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Introduction
The armamentarium of tools that can be used to 
diagnose keratoconus has significantly expanded in 
recent years (Figure 1). Advances in ocular imaging 
technology not only allowed significant improve-
ments in the geometrical evaluation of the cornea 
but also has opened new avenues for characterizing 
other corneal features such as the biomechanics. 
With these developments, a more in-depth under-
standing of disease pathology became possible along 
with the realization that the actual prevalence of 
keratoconus may be much higher than what was 
reported over three decades ago using less-sophisti-
cated diagnostic modalities.1 Advances in treatment 
followed suit, providing the opportunity to avoid 
full-thickness keratoplasty and its associated com-
plications with newer preventive and refractive 

approaches. This review will focus on the latest 
developments in the diagnosis and treatment of 
keratoconus with a primary emphasis on newly 
emerging approaches and strategies. Hence, 
approaches that are already established and in wide-
spread clinical use will not be covered. Publications 
that relate to advances in diagnosis and treatment of 
keratoconus (indexed in PubMed) between the 
years 2017 and 2020 were used in this review.

Advances in diagnosis
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either by thickening or thinning. This property 
has been used to diagnose keratoconus particu-
larly in instances where epithelial remodeling 
masks slight changes in the corneal curvature, 
hampering corneal topographical evaluation. 
Anterior segment optical coherence tomography 
(AS-OCT) has shown excellent repeatability for 
measuring corneal epithelial thickness, and its 
clinical use for this purpose has become more 
widespread. Initially designed to characterize epi-
thelial thickness in a 6-mm zone, a recent upgrade 
allows expansion up to 9 mm, equivalent to an 
area that is approximately two and a quarter times 
larger than the former.2 Using a custom-designed 
polarization-sensitive OCT, Pircher and col-
leagues3 were able to map the thickness of the 
Bowman’s layer in addition to the epithelium 
from limbus-to-limbus and noted a highly irregu-
lar “moth-like” damage pattern in the Bowman’s 
layer in keratoconic eyes. Another group employed 
a commercially available swept-source OCT and 
by postprocessing, delineation of the air–epithe-
lium edge and epithelium–Bowman’s layer inter-
face was made possible.4 This approach enabled 
them to quantify the curvature and aberrations in 
these locations, which in a subsequent study was 
shown to outperform conventional Scheimpflug 
imaging in diagnosing forme fruste keratoconus.5

Corneal biomechanics
Analysis of corneal biomechanical properties 
brings with it the prospects of revealing the cause 
(biomechanical weakening) possibly much earlier 
than the effect (corneal tomographical changes), 
therefore allowing a timelier diagnosis. Moreover, 
a spatially resolved evaluation of corneal biome-
chanics has the potential to aid in localizing rela-
tively weaker corneal areas in an individual thereby 
allowing a more personalized treatment. Although 
still in its infancy, Brillouin spectroscopy is one 
candidate that we will soon see transition from the 
research phase to widespread clinical use. In brief, 
this noncontact technique relies on the detection 
of a Brillouin frequency shift in a laser light that 
occurs during an interaction with the phonons in a 
matter. The bulk elastic modulus of the cornea is 
derived using the mathematical relationship 
between the frequency shift and the velocity of the 
interacting phonons, and hence the elastic modu-
lus.6 Although with great future potential, its 
reported in vivo accuracy in distinguishing eyes 
with keratoconus from normal eyes was relatively 
weak.6,7 As opposed to Brillouin spectroscopy, 
optical coherence elastography provides a depth-
dependent analysis of the cornea using the ultra-
sound elastography principle.8 A pilot study has 
shown that there was selective anterior stromal 
weakening in eyes with keratoconus when com-
pared with normal eyes.9 Other recently reported 
techniques that have been used in the biomechan-
ical characterization of the cornea include digital 
image correlation,10 high-resolution shear wave 
imaging,11 and phase-decorrelation OCT.12 As 
the cornea is a multilayered tissue with different 
anatomical and mechanical characteristics in the 
x, y, and z-directions, approaches that aim for a 
three-dimensional (3D) biomechanical evaluation 
would be beneficial. Furthermore, it must be kept 
in mind that the cornea is an anisotropic viscoelas-
tic material exhibiting a nonlinear stress–strain 
relationship; hence, it does not have a constant 
elastic modulus. This makes it difficult to accu-
rately characterize the biomechanical properties of 
the cornea in an in vivo setting.

