresses the expression of miR-17~92 family miRNAs in
macrophages
Having identified miR-17~92 family miRNAs as negative regulators
of IL-12 production, we next wished to place miR-17~92 family
miRNAs in the context of the immune regulatory network that
controls IL-12 production and clarify the connections between miR-
17~92 family miRNAs and other key regulators. In previous studies,
we reported that RBP-J (recombinant recognition sequence
binding protein at the Jκ site, also named CSL or CBF1), a master
transcription regulator downstream of the Notch pathway,32–36
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promoted IL-12 production by augmenting the eIF4E-mediated
translation initiation of the interferon regulatory factor 8 (IRF8, also
named ICSBP) protein.37 Here, we sought to determine whether
RBP-J could regulate the expression of miR-17~92 family miRNAs.
To identify RBP-J-regulated miRNAs in macrophages, we per-
formed high-throughput small RNA sequencing using BMDMs
obtained from Rbpjflox/flox Lyz2-Cre (RBP-J-KO) and from Lyz2-Cre
mice. Interestingly, the analysis of small RNA-seq data showed that,
among the top ten most upregulated miRNAs in RBP-J-KO BMDMs,
three (miR-106a, miR-363, and miR-18b) belonged to the miR-
17~92 family (Fig. 5a). By mining small RNA-seq expression profiles,

we found that almost all 15 miRNAs of the miR-17~92 family were
upregulated in RBP-J-KO BMDMs (Fig. 5b). Upon closer examina-
tion, the most upregulated miRNAs belonged mainly to the miR-
106a~363 cluster (Fig. 5c), which was almost equally distributed
among all four of the different families (Fig. 5d). Next, we validated
the small RNA-seq results by quantitative polymerase chain
reaction (qPCR) and found similar levels of upregulation for almost
all miR-17~92 family miRNAs in the RBP-J-KO BMDMs (Fig. 5e–h).
Consistent with the global expression profiling data, the quanti-
tative measurements of individual miRNAs also showed that the
miRNA expression levels in all four families were increased to a
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similar extent (Fig. 5i–l). Taken together, these results identified
RBP-J as a suppressor of miR-17~92 family miRNAs.

RBP-J promotes IL-12 production partially by suppressing the
expression of miR-17~92 family miRNAs
These results implied that miR-17~92 family miRNAs attenuated
IL-12 production by targeting PTEN and that RBP-J suppressed the
expression of miR-17~92 family miRNAs. Next, we sought to
determine whether suppression of miR-17~92 family miRNAs
contributed to the RBP-J-mediated enhancement of IL-12 expres-
sion (Fig. 6a). As miR-17~92 family miRNAs inhibit IL-12 production
by regulating the PI3K-Akt-GSK3 pathway, we first analyzed the
activation status of this pathway in the RBP-J-KO BMDMs. The
results from the immunoblotting analysis showed significantly
decreased PTEN protein (Fig. 6b, c) and subsequently enhanced
phosphorylation of Akt and GSK3 in the RBP-J-KO BMDMs (Fig. 6d).
These results indicate that RBP-J attenuates PI3K-Akt activation by
sustaining PTEN protein expression, which possibly results from
the alleviation of the repression that had been induced by the
miR-17~92 family miRNA-mediated suppressive effects on PTEN.
To genetically test the hypothesis that RBP-J modulates macro-
phage function by regulating miR-17~92 family miRNAs, we
crossed Rbpjflox/flox Lyz2-Cre mice with TKO mice to obtain mir-
106a~363−/− mir-106b~25−/− mir-17~92flox/flox Rbpjflox/flox Lyz2-Cre
myeloid-specific quadruple knockout (QKO) mice (Fig. 6e). Upon
LPS stimulation, the IL-12 mRNA and protein levels were “rescued,”
being upregulated in the QKO BMDMs compared to the RBP-J-KO
BMDMs (Fig. 6f–h). These genetic data supported the notion that
RBP-J promotes IL-12 expression, at least in part, via the
suppression of miR-17~92 family miRNAs. In summary, our results

support a model for the inhibition of IL-12 by miR-17~92 family
miRNAs, which regulate the PTEN/PI3K-Akt-GSK3 pathway and are
suppressed by RBP-J (Fig. 7).

