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Observational studies reporting on adjusted associations between childhood body mass index (BMI; weight
(kg)/height (m)2) rebound and subsequent cardiometabolic outcomes have often not paid explicit attention to
causal inference, including definition of a target causal effect and assumptions for unbiased estimation of that
effect. Using data from 649 children in a Boston, Massachusetts–area cohort recruited in 1999–2002, we consid-
ered effects of stochastic interventions on a chosen subset of modifiable yet unmeasured exposures expected
to be associated with early (<age 4 years) BMI rebound (a proxy measure) on adolescent cardiometabolic
outcomes. We considered assumptions under which these effects might be identified with available data. This
leads to an analysis where the proxy, rather than the exposure, acts as the exposure in the algorithm. We applied
targeted maximum likelihood estimation, a doubly robust approach that naturally incorporates machine learning
for nuisance parameters (e.g., propensity score). We found a protective effect of an intervention that assigns
modifiable exposures according to the distribution in the observational study of persons without (vs. with) early
BMI rebound for fat mass index (fat mass (kg)/ height (m)2; −1.39 units, 95% confidence interval: −1.63, −0.72)
but weaker or no effects for other cardiometabolic outcomes. Our results clarify distinctions between algorithms
and causal questions, encouraging explicit thinking in causal inference with complex exposures.

body mass index; body mass index rebound; cardiometabolic outcomes; causal inference; life course
epidemiology; targeted maximum likelihood estimation

Abbreviations: BMI, body mass index; CI, confidence interval; DBP, diastolic blood pressure; FMI, fat mass index; HOMA-IR,
homeostasis model assessment of insulin resistance; IPW, inverse probability weighting; SBP, systolic blood pressure; SD,
standard deviation; TMLE, targeted maximum likelihood estimation.

Typically, body mass index (BMI; calculated as weight
(kg)/height (m)2) increases during the first year of life and
decreases to a nadir during childhood, before finally rising
again (1). This second rise in BMI in childhood, known as
the BMI rebound, typically occurs between 4 and 6 years
of age (2, 3). Observational studies have shown strong asso-
ciations between an early BMI rebound in childhood (i.e.,
before 4 years of age) and obesity, type 2 diabetes, and
the metabolic syndrome in adolescence and adulthood (4–
8). Despite adjustment for covariates, these studies have
not explicitly considered causal inference, including causal-

effect definitions and assumptions sufficient for unbiasedly
estimating that effect with available data. An “effect of
early BMI rebound,” with “early BMI rebound” being the
ostensible “exposure” (“treatment”), is not sufficiently well-
defined (9, 10) and may not be the effect of interest. Early
BMI rebound may result from many underlying processes,
including modifiable (e.g., diet, physical activity (11–13))
and nonmodifiable (e.g., genetics (14)) factors. Investiga-
tors reporting “adjusted associations” between early BMI
rebound and health outcomes may in fact be interested in
reporting effects of interventions on 1 or more of these
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processes that may not fully control early BMI rebound. In
many cases, data on even modifiable processes are limited
and difficult to measure in existing data sets.

Here we consider the problem of using existing obser-
vational data to estimate effects of particular stochastic
interventions (which assign from a specified distribution)
on 1 or more unmeasured yet modifiable exposures (e.g.,
diet and physical activity) on mean adiposity, blood pressure,
insulin resistance, and global metabolic risk in early adoles-
cence. These interventions do not guarantee control of early
BMI rebound, a proxy for exposure. We consider a set of
assumptions under which these effects may still be identified
when the proxy is measured but the exposures are not. We
rely on the “usual” consistency, exchangeability, and posi-
tivity assumptions for stochastic interventions defined with
respect to the unmeasured exposures. Failure to measure
exposure also comes with the price of requiring an additional
strong assumption that the proxy is a particular coarsening
of the exposures. Under this proxy separation assumption,
the proxy acts as the exposure in the analytical procedure
even though it is not the conceptual exposure. This provides
an alternative interpretation of effect estimates from such
an analysis to effects of interventions on the “versions of
treatment” (15). Our alternative formulation is similar to
this latter interpretation, including reliance on a coarsening
assumption, with the distinction of emphasis that the proxy
is not a treatment but a measured variable to be leveraged for
identification.

We illustrate these ideas using data from Project Viva, a
prebirth cohort study. To obtain effect estimates, we applied
targeted maximum likelihood estimation (TMLE) (16), a
doubly robust approach that naturally incorporates machine
learning for nuisance parameters (e.g., the propensity score)
in order to mitigate reliance on parametric models (17).

METHODS

The observational study: Project Viva

Project Viva is an ongoing study of pre- and perinatal
influences on maternal, fetal, and child health (18). Briefly,
we recruited eligible pregnant women from obstetrical prac-
tices at Atrius Harvard Vanguard Medical Associates in east-
ern Massachusetts during their first prenatal appointment
between April 1999 and November 2002. Mothers provid-
ed written informed consent at enrollment and follow-up
visits, and children provided verbal assent at midchildhood
(ages 7–10 years) and early adolescent (ages 12–16 years)
research visits. The Institutional Review Board of Harvard
Pilgrim Health Care Institute (Boston, Massachusetts)
approved the project in line with ethical standards estab-
lished by the Declaration of Helsinki.