Biomarkers
The widely held belief that keratoconus is a non-
inflammatory condition that has been challenged 
in recent years by findings that point to the con-
tributory role of inflammation in ectasia develop-
ment. Earlier studies have reported an increase in 
tear inflammatory cytokine and matrix metallo-
proteinase levels along with significant reductions 

Figure 1.  A chart of advances in the diagnosis of keratoconus.
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in tear IgA, total tear protein production, and 
lactoferrin.13–15 Parallel to these findings, serum 
analysis of patients with keratoconus showed 
altered levels of immunoglobulins suggesting a 
link between atopy and keratoconus.16 Although 
the mechanism is still unclear, it has been found 
that keratoconus is associated with atopic dis-
eases, in which serum immunoglobulin levels are 
detected to be high, such as asthma, allergic rhi-
nitis, combination of allergic conjunctivitis, 
chronic blepharitis, and vernal keratoconjunctivi-
tis.17 A recent comparative study by McKay and 
colleagues18 revealed that the distribution of tear 
immunoglobulin heavy and light chains is differ-
ent between keratoconus and healthy controls, 
suggesting that a disturbance in B-cell function 
may also play a role in keratoconus pathogenesis. 
Another study found higher levels of innate bio-
markers, namely toll-like receptors 2 and 4, on 
the ocular surface of subclinical keratoconus 
patients, and drawing from this finding, the 
authors advocated their use as a biomarker in 
identifying keratoconus cases.19 Interestingly, 
Fodor and colleagues20 demonstrated that a con-
comitant increase in tear nerve growth factor and 
interleukin (IL)-13 predicts keratoconus progres-
sion with a sensitivity and specificity of 80% and 
100%, respectively.

Several studies have shown altered hormone lev-
els in the saliva, plasma, tear, hair follicles, and 
aqueous humor of patients with keratoconus pro-
viding evidence to hormonal regulation of cor-
nea.21–25 In a study by Sharif and colleagues,22 the 
diagnostic accuracy of tear, plasma, and saliva 
prolactin–induced protein levels ranged from 
92.8% to 93.7% and was found to be independ-
ent of the severity of keratoconus. The authors 
postulated that this protein could serve as a low-
cost biomarker in keratoconus screening.

Artificial Intelligence
Artificial intelligence (AI) has been exploited in a 
myriad of ways in keratoconus diagnosis. Two 
recent studies showed that deep learning can effec-
tively distinguish keratoconus from healthy eyes and 
determine the stage of the disease.26,27 Combining 
features from AS-OCT and Scheimpflug imaging 
was shown to enhance the discriminant ability of a 
neural network algorithm for subclinical keratoco-
nus compared to single instrument–derived param-
eters.28 Integrating data derived from biomechanical 
evaluation of the cornea in such models may allow a 
more multifaceted approach further increasing 

diagnostic precision.29 Deep learning has also been 
employed to aid in faster and more efficient seg-
mentation of corneal OCT images (CorneaNet) 
aiming to create a model that could be used for early 
keratoconus detection.30 With newer AI models 
that are based on longitudinal data sets, disease 
monitoring, and AI-guided therapies may also be 
possible.31