DISCUSSION
miR-17~92 family miRNAs have been widely studied in adaptive
immune cells, including T cells and B cells.9–12,14,15 In innate immune
cells, miR-17~92 family miRNAs reportedly regulate monocyte
development.13,38 However, the functions of miR-17~92 family
miRNAs in macrophage activation re main unclear. Here, we
describe a regulatory circuit involving three RBP-J-suppressed
paralogous clusters of miR-17~92 family miRNAs that cooperatively
modulate the expression of the essential immune effector molecule
IL-12. This study illustrates the previously uncharacterized functions
of miR-17~92 family miRNAs in macrophage activation and in
immune defense against intracellular bacteria. Furthermore, our
results establish the connections between miR-17~92 family miRNAs
and RBP-J in regulating IL-12 during macrophage activation.
Regarding their functions, miR-17~92 family miRNAs have

predominantly been viewed as oncogenes.8,39 Amplification of
these miRNAs has been detected in various cancer cells, in which
they promote tumor angiogenesis by inducing cell proliferation and
inhibiting apoptosis.7 In the immune system, miR-17~92 family
miRNAs have been reported to be involved in the regulation
of lymphocyte homeostasis,9 follicular helper T-cell differentiation,10

B-cell development,11,12 and iNKT cell ontogenesis.14 However,
relatively little is known about the role of miR-17~92 family miRNAs
in innate immune responses. To our knowledge, this study presents
the first genetic evidence of the functions of miR-17~92 family
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miRNAs in macrophage activation, identifying a distinct biological
role of miR-17~92 family miRNAs in macrophages that differs from
their roles in other immune cells. Interestingly, the three clusters of
miRNAs in this family act in a highly cooperative manner to
collectively regulate the expression of a key immune effector
molecule with significant in vivo functional outcomes in host
antimicrobial defense.
In previous studies, various targets of miR-17~92 family miRNAs

were reported, such as PTEN,9 Bim,6,9 E2F1,40,41 and PHLPP2.10 In
this study, we identified PTEN as a common target of all three
miRNA clusters in the miR-17~92 family and connected miR-17~92
family miRNAs targeting PTEN with the downstream PI3K-Akt-
GSK3 pathway, which further regulates IL-12 production during
macrophage activation. Given the multiple targets of miR-17~92
family miRNAs, we cannot totally exclude the contribution of other
targets in the regulation of IL-12 production, and more work may
be needed to fully clarify the roles of other factors in the future.
IL-12 is a critical proinflammatory cytokine secreted by

macrophages and other immune cells that, on the one hand,
promotes host immune defense and, on the other hand, is
involved in the pathogenesis of autoimmune and inflammatory
diseases. Thus, the production of IL-12 is strictly regulated. It is
widely reported that IL-12 expression is regulated both positively
and negatively by a variety of mechanisms, including epigenetic
modification and signaling regulation, posttranscriptional regula-
tion, and transcription factor regulation.16,20–22 We have pre-
viously reported that RBP-J controls the expression of the

transcription factor IRF8 to promote downstream IL-12 production
in macrophages.37 Here, we propose that RBP-J suppresses the
expression of miR-17~92 family miRNAs to promote IL-12
production. Thus, we connect miR-17~92 family miRNAs with
RBP-J in the regulation of the production of IL-12. However,
whether miR-17~92 family miRNAs interact with other regulators
of IL-12 and the mechanisms of this possible action are not yet
clear, and further studies are needed to fully understand the
regulatory network of IL-12. In summary, our findings highlight
functions, as well as the regulatory effects, of miR-17~92 family
miRNAs in macrophage activation and immune defense, implicat-
ing this family of miRNAs as being potential therapeutic targets in
the treatment of immunity-related disorders.

MATERIALS AND METHODS
Mice
Experiments using mice were approved by the Institutional Animal
Care and Use Committees at Tsinghua University. Mice with
myeloid cell-specific deletion of Rbpj (Rbpjflox/floxLyz2-Cre) have
been previously described.42 The mir-106a~363−/− (Jax stock
008461), mir-106b~25−/− (Jax stock 008460), and mir-17~92flox/flox

(Jax stock 008458) mice were purchased from The Jackson
Laboratory and were all on a C57BL/6J background. The mir-
17~92flox/flox mice were crossed with the Lyz2-Cre mice to obtain
mice with myeloid cell-specific deletion of the miR-17~92 cluster.
The miR-17~92, miR-106a~363, and miR-106b~25 cluster triple KO
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analysis of PTEN and p38 (loading control) in the whole-cell lysates of the Lyz2-Cre and Rbpjflox/flox Lyz2-Cre BMDMs treated for the indicated
periods with LPS. c Quantified PTEN protein abundance under unstimulated conditions in (b), according to the densitometry data from three
independent experiments. d Results from the immunoblotting analysis of phosphorylated and total Akt, phosphorylated and total GSK3, and
β-actin (loading control) in the whole-cell lysates of the Lyz2-Cre and Rbpjflox/flox Lyz2-Cre BMDMs treated for the indicated periods with LPS.
e Outline of the mouse breeding strategy. mir-106a~363−/− mir-106b~25−/− mir-17~92flox/flox Lyz2-Cre (TKO) mice were bred with Rbpjflox/flox