The analytical cohort and BMI rebound

Previous studies have defined early BMI rebound as a rise
in BMI that happens before 4 years of age, after an initial
decline from infancy (4–7). Given that few children had
3 or more measurements of BMI during this early period,
we restricted the study population to children with BMI

measurements indicating a decline of at least 0.1 BMI units
between infancy (ages 6–12 months) and early childhood
(ages 2–3.9 years). We defined BMI rebound as an increase
of at least 0.1 units between early childhood and midchild-
hood (ages 4–8 years), following previous studies (19, 20).
Below we refer to this as an indicator of “early” BMI
rebound, and in the Discussion we explicitly consider the
error associated with this interval measure of BMI rebound
timing and tradeoffs with latent class modeling.

We also restricted the analytical cohort to children with
complete data on baseline covariates (see Table 1 and below).
We have previously described the methods of measure-
ment of these covariates (21–23). Of 2,128 live singleton
births, 1,183 children had BMI measurements in infancy
(median age, 6.2 months; range, 5.0–11.2) and early child-
hood (median age, 37.5 months; range, 24.0–47.8) indicat-
ing a BMI decline after infancy. Of these children, 1,002
had complete data on baseline covariates and 649 had a
subsequent BMI measurement at age 48 months (4 years)
or later (median age, 49.0 months; range, 48.0–94.9). We
obtained measures of weight and length/height at research
visits during infancy, early childhood, and midchildhood
and from medical records, where pediatric clinics recorded
weight and length/height at each well-child visit (21–23).
We used both research and clinical measures of weight and
length/height to calculate BMI.

Adolescent adiposity and cardiometabolic outcomes

In early adolescence (median age, 12.9 years; interquar-
tile range, 12.5–13.6), trained research assistants measured
waist circumference using a nonstretchable tape, measured
fat mass using foot-to-foot bioimpedance, and measured
systolic blood pressure (SBP) and diastolic blood pressure
(DBP) using calibrated automated oscillometric monitors
according to standardized protocols (21). We calculated
fat mass index (FMI) as fat mass (in kilograms) divided
by squared height (in meters). We derived age-, sex-, and
height-specific SBP and DBP z scores according to the
American Academy of Pediatrics reference values for chil-
dren and adolescents (24). Trained technicians also collected
fasting blood specimens, which were used to measure fast-
ing glucose, insulin, high-density lipoprotein cholesterol,
and triglyceride levels according to standard protocols. Fol-
lowing previous studies, we calculated insulin resistance
using homeostasis model assessment of insulin resistance
(HOMA-IR) (8, 21). We used external references to calcu-
late age- and sex-specific z scores for waist circumference,
SBP, HOMA-IR, triglycerides, and high-density lipoprotein
cholesterol (24–27). Subsequently, we derived a metabolic
risk score as the average of z scores for waist circumference,
HOMA-IR, triglycerides, high-density lipoprotein choles-
terol (scaled inversely), and SBP.

The causal question and target trial

Consider the causal effect on an adolescent outcome (Y)
of implementing 2 different interventions in the study pop-
ulation of children with measured BMI decline between the
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ages of 6 and 11.9 months (<1 year). Beginning at the time
of this measurement (baseline) and ending approximately
4 years later, define intervention 1 for a given individual i
in this population as follows: On each day k = 0, . . . , K
of this intervention period, assign individual i values of a
selected set of modifiable characteristics (minutes of phys-
ical activity and screen time (television only) and servings
of sugar-sweetened beverages) by randomly assigning these
values from a particular distribution. No intervention is made
beyond day K = 4 × 365.

For R, an indicator of not experiencing BMI rebound
by the end of the intervention period (the “early” period),
we will choose this intervention distribution to be the dis-
tribution of exposures on day k (denoted by a vector Ak
containing values for physical activity, screen time, and
sugar-sweetened beverage consumption on that day) among
Project Viva participants meeting study-population criteria
who did not experience BMI rebound during this period
(R = 1) and who have the same values of the measured base-
line covariates (L) and, for k > 0, exposure history (Ak−1) as
subject i. We define intervention 2 in the same way, but with
the assignment distribution instead defined by children with
BMI rebound (R = 0). We will refer to these interventions
as proxy representative interventions. The proxy serves only
to define the intervention distributions; there is no guarantee
or intent of intervention on the proxy. Similar interventions
have been previously considered (15, 28–30). (Also see
Web Appendix 1, available at https://doi.org/10.1093/aje/
kwab029.)

Ideally, we would conduct a trial to estimate this causal
effect. This target trial (31) would recruit a large random
sample of children at the time at which they met the crite-
ria for the study population and randomize them to either
intervention 1 or intervention 2. In an ideal execution of this
trial, with perfect adherence to the daily assigned exposure
values and no loss to follow-up, an unbiased estimate of this
effect could be made by calculating the difference between
outcome means in each study arm. These interventions are
complicated by the fact that the distribution of the exposure
assignment is unknown. However, in principle, it could be
estimated prior to the trial in an observational study that
measured the covariates L and these daily exposures during
this early period in a comparable population and treatment
assigned in the trial using these estimates.