Advances in treatment

Corneal cross-linking
Corneal cross-linking (C-CXL), first described 
by Wollensak and colleagues32 in 2003, is the 
mainstay preventive approach to halt keratoconus 
progression. A systematic review has shown the 
efficacy and safety of CXL in keratoconus along 
with its biomechanical principles.33 Although still 
widely adopted and used, the initial Dresden pro-
tocol has its setbacks owing to the unique phys-
icochemical characteristics of the C-CXL 
reaction. A detailed account of the specific steps 
of the C-CXL reaction is out of the scope of this 
review, yet the mostly recognized and reported 
challenges with C-CXL, in general, include the 
rapid oxygen depletion particularly with higher 
irradiances,34 limited riboflavin penetration 
through an intact epithelium,35 the depth-depend-
ent concentration gradient of riboflavin within 
the cornea,36 prolonged treatment duration, and 
issues with potential endothelial toxicity in thin 
corneas. Some of the novel approaches to over-
come these challenges and other emerging proto-
cols along with alternative cross-linking methods 
are described below (Figure 2).

Approaches to increase oxygen availability.  Oxy-
gen plays a pivotal role in C-CXL largely because, 
in a low-oxygen-concentration environment, the 
reaction (type I reaction) not only is much less 
efficient with fewer cross-links being formed but 
also results in the generation of toxic hydrogen 
peroxide as the final byproduct.37,38 In the pres-
ence of sufficient oxygen, type-II reaction ensues 
allowing a safer, more effective and controlled 
C-CXL. Rapid depletion of oxygen and hence 
related problems are even more pronounced at 
high irradiances in accelerated C-CXL protocols. 
A pulsed C-CXL approach with on and off cycles 
was recently conceptualized to allow recovery 
time for oxygen replenishment and hence increase 
its stromal availability. In a recent large prospec-
tive uncontrolled study conducted at the Moor-
fields Eye Hospital, Gore and colleagues39 have 
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reported keratometric stabilization in 98.3% of 
the 870 patients with an epi-off pulsed high-flu-
ence protocol (30 mW/cm2 for 4 minutes with 
1.5 seconds on/off cycles) after 2 years of follow-
up. In keeping with this finding, studies have 
shown deeper demarcation lines (a contested 
indicator of successful cross-linking) and more 
resistance to enzymatic digestion with pulsed pro-
tocols compared to continuous accelerated proto-
cols.40,41 However, it should be kept in mind that 
oxygen consumption occurs at a much faster pace 
than replenishment rendering short pulse inter-
vals ineffective at complete oxygen restoration.42

In addition to acting as a barrier for oxygen pen-
etration, the corneal epithelium consumes much 
higher oxygen than the stroma further compound-
ing oxygen availability issues in transepithelial 
approaches. This effect has been exemplified in a 
study by Sun and colleagues43 who have shown 
rather limited efficacy with an epi-on pulsed light 
protocol (45 mW/cm2 for 5 minutes and 20 sec-
onds with a 1 second on/off cycle). In an ex vivo 
model of porcine eyes, Hill and colleagues44 were 
able to demonstrate that aerobic conditions could 
be obtained by providing supplemental oxygen in 
an epi-on pulsed high-irradiance protocol, sug-
gesting that optimization of oxygen may be ben-
eficial in accelerated epi-on protocols. To test this 

clinically, Mazzotta and colleagues45 have used 
oxygen delivery goggles to provide supplemental 
oxygen during an accelerated epi-on protocol and 
have reported meaningful improvements in visual 
acuity and corneal curvature with no significant 
adverse effects after 6 months of follow-up.

Approaches to increase riboflavin delivery.  Ribo-
flavin’s hydrophilicity and large molecular size 
make its passage difficult through an intact epi-
thelium. Furthermore, although monophosphate 
isomers of riboflavin found in riboflavin formula-
tions increase the solubility and require less 
energy to be photoactivated than riboflavin alone, 
they also increase the electronegativity acting as a 
repellant against the negatively charged proteo-
glycans in the corneal stroma.35 This further 
decreases the penetration into the corneal stroma. 
To overcome this limitation, methods involving 
the transport of riboflavin by the use of iontopho-
resis had been tried over the recent years with 
comparable success to standard C-CXL.46,47 
However, these approaches were still hindered by 
the fact that longer exposures and hence longer 
treatment times were needed. Mazzotta and col-
leagues48 have combined the pulsed high-fluence 
irradiance protocol with iontophoresis and have 
recently published the 3-year results of a short-
ened iontophoresis-assisted C-CXL technique, 
coined as the enhanced fluence pulsed light ion-
tophoresis (EF I-CXL). This study showed satis-
factory outcomes and similar demarcation line 
characteristics as with standard C-CXL. Ionto-
phoresis procedure was split into two cycles by 
another group allowing time for riboflavin to pen-
etrate the deeper stromal layers.49 Iontophoresis 
has also been found useful in an ex vivo rabbit eye 
model in increasing stromal penetration depth of 
rose bengal, another cross-linking agent that can 
only diffuse through the 100 to 125 µm of the cor-
neal stroma with conventional approaches.