Lyz2-Cre mice to obtain mir-106a~363−/− mir-106b~25−/− mir-17~92flox/flox Rbpjflox/flox Lyz2-Cre (QKO) mice. f Results from the qPCR analysis of
Il12a and Il12b mRNA in the Lyz2-Cre, Rbpjflox/flox Lyz2-Cre, and QKO BMDMs stimulated with or without LPS for 6 h. g ELISA measurements
of IL-12p70 in supernatants from Lyz2-Cre, Rbpjflox/flox Lyz2-Cre, and QKO BMDMs stimulated with or without LPS for 6 h. h Cumulative amounts
of the IL-12p70 protein in the LPS-stimulated Rbpjflox/flox Lyz2-Cre and QKO BMDMs, as indicated in (g). Data are representative of (a, b, d, f,
and g) or are pooled from (c and h) three independent experiments. Data are presented as the means ± SD. *P < 0.05 (paired Student’s t test)
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mice were obtained by crossing mir-106a~363−/− mir-106b~25−/−

mir-17~92flox/flox mice with Lyz2-Cre mice. The QKO mice were
obtained by crossing mir-106a~363−/− mir-106b~25−/− mir-
17~92flox/flox Lyz2-Cre mice with Rbpjflox/floxLyz2-Cre mice. The
experiments were performed with mice that were 6–8 weeks of
age using age- and gender-matched controls. Wild-type C57BL/6J
mice were used as controls for the 106a KO and 106b KO mice,
and Lyz2-Cre mice were used as controls for the 17/92 KO, TKO,
RBP-J-KO, and QKO mice.

Cell culture and reagents
Murine BMDMs were obtained as previously described37 and
maintained in DMEM supplemented with 10% FBS and 10% L929
cell supernatant, which is conditioned medium that provides
macrophage colony-stimulating factor (M-CSF). Cell culture grade
LPS was purchased from InvivoGen and was used at a concentra-
tion of 10 ng/ml unless otherwise specified. SF1670 and SB415286
were obtained from Selleck.

Reverse transcription and qPCR
RNA was extracted from whole-cell lysates with a total RNA
purification kit (GeneMark) and was reverse transcribed to cDNA
with a First Strand cDNA Synthesis Kit (TaKaRa). qPCR was
performed in triplicate with an ABI StepOnePlus thermal cycler.
The primary transcripts were measured with primers that amplify
either exon–intron junctions or intronic sequences. The threshold
cycle numbers were normalized to triplicate samples amplified
with primers specific for glyceraldehyde-3-phosphate dehydro-
genase (Gapdh). For the qPCR analysis of mature miRNA, cDNA
was prepared from total RNA, which was isolated with TRIzol
reagent (Invitrogen), with a TaqMan microRNA Reverse Transcrip-
tion Kit (Applied Biosystems). TaqMan MicroRNA assays were
used according to the manufacturer’s recommendations (Applied
Biosystems) for real-time PCR. The TaqMan U6 snRNA assay
(Applied Biosystems) was used for normalization of the expres-
sion values. The primer sequences are listed in Supplementary
Table 1.

RNA sequencing and analysis
Total RNA was isolated with a total RNA purification kit (GeneMark)
from whole-cell lysates of Lyz2-Cre and TKO BMDMs treated with
or without LPS for 3 h. RNA was isolated, prepared into a library,
and sequenced with a BGISEQ-500 platform by BGI (BGI;
Shenzhen, China). Total reads were cleaned and mapped to the
mm10 reference genome and then normalized as fragments per
kilobase of transcript per million mapped reads. Differentially
expressed genes between Lyz2-Cre and TKO BMDMs were defined
based on a false-discovery rate < 0.001 and an absolute value of
log2 ratio (TKO/Lyz2-Cre) > 1.

Enzyme-linked immunosorbent assay. Cytokine secretion was
quantified with an IL-12p70 ELISA kit from BD Biosciences
according to the manufacturer’s instructions.