Our choice of these particular interventions is convenient
in that, as discussed below, we may achieve or approxi-
mately achieve identification of these intervention effects
even when the data available for estimating them do not
include measures of the true exposure(s) of interest for
any individual. This provides a way forward under explicit
reasoning in such settings that may be common to many
social and life-course epidemiologic studies. It will also
help shed additional light on the interpretation of common
approaches to data analysis in these settings. Also driven by
convenience is our choice to define the intervention rules to
be dependent only on a single proxy measure (an indicator of
BMI rebound anywhere in this “early” period) and baseline
covariates because time-updated measures in this period
were not available in our study. In Web Appendix 1, we
consider more general extensions.

Estimating the effect of proxy representative
interventions in observational studies when exposure
is measured

We now consider assumptions that allow unbiased
estimation of this causal effect in an observational study
when the variables L, AK , R, and Y are measured, with
AK being the vector of time-varying exposures. Under
the untestable assumptions discussed below, the following
function of these variables,

∑

aK

∑

l

E
[
Y|AK = aK , L = l

] K∏

j=0

f
(
aj|R = r, aj−1, l

)
f (l),

(1)

identifies the outcome mean value that would have been
present had all individuals followed a proxy representative
intervention from the target trial on the exposures AK , where
E[Y|AK = aK , L = l] denotes the mean of Y within a
particular level of the exposures and covariates, f (aj|R =
r, aj−1, l) denotes the probability of having exposure level
Aj = aj among children with proxy status R = r and in
a particular exposure and baseline covariate stratum, and
f (l) denotes the probability of having covariate level L = l.
For simplicity, equation 1 considers discrete variables. More
generally, the summation symbols

∑
aK

∑
l over all levels of

exposure and covariates can be replaced with integrals. The
difference between equation 1 indexed by r = 1 and equation
1 indexed by r = 0, in turn, identifies the causal effect of
the proxy representative interventions defined above. The
function shown in equation 1 is an example of Robins’ g-
formula (32), characterized by a particular stochastic inter-
vention (30, 33, 34). Assumptions that equate the g-formula
with the outcome mean under this intervention include the
particular versions of exchangeability that are conditional
on L (the assumed measured “confounders”), positivity, and
consistency, which are reviewed in Web Appendix 1 (30, 32).

The second term in equation 1 quantifies the exposure dis-
tribution conditional on the assumed measured confounders
but under the intervention. For a proxy representative inter-
vention, this coincides with f (aj|R = r, aj−1, l) being equal
to the exposure distribution among children with R = r for a
level of the measured confounders in the observational study.
The first term in equation 1, E[Y|AK = aK , L = l], quantifies
the outcome mean conditional on exposure and measured
confounders. This term is not conditioned on R, because
we assume that this postexposure variable is not needed to
ensure exchangeability (also see Web Appendix 1).

This exchangeability assumption will hold under a coun-
terfactual causal model represented by a causal directed
acyclic graph in which there are no unblocked backdoor
paths between each Ak and Y conditional on past exposure
and baseline covariates only (and is therefore quite strong)
(35, 36). The causal directed acyclic graph in Figure 1
represents a simplified assumption on the data-generating
process where Ak contains 2 exposures and K = 2. U0 repre-
sents an unmeasured baseline characteristic (e.g., genes) and
U1 an interim characteristic (e.g., interim weight change).
Exchangeability would hold under the absence of any arrows
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L A11

U0
U1

A12 A21 A22 R Y

Figure 1. Causal directed acyclic graph representing a data-
generating assumption relating a time-varying exposure A, a proxy
measure R, an outcome Y, and other covariates U, Project Viva,
Boston, Massachusetts, 1999–2002. With all solid arrows present,
exchangeability requires dashed arrows to be absent. With all solid
black arrows present, proxy separation may fail by the presence of
the red arrow.

from U0 or U1 to any exposure but fails with the presence of
the dotted arrows. In Web Appendix 1, we formally review
these identifying conditions and generalize ideas in the main
text to the case where time-varying covariates such as U1
are measured. In our application, these covariates were not
measured (e.g., the majority of children had, at most, 1
measure of weight during the exposure period of interest).

Positivity requires that for both intervention 1 and inter-
vention 2, there are no levels of L in the observational
study for which a level of AK possible under intervention is
impossible in the observational study. Effects of stochastic
interventions in general are less susceptible to positivity
violations than deterministic interventions (30). Finally, the
consistency assumption in this setting is reasonable as long
as there are not multiple versions of exposure or these
versions do not affect the outcome (9, 10). Because we have
defined exposure only in terms of modifiable characteristics,
this assumption may be reasonable.