Other approaches to increase riboflavin delivery 
have primarily aimed at chemically disrupting or 
loosening epithelial tight junctions, thereby 
increasing riboflavin permeability. Some of the 
tried molecules include diluted ethanol, benza-
lkonium chloride, trometamol, ethylenediamine-
tetraacetic acid, and vitamin E.37 Sodium iodide 
is a novel excipient in the riboflavin formulation 
which safeguards riboflavin against UVA photo-
degradation into its inactive derivatives, theoreti-
cally avoiding the need for high stromal 
concentrations and frequent instillation.50–52 It 
also stimulates the formation of oxygen from the 

Figure 2.  A chart of advances in the treatment of keratoconus.
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byproduct of the type-I reaction (hydrogen per-
oxide) favoring the occurrence of type-II reaction 
over the former.37 More recently, Aytekin and 
colleagues53 harnessed nanostructured lipid carri-
ers in designing a novel riboflavin delivery system 
coupled with additional molecules that either 
confer a positive charge (Stearylamine) or act as a 
permeation enhancer (Trancutol P). Another 
novel drug delivery method involved loading of 
riboflavin into a microemulsion system which 
showed favorable outcomes in terms of stromal 
diffusion and C-CXL efficiency in a rabbit eye 
model.54 These systems however have not passed 
the scrutiny of a clinical trial and hence are only 
experimental.

Assessment of intrastromal riboflavin has also 
been evaluated as a means to personalize ribofla-
vin delivery and optimize treatment outcomes. 
Techniques that were used in a laboratory envi-
ronment included spectrophotometry, high-per-
formance liquid chromatography, confocal 
fluorescence microscopy, and two-photon optical 
microscopy, all of which involve some degree of 
invasiveness and are not readily translatable into  
a clinical setting.55–58 To fill in this lacuna, 
Lombardo and colleagues59 have recently devel-
oped a noninvasive optical method for real-time 
assessment of intrastromal riboflavin concentra-
tion which has the potential to be useful in deliv-
ering personalized C-CXL treatments.

Thin corneas.  Thin corneas pose a significant 
challenge whereby endothelial damage becomes 
inevitable with decreasing corneal thickness. Sev-
eral solutions have been postulated to address this 
issue which includes administering hypoosmolar 
riboflavin, customized pachymetry-guided epi-
thelial debridement, contact lens–assisted cross-
linking, and accelerated high-fluence C-CXL. A 
more recent approach involves placing a stromal 
lenticule harvested with femtosecond laser during 
small incision lenticule extraction (SMILE) sur-
gery for myopic correction or from a donor cor-
nea onto the apex of the cone, thereby augmenting 
corneal thickness in this area.60,61

