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The initiation of cell division integrates a large number of intra- and extracellular inputs. D-
type cyclins (hereafter, cyclin D) couple these inputs to the initiation of DNA replication?.
Increased levels of cyclin D promote cell division by activating cyclin-dependent kinases 4
and 6 (hereafter, CDK4/6), which in turn phosphorylate and inactivate the retinoblastoma
tumour suppressor. Accordingly, increased levels and activity of cyclin D-CDK4/6
complexes are strongly linked to unchecked cell proliferation and cancer?3. However, the
mechanisms that regulate levels of cyclin D are incompletely understood*°. Here we show
that autophagy and beclin 1 regulator 1 (AMBRAZ1) is the main regulator of the degradation
of cyclin D. We identified AMBRAI in a genome-wide screen to investigate the genetic
basis of the response to CDK4/6 inhibition. Loss of AMBRAL results in high levels of
cyclin D in cells and in mice, which promotes proliferation and decreases sensitivity to
CDKA4/6 inhibition. Mechanistically, AMBRAL mediates ubiquitylation and proteasomal
degradation of cyclin D as a substrate receptor for the cullin 4 E3 ligase complex. Loss of
AMBRAL1 enhances the growth of lung adenocarcinoma in a mouse model, and low levels of
AMBRAL1 correlate with worse survival in patients with lung adenocarcinoma. Thus,
AMBRAL1 regulates cellular levels of cyclin D, and contributes to cancer development and
the response of cancer cells to CDK4/6 inhibitors.

CDKa4/6 inhibitors have been approved to treat breast cancer, and are under investigation for
the treatment of many additional types of cancerS. Clinical and preclinical studies have
begun to identify mechanisms of inherent or acquired resistance to these inhibitors, such as
loss of the retinoblastoma tumour-suppressor protein (RB) or upregulation of cyclin E (an
activator of CDK2, which can in turn phosphorylate and inactivate RB)”:8. However, many
cases of resistance lack a clear molecular basis®. To address this gap in knowledge, we
sought to identify genes, in an unbiased manner, whose loss affects sensitivity to the
CDKA4/6 inhibitor palbociclib, with the hope that this approach may help us to better
understand the regulatory networks that control cell cycle progression.

AMBRA1 loss dampens response to CDK4/6 inhibitors

We performed a genome-wide CRISPR-Cas9 screen in U937 cells and identified hundreds
of genes whose knockout significantly altered proliferation under palbociclib treatment,
including known members of the RB pathway (Fig. 1a, Extended Data Fig. 1a—f,
Supplementary Tables 1-3). We investigated AMBRA1 further because the loss of this gene
had the largest protective effect. The growth advantage of U937 AMBRAI-knockout and
RB1 (which encodes RB)-knockout cells upon palbociclib treatment was validated in
independent clones and was associated with impaired cell cycle arrest (Fig. 1b—d, Extended
Data Fig. 1g-I, Supplementary Fig. 1). A similar decreased sensitivity to CDK4/6 inhibition
upon AMBRAI knockout was observed with abemaciclib (another CDK4/6 inhibitor), as
well as in four additional cancer cell lines that contain wild-type RB (Extended Data Fig.
1m-o0).
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Levels of cyclin D increase upon AMBRAL loss

AMBRAknockout cells showed increased phosphorylation of RB and cell-cycle gene
expression with palbociclib treatment compared to control cells (Fig. 1e, Extended Data Fig.
1p, q), which suggested an increased activity of cyclin-dependent kinases. Accordingly, we
observed a notable increase of proteins in the cyclin-D family and a modest increase in
CDK4 in all of the AMBRA-knockout cell lines that we tested (Fig. 1f, Extended Data Fig.
2a—c). Acute knockdown of AMBRAI using short interfering RNA (siRNA) suggested that
increased levels of cyclin D are a more immediate consequence of AMBRAL loss than are
increases in CDK4 (Extended Data Fig. 2d, €). Codependency data from the Cancer
Dependency Map further suggested a functional link between AMBRA1 and the RB
pathway (Extended Data Fig. 2f, g, Supplementary Table 4). Our RNA-sequencing analysis
of control and AMBRAI-knockout cells showed few statistically significant (< 0.01)
differences between the two genotypes (Extended Data Fig. 2h, i, Supplementary Table 5).
We performed shotgun proteomics analyses, which also identified few changes upon
AMBRAL1 loss—however, the three D-type cyclins (cyclin D1, cyclin D2 and cyclin D3)
were in the top 11 of 25 upregulated proteins (Fig. 1g, Supplementary Tables 6-8). Finally,
AMBRA1 knockout also led to increased levels of cyclin D in mouse embryos (Extended
Data Fig. 3a—d). Thus, AMBRAL controls the protein levels of D-type cyclins in all of the
contexts we examined (in normal and cancer cells, and in vitro and in vivo).