WHEN EXPOSURE IS NOT MEASURED

Even if the exchangeability, consistency, and positivity
conditions hold with respect to proxy representative inter-
ventions, the quantity in equation 1 clearly cannot be esti-
mated when exposure is not measured without additional
assumptions. Let ar

k denote any value of Ak possibly occur-
ring in the study population had Ak been assigned according
to a proxy representative intervention indexed by a level of
R = r and consider the following assumption:

Proxy separation: Within each covariate level L = l, if
AK = ar

K , then R = r.

To understand how this assumption could be violated,
suppose that Ak includes only daily screen time and some
children in the Project Viva study population who expe-
rienced early BMI rebound watched 6 hours of television
each day in a particular stratum of baseline covariates L
(Table 1). Proxy separation would be violated if there were
also some children in this stratum who watched 6 hours
of television each day and did not experience early BMI
rebound. Under proxy separation, the quantity calculated in

equation 1 equals
∑

l

E [Y| R = r, L = l] f (l) (2)

(see Web Appendix 1 for proof).
If AK were measured, proxy separation could be eval-

uated in the data. However, paradoxically, in that case it
would not be needed because the quantity in equation 1
could be estimated directly. Exchangeability, consistency,
and positivity, coupled with proxy separation, are strong
assumptions and, at best, hold approximately. When they
do, the quantity in equation 2 equals the outcome mean
under a proxy representative intervention from the target
trial indexed by proxy level r (15). We would expect proxy
separation to be more reasonable with increasing dimensions
of exposure Ak (provided that additional components are
causes, or even only proxies of causes, of BMI rebound;
see Web Figures 1–3 in Web Appendix 1) but at the cost of
stronger exchangeability and positivity assumptions to still
interpret the quantity derived by equation 2 in terms of proxy
representative interventions on this higher-dimensional set
of exposures.

In Web Appendix 1 we consider extensions that rely on mea-
sured time-varying proxies and time-varying confounders.
Note that the positivity condition needed for equation 1,
coupled with proxy separation, implies the more familiar
positivity condition that P(R = r|L) > 0 for any possible level
of L.

In practice, even the quantity in equation 2 is not possible
to estimate without additional assumptions given missing
data on L, R, and Y . In the next section, we consider the
computationally straightforward estimator of

∑

l

E [Y| R = r, L = l, δ = 0] f (l), (3)

where all terms of equation 3 are implicitly restricted to
individuals with complete data on L and R and δ is an
indicator of censoring due to missing Y .

The function in equation 3 is equal to that in equation
2 when missing data are absent. When missing data are
present, a contrast in equation 3 identifies the effect of inter-
est from the target trial where all interventions include an
additional intervention, “eliminate censoring,” under addi-
tional exchangeability, positivity, and consistency assump-
tions with respect to δ and also under the assumption that the
functions 1 and 2 in the original target population equal that
in the subpopulation with complete data on L and R. Less
restrictive assumptions in this case may be considered with
respect to missing data but admitting more complex identi-
fying functions and estimation procedures that incorporate
measured time-varying covariates when they are available.

Statistical analysis

Several methods may be used to estimate the quantity
in equation 3 with this sample, including inverse probabil-
ity weighting (IPW) (37), parametric g-computation (32,
38), and TMLE (16). Even though the proxy R is not the
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Table 1. Baseline Covariates Used for Confounding Adjustment in a Study of Effects of Stochastic Interventions on a Chosen Subset of
Modifiable yet Unmeasured Exposures Expected to Be Associated With Early Body Mass Index Rebound on Adolescent Cardiometabolic
Outcomes, Project Viva, Boston, Massachusetts, 1999–2002

Covariate

Cardiometabolic Outcome

Fat Mass
Indexa

Blood Pressure
z Score

HOMA-IR Metabolic Risk
Score

Continuous variables

Maternal prepregnancy BMIb Y Y Y Y

Gestational weight gain Y Y N N

Paternal BMI Y N Y Y

Birth weight for gestational age Y Y N N

Gestational age at delivery N Y N N

BMI in early childhoodc Y Y Y Y

Categorical variables

Maternal educational level (non–college-educated
vs. college-educated)

Y Y Y Y

Smoking history (never smoked vs. smoked before
pregnancy vs. smoked during pregnancy)

Y Y Y Y

Glucose tolerance (normal vs. abnormal) N N Y Y

Pregnancy hypertension (no vs. yes) N Y N N

Paternal educational level (non–college-educated
vs. college-educated)

Y N Y Y

Breastfeeding initiation (no vs. yes) Y N N N

Child’s sex (male vs. female) Y N Y N

Child’s race/ethnicity (White vs. non-White) Y Y Y Y

Abbreviations: BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance; N, no; Y, yes.
a Fat mass (kg)/height (m)2.
b Weight (kg)/height (m)2.
c Early childhood was the baseline measure.

exposure, the above results allow that an implementation of
any of these methods for estimating the effect of a time-fixed
static deterministic intervention on a binary exposure can be
used to estimate the quantity in equation 3 by algorithmically
treating R as this exposure (15, 29, 39). For our primary
analysis, we applied TMLE, an approach to estimation of
the function in equation 3 that begins with an initial estimate
of E(Y|R = r, L, δ = 0), followed by a “targeting” step
that updates this initial estimate with a weight that depends
on estimates of P(R = r|L) and P(δ = 0|R = r, L) (16,
40). The algorithm is implemented in the R package tmle
(R Foundation for Statistical Computing, Vienna, Austria)
(41). We review details of the estimation procedure in Web
Appendix 2.