Customized C-CXL.  The co-utilization of imaging 
modalities with C-CXL has allowed the delivery of 
targeted cross-linking to specific areas of the cor-
nea. Customized cross-linking (PiXL) has paved 
the way to tailor the treatment according to the 
individual patient’s needs by offering a dualistic 
action to effectively halt keratoconus progression 
and provide a refractive correction at the same 

time. This approach aims at delivering the maxi-
mum treatment at the apex of the cone, supposedly 
the weakest area, therefore allowing a more con-
trolled flattening/steepening inside and outside the 
treatment area. This selective treatment induces 
refractive changes favoring normalization of cor-
neal curvature. The precise location to treat can be 
determined using tomography-driven finite-ele-
ment models,62 maximum tomographic posterior 
float,63–65 and thinnest pachymetry.45,66 Such 
approaches, however, rely on the geometric surro-
gates of biomechanical weakening and hence not 
the cause but the effect. With the advances in spa-
tially resolved in vivo biomechanical imaging of  
the cornea either with Brillouin spectroscopy7 or 
optical coherence elastography,67 biomechanics-
guided C-CXL may be possible soon.

Emerging combined protocols.  C-CXL addresses 
the progression of keratoconus and even with cus-
tomized C-CXL, refractive correction that can be 
achieved is only limited. The impetus to simultane-
ously improve vision and halt disease progression 
has driven clinicians to find ways to safely combine 
refractive procedures with C-CXL. This approach 
has been coined the term CXL Plus, denoting that 
C-CXL is complemented with a refractive proce-
dure, either by photorefractive keratectomy (PRK) 
or intracorneal ring segment implantation (ICRS).68 
The results of a recently published large-scale pro-
spective nonrandomized study that compared 
C-CXL alone with simultaneous C-CXL + ICRS 
and simultaneous C-CXL + PRK suggests that 
C-CXL + ICRS may be more suited for patients 
with higher irregular astigmatism and worse visual 
acuity, whereas C-CXL + PRK may be more effec-
tive in patients who require correction of irregular 
astigmatism but have better visual acuity.69

As is known, performing refractive surgery in an 
ectatic cornea comes with a cost of further deterio-
rating biomechanical instability. To counter this, 
strategies have been developed that minimize the 
volume of the tissue to be ablated without com-
promising the refractive outcome. In a pilot study, 
Yang and colleagues70 have studied the effect of 
“minimized-volume ablation” with accelerated 
C-CXL on the Schwind AMARIS 750 excimer 
laser platform (Schwind eye-tech solutions 
GmbH, Kleinostheim, Germany) in patients with 
grade I–III keratoconus and have found favorable 
results both in terms of safety and efficacy in cor-
recting mild refractive errors. Similarly, a protocol 
in the name of “Central Corneal Regularization 
(CCR)” on the iVis Suite customized excimer 
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laser ablation treatment platform (iVis 
Technologies S. r. l., Taranto, Italy) was tried 
with keratoconus patients (Amsler-Krumeich 
stage I–II) and was shown to improve both uncor-
rected and corrected visual acuity.71,72 A subse-
quent comparative study also showed that the 
combination of the CCR/PRK approach with 
C-CXL results in a more effective reduction in 
higher-order aberrations and Kmax than what can 
be achieved with C-CXL alone.73 Kanellopoulos 
AJ modified the Athens protocol by incorporating 
topographically guided varied pattern C-CXL 
into the protocol thereby reducing the amount of 
tissue that has to be removed by PRK.74 The main 
obstacle in combining PRK with C-CXL however 
is that the minimum corneal thickness after abla-
tion must still fulfill the 400 µm criterion, making 
this approach less feasible for more advanced 
keratoconus cases. The Tel Aviv protocol is 
another protocol in which PRK and CXL are 
combined.75,76 During this procedure, 50-µm laser 
ablation of the epithelium and anterior stroma is 
performed using the excimer laser.75,76 While 
astigmatic correction is planned as 50% of mani-
fest refractive astigmatism (on the same axis), 
spherical ablation is applied subsequently in the 
epithelium and anterior stroma, not exceeding a 
total ablation of 50 µm.75,76 The Tel Aviv protocol 
was reportedly to halt progression of keratoconus 
without excessive thinning in the corneas, and 
improved visual acuity and astigmatism.75,76 The 
combination of transepithelial PTK and CXL, 
defined as the Cretan protocol by Kymionis and 
colleagues,77,78 yielded better visual and refractive 
results in keratoconus patients compared to 
mechanical epithelial debridement. This method 
is an alternative option for patients who cannot 
undergo PRK due to thin cornea.