Cyclin D upregulation mimics AMBRAL loss

AMBRAL1 can promote autophagy? and inhibit mTOR activity!! and MYC!2, all of which
could affect cell cycle progression and the response to CDK4/6 inhibition. However, we did
not observe reproducible changes in these pathways upon AMBRAL1 loss in U937 cells, with
or without palbociclib treatment (Extended Data Fig. 4a—h). Our proteomics analysis of
AMBRAI-knockout U20S cells suggested upregulation of PLK1 and Aurora kinases (Fig.
1g), which has previously been associated with palbociclib resistance®13, but these
observations were not reproducible in independent experiments (Extended Data Fig. 4i, j).
Thus, these pathways probably do not account for the decreased response to CDK4/6
inhibition of AMBRAZ-mutant cells. By contrast, overexpression of the three D-type cyclins
or of a phosphomutant form of cyclin D1 (cyclin D1(T286A)), which is stable and highly
expressed!#15, was sufficient to promote S-phase entry and decreased sensitivity to low
doses of palbociclib (Fig. 1h, i, Extended Data Fig. 5a—d). Differences in palbociclib
response between overexpression of cyclin D and loss of AMBRAL1 are possibly due to
limitations of the ectopic expression system for cyclin D. AMBRAI-knockout cells
remained highly dependent on cyclin D1 for proliferation, similar to control cells (Fig. 1j,
Extended Data Fig. 5e).

These observations raised the question of how upregulation of cyclin D mediates an
increased tolerance of CDKA4/6 inhibitors. Compared to control cells, immunoprecipitation
of cyclin D1 pulled down more CDK4 and CDK2 from AMBRA1-knockout cells or cells
expressing cyclin D1(T286A), and reciprocal CDK2 immunoprecipitation confirmed the
increased binding of cyclin D1 to CDK2 in both of these cell models (Fig. 1k, I). Cyclin D-
CDK2 complexes can phosphorylate RB16-18 and increased activity of CDK2 promotes
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resistance to CDK4/6 inhibitors81920, |n addition, the binding of the CDK2 inhibitor p27 to
CDK?2 was decreased in AMBRAI-knockout cells and cells expressing cyclin D1(T286A),
and at the same time p27 was more abundantly bound to cyclin D1 and CDK4 (Fig. 2k, I,
Extended Data Fig. 5f). p27—cyclin D—-CDK4 trimers are active and resistant to palbociclib
in some contexts?1:22, Thus, increased levels of cyclin D lead to changes associated with
increased CDK4/6 and CDK?2 activity, which suggests that upregulation of cyclin D is a key
mechanism by which the loss of AMBRAL influences cell cycle progression and the
response to CDK4/6 inhibitors.

AMBRA1 regulates the ubiquitylation of cyclin D

Cyclin D typically has a short half-life, which is thought to allow for precise control of
CDKA4/6 activity during G1 progression and to limit levels of cyclin D in S phase, in which it
is detrimental to DNA replication?3. We blocked translation using cycloheximide, which
revealed a marked increase in the half-life of all three D-type cyclins in AMBRAI-knockout
cells (Fig. 2a, b). Acute proteasome inhibition with bortezomib—~but not inhibition of
autophagy—was sufficient to increase the levels of cyclin D in wild-type cells, whereas
proteasome inhibition did not further increase the levels of cyclin D in AMBRAI-knockout
cells (Fig. 2c, d, Extended Data Fig. 6a—c). Cyclin D1 phosphorylation at T286, which
precedes cyclin D1 ubiquitylation and degradation#1, was increased in AMBRAI-
knockout cells to levels similar to those in wild-type cells treated with bortezomib (Fig. 2c,
e). AMBRAI-knockout cells or cells in which AMBRAI was knocked down showed lower
levels of cyclin D1 polyubiquitylation compared to control cells (Fig. 2fh, Extended Data
Fig. 6d-h, Supplementary Table 9). Mass spectometry analysis of immunoprecipitated
ubiquitylated proteins showed reduced cyclin D1 ubiquitylation at several lysine residues
upon knockdown of AMBRAL1 (Fig. 2i, j, Extended Data Fig. 6i—k, Supplementary Table
10). Thus, AMBRAL promotes ubiquitylation and proteasomal degradation of cyclin D.