This approach is doubly robust in that it consistently
estimates the quantity in equation 3 if either E(Y|R = r, L,
δ = 0) or both P(R = r|L) and P(δ = 0|R = r, L) are con-
sistently estimated, all implicitly restricted here to children
with complete data on R and L. Note that P(R = r|L) can be
operationally referred to as a “propensity score” even though
R is not “treatment” (42). Estimates of both sets of nuisance

parameters may be easily computed using standard para-
metric models (e.g., linear or logistic regression). However,
to avoid reliance on a parametric model for either set, we
used SuperLearner (R, version 3.6.1), which generates esti-
mates on the basis of a weighted combination of algorithms
selected by cross-validation (43). We selected algorithms
used in prior studies that cover a broad range: additive
generalized linear models, generalized linear models with
interactions, stepwise models, penalized regression models
(i.e., the least absolute shrinkage and selection operator
(LASSO)), and Bayesian additive regression trees (44, 45).

To assess robustness to the choice of estimation method,
we alternatively implemented TMLE with parametric mod-
els for nuisance parameters. We also estimated the quantity
in equation 3 using parametric g-computation and IPW (see
details in Web Appendix 2). For all methods, we used a
nonparametric bootstrap with 1,000 bootstrap samples to
obtain 95% confidence intervals. For all analyses, we used
STATA 16 (StataCorp LLC, College Station, Texas) and R,
version 3.6.1 (the tmle and SuperLearner packages). Soft-
ware code is provided in Web Appendices 3–8.
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Table 2. Characteristics of Children Classified as Having Early Body Mass Index Rebound Versus Those Without Early Body Mass Index
Rebound, Project Viva, Boston, Massachusetts, 1999–2002

Characteristic

Early Rebound
(n = 243)

No Early Rebound
(n = 406)

% Mean (SD) % Mean (SD)

Maternal factors

Prepregnancy BMIa 25.6 (5.6) 24.4 (4.8)

College education 68 73

Smoking history

Never smoked 71 73

Smoked before pregnancy 19 21

Smoked during pregnancy 9 6

Gestational weight gain, kg 15.5 (5.9) 15.4 (5.3)

Abnormal glucose tolerance (IH, GIGT, GDM) 18 17

Pregnancy hypertension (GH, PE, CH) 10 9

Paternal BMI 27.4 (4.4) 26.0 (3.7)

Paternal college education 65 67

Child factors

Birth weight-for-gestational-age z score, SD units 0.2 (0.9) 0.3 (1.0)

Gestational age at delivery, weeks 39.5 (1.6) 39.6 (1.6)

No breastfeeding initiation 10 11

Male sex 46 56

White race/ethnicity 67 68

Age in early childhood, months 36.8 (5.5) 37.5 (3.9)

BMI in early childhood 16.1 (1.3) 16.5 (1.2)

Abbreviations: BMI, body mass index; CH, chronic hypertension; GDM, gestational diabetes mellitus; GH, gestational hypertension; GIGT,
gestational impaired glucose tolerance; IH, isolated hyperglycemia; PE, preeclampsia; SD, standard deviation.

a Weight (kg)/height (m)2.

Data availability

All data described in this article are available from the
authors upon request.

RESULTS

Of the 649 children in the analysis sample, the 406 chil-
dren without early BMI rebound (R = 1) were more likely
to have mothers (BMI 24.4 vs. 25.6) or fathers (BMI 26.0
vs. 27.4) with lower BMI, were more likely to be male
(56% vs. 46%), had higher birth weight-for-gestational-
age z scores (0.3 standard deviation (SD) units vs. 0.2 SD
units), and had higher BMI in early childhood (BMI 16.5
vs. 16.1) than the 243 children with early BMI rebound
(R = 0) (Table 2). In Web Table 1, we present empirical
comparisons of the characteristics of children excluded from
the analytical cohort with those of the included children. The
distribution of the stabilized weights for all approaches in
estimating the weight denominator showed no evidence of
positivity violations (Web Table 2).

Using TMLE with SuperLearner for nuisance parameter
estimation, our estimates of the effects of a proxy representa-
tive intervention indexed by R = 1 (a stochastic intervention
that assigns individual values for daily physical activity,
screen time, and sugar-sweetened beverage consumption
from the joint distribution in Project Viva among children
who did not experience BMI rebound with that individual’s
baseline confounder values) versus R = 0 (the same values
but taken from the distribution among those who did expe-
rience BMI rebound) were −1.39 units (95% confidence
interval (CI): −1.63, −0.72) for FMI, 0.07 SD units (95%
CI: −0.09, 0.21) for SBP z score, 0.08 SD units (95% CI:
−0.07, 0.17) for DBP z score, −0.09 units (95% CI: −0.20,
0.06) for HOMA-IR, and −0.06 SD units (95% CI: −0.15,
0.04) for metabolic risk score (Table 3).