ICRS becomes a better option in more irregular 
corneas and its combination with C-CXL has 
been well described; however, it is still debated as 
to which procedure should be performed first in 
combined protocols. In a recent meta-analysis, 
Hashemi and colleagues79 reported that simulta-
neous ICRS with C-CXL provides the best out-
comes compared to staged approaches. Triple 
procedures combining PRK + C-CXL and ICRS 
have also been described.80

New molecules and strategies.  Various photoacti-
vated cross-linkers other than riboflavin include 
rose bengal, Eosin Y, and WST-D, all of which are 
excited by different spectra of light.81 Among the 
previously reported chemical cross-linkers 

genipin,82 glyceraldehyde,83 glutaraldhyde,84 Açaí 
Extract,85 formaldehyde releasers,86 decoron,87 
and nitroalcohols88 have been explored for use in 
corneal or scleral cross-linking. These agents do 
not require exposure to irradiance to be activated, 
but none of them has been translated into clinical 
practice. More recently, newer molecules have 
been described one of which is the transglutamin-
ase, an enzyme that was first isolated from Strep-
toverticillium sp and had found its use in the food 
and manufacturing industries.89 This agent does 
not need photoactivation and was shown to effec-
tively increase the stiffness of the cornea without 
causing any damage to the endothelium or 
keratocytes.89

A new photoactivator system for riboflavin has 
been recently proposed under the name of nonlin-
ear optical cross-linking (NLO CXL) that exploits 
femtosecond laser.90–92 This technique has several 
hypothetical advantages over UVA cross-linking. 
In contrast to UVA cross-linking that uses a single 
photon, NLO CXL requires two-photons, statisti-
cally increasing the likelihood of riboflavin photo-
activation and subsequent radical formation.90 
Furthermore, NLO CXL offers precise x–y–z 
dimensional control over the volume and depth of 
tissue that is to be subjected to femtosecond laser 
and hence cross-linking.90 Femtosecond laser may 
also be used to micromachine channels on the epi-
thelium which could improve stromal penetration 
of riboflavin.90

While there have been significant modifications 
and updates in the CXL procedure with newer 
protocols, the Dresden CXL protocol remains 
the standard procedure for stabilizing keratoco-
nus. As such, it is more accepted and preferred all 
over the world as being a safer and more effective 
method in the long term.93,94

New keratoplasty procedures
The last two decades have seen a paradigm shift 
in keratoplasty moving from the insertion of full-
thickness grafts to lamellar grafts. A lamellar 
approach not only decreases the likelihood of 
immune rejection but also offers less-induced 
astigmatism and better visual outcomes particu-
larly in the case of endothelial transplants. Some 
of the novel corneal transplantation approaches 
in keratoconus have been detailed below.

Bowman layer transplantation.  Keratoconus has 
been classically linked with Bowman membrane 
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fragmentation early in the course of the dis-
ease.95 Owing to Bowman membrane’s essential 
role in providing biomechanical support to 
maintain corneal shape, it was theorized that 
replacement of this tissue could halt further 
deterioration and maintain vision.96,97 Bowman 
layer transplantation (BLT) has recently been 
gaining interest particularly in patients with 
advanced keratoconus where C-CXL and ICRS 
may not be possible either due to corneal thick-
ness constraints or significant steepening (Fig-
ure 3). Studies have shown that not only does it 
halt keratoconus progression, it also provides 
flattening with a 5-year progression/complica-
tion-free estimated survival rate of 84%.98 No 
study to date has reported any immune rejection 
episode partly owing to the accellularity of the 
Bowman membrane.97 To reduce the likelihood 
of microperforation during manual dissection, a 
femtosecond laser has been used for the creation 
of the stromal pocket. More recently, visualiza-
tion of the dissection plane could be improved 
with the use of an intraoperative optical coher-
ence tomography.99 The graft localization in the 
classic technique is at the mid-stromal level; 
however, a modification that has recently been 
described involves the insertion of the graft as an 
onlay in the subepithelial area.100,101 This proce-
dure does not require pocket creation and its 
preliminary results are promising.