Listeria monocytogenes infection. Mice were infected intrave-
nously with L. monocytogenes strain LM-OVA at a dose of 5 × 104

to 6 × 105 colony-forming units (CFU)/mouse, as previously
described.43–45 Six days post infection, the bacterial burden in
the spleens and livers was determined by counting the CFU of
serially diluted homogenized spleens and livers cultured on brain
heart infusion agar plates (BD Biosciences).

Immunoblot analysis. Whole-cell lysates were prepared as
described previously.37 For the immunoblotting analysis, the
lysates were separated on 10% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis gels that were transferred to a
polyvinylidene fluoride membrane (Millipore) for probing with
antibodies. The antibody against p38 (sc-535) was purchased from
Santa Cruz Biotechnology. All the other antibodies were obtained
from Cell Signaling Technology.

Luciferase reporter assay. The psiCHECK2 (Promega) reporter
plasmid was cloned with 3′UTR fragments of Pten to generate Pten
reporter plasmids. 293T cells were plated into 24-well plates at 1 ×
105 cells per well 24 h before transfection with 10 ng reporter

RBP-J

miR-17-92 cluster

miR-106a-363 cluster

miR-106b-25 cluster

PTEN

PI3K

TLR4

LPS

Akt

GSK3

IL-12

Host defense against
Listeria monocytogenes

Cytoplasm
miR-17-92 Family miRNAs

Fig. 7 Model depicting the function, mechanisms and regulation of action of the miR-17–92 family miRNAs in macrophages. All three
paralogous miRNA clusters of the miR-17–92 family target PTEN cooperate to enhance Akt activation, which results in the subsequent
inhibition of GSK3. As a result of the GSK3-mediated promotion of IL-12 expression, miR-17–92 family miRNAs suppress IL-12 and enhance
host susceptibility to intracellular pathogen infection. The expression of the three paralogous miRNA clusters of the miR-17–92 family is
collectively inhibited by RBP-J, a master transcriptional factor of Notch signaling. Overall, miR-17–92 family miRNAs are regulated by RBP-J and
act as critical negative regulators of IL-12 to prevent overactivation of macrophage inflammatory effector functions

Three paralogous clusters of the miR-17~92 family of. . .
X Zhang et al.

1758

Cellular & Molecular Immunology (2021) 18:1751 – 1760



plasmid and 600 ng negative control, miR-17~92 cluster, miR-
106a~363 cluster, or miR-106b~25 cluster miRNA overexpression
vector using the Lipofectamine 2000 transfection reagent
(Invitrogen). Luciferase assays were performed 24 h post transfec-
tion using a dual-luciferase reporter assay system (Promega)
following the manufacturer’s protocol. The Renilla firefly luciferase
(Rluc) activity was normalized to the firefly luciferase activity (Luc).
The expression is presented as the Rluc/Luc ratio.

RNA-mediated interference. Small interfering RNA (siRNA) speci-
fically targeting mouse Pten and nontargeting control siRNA were
obtained from GenePharma. The siRNA was transfected into the
mouse BMDMs through the use of TransIT TKO transfection
reagent according to the manufacturer’s instructions (Mirus Bio).
The cells were lysed 72 h post transfection for mRNA and protein
extraction.

Small RNA-seq analysis
Total RNA was isolated, and the small RNA fractions were enriched
with a mirVana miRNA isolation kit (Life Technologies) according to
the manufacturer’s instructions. The miRNA libraries were con-
structed per the Illumina TruSeq small RNA library preparation kit.
High-throughput sequencing was performed using an Illumina
HiSeq 1500 instrument. The miRNA-seq reads were aligned to the
mouse miRNA sequences in the miRBase database (release 21)
using miRDeep2 software. Mature miRNA values were normalized
by library size (corresponding to the counts per million (cpm)
mapped miRNA reads). miRNAs with cpm values <5 in all conditions
were eliminated from the analysis. RBP-J-regulated miRNAs were
defined as those in which the cpm values of the miRNAs in the
Rbpjflox/flox Lyz2-Cre BMDMs versus those in the Lyz2-Cre cells were
greater than 1.2 (upregulated) or less than 0.6 (downregulated),
with a P value less than 0.05.

Statistical analysis
P values were calculated with a two-tailed paired or unpaired
Student’s t test, log-rank (Mantel–Cox) test, or Mann–Whitney U
test and identified as not significant; P > 0.05; *P < 0.05; **P < 0.01;
and ***P < 0.001. Statistical analyses were performed using
GraphPad Prism 7.
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