When using parametric models for nuisance parameter
estimation using TMLE, the estimates were −1.41 (95%
CI: −1.86, −0.94) for FMI, 0.05 SD units (95% CI: −0.12,
0.23) for SBP z score, 0.07 SD units (95% CI: −0.04, 0.22)
for DBP z score, −0.08 units (95% CI: −0.21, 0.06) for
HOMA-IR, and −0.07 SD units (95% CI: −0.16, 0.05) for

Am J Epidemiol. 2021;190(7):1414–1423



1420 Aris et al.

Ta
b

le
3.

E
ffe

ct
E

st
im

at
es

fo
r

P
ro

xy
R

ep
re

se
nt

at
iv

e
In

te
rv

en
tio

ns
In

de
xe

d
by

R
=

1
V

er
su

s
R

=
0

U
si

ng
D

iff
er

en
t

M
et

ho
ds

to
E

st
im

at
e

th
e

Q
ua

nt
ity

in
E

qu
at

io
n

3,
P

ro
je

ct
V

iv
a,

B
os

to
n,

M
as

sa
ch

us
et

ts
,1

99
9–

20
02

E
st

im
at

io
n

M
et

h
o

d

Fa
t

M
as

s
In

d
ex

a
,b

(n
=

50
0)

S
B

P
z

S
co

re
c
,

S
D

u
n

it
s

(n
=

49
8)

D
B

P
z

S
co

re
c
,

S
D

u
n

it
s

(n
=

49
8)

H
O

M
A

-I
R

d
,

u
n

it
s

(n
=

30
6)

M
et

ab
o

lic
R

is
k

S
co

re
e
,

S
D

u
n

it
s

(n
=

30
2)

β
95

%
C

I
β

95
%

C
I

β
95

%
C

I
β

95
%

C
I

β
95

%
C

I

U
na

dj
us

te
d

re
su

lts
−1

.7
2

−2
.2

6,
−1

.1
8

0.
10

−0
.0

4,
0.

24
0.

08
−0

.0
3,

0.
19

−0
.1

4
−0

.2
8,

0.
00

−0
.0

6
−0

.1
5,

0.
03

Le
as

t-
sq

ua
re

s
re

gr
es

si
on

f
−1

.2
9

−1
.7

5,
−0

.8
4

0.
10

−0
.0

5,
0.

24
0.

09
−0

.0
2,

0.
21

−0
.0

9
−0

.2
2,

0.
05

−0
.0

6
−0

.1
6,

0.
03

T
M

LE P
ar

am
et

ric
m

od
el

g
−1

.4
1

−1
.8

6,
−0

.9
4

0.
05

−0
.1

2,
0.

23
0.

07
−0

.0
4,

0.
22

−0
.0

8
−0

.2
1,

0.
06

−0
.0

7
−0

.1
6,

0.
05

S
up

er
Le

ar
ne

r

V
er

si
on

1h
−1

.4
4

−1
.7

1,
−0

.7
2

0.
05

−0
.1

2,
0.

21
0.

08
−0

.0
8,

0.
17

−0
.0

9
−0

.2
2,

0.
07

−0
.0

6
−0

.1
6,

0.
05

V
er

si
on

2i
−1

.3
9

−1
.6

3,
−0

.7
2

0.
07

−0
.0

9,
0.

21
0.

08
−0

.0
7,

0.
17

−0
.0

9
−0

.2
0,

0.
06

−0
.0

6
−0

.1
5,

0.
04

G
-c

om
pu

ta
tio

n

P
ar

am
et

ric
m

od
el

−1
.3

1
−1

.7
5,

−0
.8

6
0.

07
−0

.0
8,

0.
22

0.
11

−0
.0

1,
0.

24
−0

.0
7

−0
.2

0,
0.

06
−0

.0
6

−0
.1

5,
0.

05

S
up

er
Le

ar
ne

r

V
er

si
on

1
−1

.2
5

−1
.5

9,
−0

.7
3

0.
07

−0
.1

3,
0.

22
0.

10
−0

.0
6,

0.
21

−0
.0

9
−0

.2
2,

0.
04

−0
.0

6
−0

.1
6,

0.
05

V
er

si
on

2
−1

.2
1

−1
.5

6,
−0

.6
9

0.
07

−0
.0

8,
0.

21
0.

07
−0

.0
3,

0.
20

−0
.0

8
−0

.2
1,

0.
05

−0
.0

5
−0

.1
4,

0.
05

S
ta

bi
liz

ed
IP

W

P
ar

am
et

ric
m

od
el

−1
.3

4
−1

.8
8,

−0
.8

4
0.

06
−0

.1
1,

0.
22

0.
09

−0
.0

4,
0.

22
−0

.0
9

−0
.2

3,
0.