Additive keratoplasty.  This newly defined approach 
comprises of femtosecond laser-assisted inser-
tion of a corneal lamella (prepared from a donor 
cornea or harvested during a lenticule extraction 
procedure) into an ectatic cornea. The procedure 
aims to increase corneal thickness, provide flat-
tening in the conic area, and increasing biome-
chanical stability. Advantages include reduced 
immune reaction, minimal invasiveness, and 
shorter surgery as opposed to DALK or full-
thickness grafting.102 In a preliminary study, 
Mastropasqua and colleagues103 demonstrated 
the effect of lenticule addition keratoplasty in 
nonprogressive advanced stage keratoconus eyes 
with improvements in visual acuity, corneal cur-
vature, and corneal thickness. Using a slightly 
different lenticule shape, Jin and colleagues104 
compared lenticule addition keratoplasty and 
penetrating keratoplasty in progressing eyes and 
have found that lenticule addition keratoplasty 
enabled better visual and biomechanical out-
comes. The next step in this lacuna of research is 
to use tissue engineering methods to decellular-
ize stromal lenticules so as to reduce or 

completely eliminate the likelihood of immune 
rejection. Results of a phase-1 study that evalu-
ated the safety and efficacy of decellularized stro-
mal lenticule implantation with or without 
autologous adipose-tissue-derived stem cells 
have been recently published. Although only 
modest improvements were noted within the 
time-frame of the study, the procedure was con-
sidered generally safe with a significant potential 
to be explored in further clinical trials.105

Cellular therapies
Keratoconus is typically associated with kerato-
cyte apoptosis partly due to rubbing associated 
repeated epithelial trauma, inflammation, and 
upregulation of degradative enzymes.106 
Restoration of the keratocyte population by 
means of cellular therapy is an interesting 
approach that has the potential to re-establish the 
anatomy and physiology of a keratoconic cornea. 
Preclinical studies have shown that human-
derived mesenchymal stem cells have the poten-
tial to differentiate into adult keratocytes and also 
synthesize collagen when injected into the host 
rabbit cornea.107,108 In a preliminary study, Alio 
and colleagues injected autologous adipose-
derived adult stem cells into femtosecond laser 
formed corneal pockets of five patients with 
advanced keratoconus. Remarkably, the injected 
stem cells  remained viable within the tissue after 
6 months and acquired the ability to synthesize 
new collagen.109 Although cellular/regenerative 
therapy for corneal diseases is an exciting field of 
research, caution should be exercised in general-
izing these findings particularly in keratoconus, a 
corneal disease that may require rectifying 
degraded mechanical properties by volume 
replacement in addition to cellular restoration.110

Future directions
Advances in diagnosis and management of kera-
toconus are evolving at an unprecedented pace. 
We owe this rapid development primarily to the 
realization that keratoconus is not a rare disease 
as it was once thought. From the diagnostics per-
spective, we will soon witness the implementation 
of spatially resolved in vivo corneal biomechanical 
evaluation that will complement conventional 
geometrical evaluation and pave the way for per-
sonalized therapies. As with all diseases, the focus 
should be on preventing rather than treating 
before visual deterioration becomes evident. An 
interesting single-arm clinical trial is currently 
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ongoing testing the efficacy of oral riboflavin fol-
lowed by sunlight exposure on keratometric stabi-
lization and visual acuity after a follow-up of 
6 months.111 If this simple treatment proves effec-
tive, dietary modifications may become the first-
line treatment in keratoconus. Tissue engineering 
and regenerative therapy in keratoconus is also an 
exciting field of research that offers the opportu-
nity to address disease pathology at the cellular 
level. Last, but by no means least, efforts expended 
in patient education and in increasing public 
awareness is an integral part of the collective 
combat against this visually debilitating corneal 
disease.112
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