05
−0

.0
6

−0
.1

7,
0.

05

S
up

er
Le

ar
ne

r

V
er

si
on

1
−1

.4
3

−1
.7

5,
−0

.8
1

0.
07

−0
.0

8,
0.

23
0.

08
−0

.0
5,

0.
20

−0
.0

9
−0

.2
0,

0.
06

−0
.0

6
−0

.1
4,

0.
06

V
er

si
on

2
−1

.4
5

−1
.7

9,
−0

.8
6

0.
07

−0
.0

8,
0.

24
0.

09
−0

.0
4,

0.
20

−0
.0

9
−0

.2
1,

0.
05

−0
.0

6
−0

.1
5,

0.
04

A
bb

re
vi

at
io

ns
:B

M
I,

bo
dy

m
as

s
in

de
x;

C
I,

co
nf

id
en

ce
in

te
rv

al
;D

B
P,

di
as

to
lic

bl
oo

d
pr

es
su

re
;H

O
M

A
-I

R
,

ho
m

eo
st

as
is

m
od

el
as

se
ss

m
en

t
of

in
su

lin
re

si
st

an
ce

;I
P

W
,

in
ve

rs
e

pr
ob

ab
ili

ty
w

ei
gh

tin
g;

S
B

P,
sy

st
ol

ic
bl

oo
d

pr
es

su
re

;S
D

,s
ta

nd
ar

d
de

vi
at

io
n;

T
M

LE
,t

ar
ge

te
d

m
ax

im
um

lik
el

ih
oo

d
es

tim
at

io
n.

a
Fa

tm
as

s
(k

g)
/h

ei
gh

t(
m

)2
.

b
A

dj
us

te
d

fo
rm

at
er

na
ls

m
ok

in
g

st
at

us
,e

du
ca

tio
na

ll
ev

el
,B

M
I(

w
ei

gh
t(

kg
)/

he
ig

ht
(m

)2
),

pa
te

rn
al

ed
uc

at
io

na
ll

ev
el

,p
at

er
na

lB
M

I,
to

ta
lg

es
ta

tio
na

lw
ei

gh
tg

ai
n,

bi
rt

h
w

ei
gh

tf
or

ge
st

at
io

na
l

ag
e,

br
ea

st
fe

ed
in

g
in

iti
at

io
n,

ch
ild

’s
se

x,
ch

ild
’s

ra
ce

/e
th

ni
ci

ty
,a

nd
B

M
Ii

n
ea

rly
ch

ild
ho

od
.

c
A

dj
us

te
d

fo
r

m
at

er
na

l
sm

ok
in

g
st

at
us

,
ed

uc
at

io
na

l
le

ve
l,

B
M

I,
pr

eg
na

nc
y

hy
pe

rt
en

si
on

,
to

ta
l

ge
st

at
io

na
l

w
ei

gh
t

ga
in

,
bi

rt
h

w
ei

gh
t

fo
r

ge
st

at
io

na
l

ag
e,

ge
st

at
io

na
l

ag
e,

ch
ild

’s
ra

ce
/e

th
ni

ci
ty

,a
nd

B
M

Ii
n

ea
rly

ch
ild

ho
od

.
d

A
dj

us
te

d
fo

rm
at

er
na

ls
m

ok
in

g
st

at
us

,e
du

ca
tio

na
ll

ev
el

,B
M

I,
gl

uc
os

e
to

le
ra

nc
e,

pa
te

rn
al

ed
uc

at
io

na
ll

ev
el

,p
at

er
na

lB
M

I,
ch

ild
’s

se
x,

ch
ild

’s
ra

ce
/e

th
ni

ci
ty

,a
nd

B
M

Ii
n

ea
rly

ch
ild

ho
od

.
e

A
dj

us
te

d
fo

r
m

at
er

na
ls

m
ok

in
g

st
at

us
,e

du
ca

tio
na

ll
ev

el
,B

M
I,

gl
uc

os
e

to
le

ra
nc

e,
pa

te
rn

al
ed

uc
at

io
na

ll
ev

el
,p

at
er

na
lB

M
I,

ch
ild

’s
ra

ce
/e

th
ni

ci
ty

,a
nd

B
M

Ii
n

ea
rly

ch
ild

ho
od

.
f

P
ar

am
et

ric
m

od
el

w
ith

no
in

te
ra

ct
io

n
te

rm
s

fo
r

nu
is

an
ce

pa
ra

m
et

er
s.

g
S

up
er

Le
ar

ne
r

w
ith

pr
ed

ic
tio

n
al

go
rit

hm
s

fo
r

ge
ne

ra
liz

ed
lin

ea
r

m
od

el
s,

in
te

ra
ct

io
n

te
rm

s,
an

d
st

ep
w

is
e

m
od

el
in

g
fo

r
nu

is
an

ce
pa

ra
m

et
er

s.
h

S
up

er
Le

ar
ne

r
w

ith
pr

ed
ic

tio
n

al
go

rit
hm

s
fo

r
ge

ne
ra

liz
ed

lin
ea

r
m

od
el

s,
in

te
ra

ct
io

n
te

rm
s,

st
ep

w
is

e
m

od
el

in
g,

pe
na

liz
ed

re
gr

es
si

on
m

od
el

s,
B

ay
es

ia
n

ad
di

tiv
e

re
gr

es
si

on
tr

ee
s,

an
d

ge
ne

ra
liz

ed
ad

di
tiv

e
m

od
el

s
fo

r
nu

is
an

ce
pa

ra
m

et
er

s.
i

E
st

im
at

es
of

th
e

re
gr

es
si

on
co

ef
fic

ie
nt

on
R

fr
om

a
lin

ea
r

re
gr

es
si

on
m

od
el

w
he

re
th

e
ou

tc
om

e
(Y

)
is

re
gr

es
se

d
on

th
e

pr
ox

y
R

an
d

co
va

ria
te

s
L.

Am J Epidemiol. 2021;190(7):1414–1423



Separating Algorithms From Questions 1421

metabolic risk score. Results were not substantively different
when using parametric g-computation or IPW approaches,
with either parametric estimation of nuisance parameters
or SuperLearner (Table 3). We also conducted a simple
IPW sensitivity analysis wherein individuals were censored
upon missing R, with weights incorporating these censoring
weights as a function of L. Results were not substantially
different (Web Table 3).

DISCUSSION

We considered assumptions under which causal effects
of interventions on a set of unmeasured exposures can be
estimated in observational studies when only a proxy is
measured. We illustrated these ideas in a study where early
BMI rebound was used as a proxy for modifiable exposures
(screen time, physical activity, and features of diet). Using
TMLE with SuperLearner, we estimated a protective effect
on FMI of interventions that assign these exposures to an
individual according to their factual distribution in the study
population among children without (vs. with) early BMI
rebound and the same past exposure and covariates. Effect
estimates were weaker for other outcomes. The use of non–
doubly robust methods (i.e., parametric g-computation and
IPW) and/or parametric estimates of nuisance parameters
did not substantively change our conclusions.

Effect estimates were much stronger for FMI (−1.39
units) than for other cardiometabolic markers such as SBP
z score (0.07 SD units) and metabolic risk score (−0.06 SD
units). To put these estimates on the same scale, a change in
FMI of 1.39 units is equivalent to a change of 0.40 SD units,
which is thus reasonably stronger than estimates for other
cardiometabolic markers. This finding is consistent with
previous studies that have found a higher rate of fat gain and
disproportionately high increases in fat mass among children
with an early rebound than in those with a late rebound
(46, 47). It is possible that interventions on modifiable
behaviors associated with early BMI rebound might have a
stronger and more direct influence on true adiposity-related
outcomes (e.g., FMI) than on other cardiometabolic markers
(e.g., SBP), which has been suggested by previous studies
(13, 48). Further, their influence on other cardiometabolic
markers, such as insulin resistance, may require more time
to develop, since insulin resistance is primarily driven by
visceral fat accumulation (49).

Researchers in several studies have estimated associa-
tions between early BMI rebound and later cardiometabolic
risk using latent class regression methods with adjustment
for covariates (4–8). These studies have relied heavily on
parametric regression models and have also avoided explicit
attention to causal inference. Recently some authors have
interpreted the target effect of latent class models as an effect
of an assumed latent class variable (50, 51). Drawbacks of
this conceptual framework include the facts that a latent class
variable may not exist or cannot be articulated, interventions
on such a variable are not well-defined (particularly when
the variable does not exist), and, in turn, effect estimates
can never (even in principle) be confirmed in a real-world
trial. However, the assumption of a latent class model allows

the derivation of BMI trajectories such that rebound timing
can be “known” even when only interval measures of BMI
changes are available. This is at the expense of model
misspecification bias. By avoiding these assumptions, we
relied on a probably mismeasured indicator of BMI rebound
such that children classified as having an “early” rebound
may indeed have had this rebound sometime after age 4
years. A possible source of bias due to this mismeasurement
is violation of the proxy separation assumption.

In contrast to interventions on unknown latent class vari-
ables, effects of proxy representative interventions can, in
principle, be studied in a real-world trial. Further, formal
sensitivity analyses of both the proxy separation assumption
and the exchangeability assumption can be developed for
particular choices of exposure. Finally, motivating estima-
tors from an explicit causal question rather than a parametric
regression model allowed the use of modern, robust estima-
tion procedures.

Our application relied on several strong assumptions, with
limitations discussed throughout. Beyond this, our findings
may not be generalizable to other populations from dif-
ferent settings, since a majority of mothers in our study
were White and college-educated. However, our approach
allowed explicit definition of a target effect coinciding with
effects of sustained interventions on modifiable exposures
of key interest to obesity researchers. Our results highlight
the crucial distinctions between questions, assumptions, and
statistical algorithms in causal inference with observational
data. Articulating clearly what we hope to estimate with an
analysis allows explicit reasoning about assumptions, open
debate about question value and assumption viability, and
ultimately improved design of future studies.
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