CRL4AMBRAL djrectly ubiquitylates cyclin D

Our immunoprecipitation of cyclin D with AMBRAL upon proteasome inhibition (to
stabilize cyclin D) suggested that AMBRAL may directly regulate cyclin D ubiquitylation
(Fig. 2k, Extended Data Fig. 7a). AMBRAL belongs to the DDB1 and CUL4-associated
factor family of proteins, which specifies substrates for CUL4-RING E3 ubiquitin ligase
(CRL4) complexes?4:25. Inhibition of all cullin-RING ligase complexes with the neddylation
inhibitor MLN4924 increased levels of cyclin D1 in control cells but not in AMBRAI-
knockout cells, whereas MY C (another target of cullin-RING ligases) accumulated
regardless of AMBRAL status (Fig. 3a, b). We found a predominant association of
AMBRA1 with CUL4A and CUL4B, consistent with previous studies!124, but only CUL4B
knockdown led to increased levels of cyclin D1 and blocked cyclin D1 polyubiquitylation
upon AMBRAL overexpression (Fig. 3c—e, Extended Data Fig. 7b, c). A mutant AMBRA1
that cannot bind CRL4 (AMBRA1(AH))24 could not rescue increased levels of cyclin D1 in
AMBRAI-knockout cells nor increase cyclin D1 polyubiquitylation (Fig. 3f, g, Extended
Data Fig. 7d—f). AMBRA1 knockdown did not further increase the half-life of cyclin
D1(T286A), and this cyclin D1 phosphomutant showed decreased binding to AMBRA1
(Extended Data Fig. 7g—i). Finally, in in vitro ubiquitylation assays, high-molecular-weight
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polyubiquitylated cyclin D1 species accumulated in a time-dependent manner and required
the presence of both CRL4AAMBRAL and recombinant E1 and E2 proteins (Fig. 3h, i,
Extended Data Fig. 8a—c). Altogether, these data show that CRL4AMBRAL ypiquitylates
Cyclin D.

AMBRA1 loss promotes lung adenocarcinoma

Mutations in AMBRAI are found in 2% of the ‘Pan-Cancer Atlas’ studies of The Cancer
Genome Atlas (TCGA), and two cancer-derived mutations in AMBRAI impaired its ability
to control the levels of cyclin D (Extended Data Fig. 9a—c), which suggests that AMBRA1
may act as a context-dependent tumour suppressor. We tested this idea in a mouse model of
lung adenocarcinoma driven by oncogenic KRAS using Tuba-seq, a highly quantitative
tumour barcoding system?26. We intratracheally infected

Krast-SL-G12D/* :Rosao6l-SL-tdTomato 17 1L SL-Cas9 (hereafter, KTC) and

KrastSL-G12D/* - Trp53M - Rosa26L-SL-tdTomato -4y7 1L SL-Cas9 (hereafter, KPTC) mice with
lenti-single guide (sg)RNA—Cre pools that consisted of SgRNAS against Ambral and three
other tumour suppressors (Rb1, Apcand Rbm10) as well as five inert sgRNAsS.
Krast-SL-G12D/* -Rosa26L-SL-1dTomalo (hereafter, KT) mice (without Cas9) were used to
account for differences in SgRNA representation in the viral pool (Fig. 4a). Sequencing and
tallying the integrated barcodes from tumour-bearing lungs revealed that loss of Ambral had
the greatest effect on tumour size among all tumour suppressor genes tested in KTC and
KPTC mice (Fig. 4b, Extended Data Fig. 9d—g). Loss of Ambral resulted in an increase in
tumour burden—accompanied by increased levels of cyclin D—in independent
Krast-SL-G12D/* -py1 1LSL-Cas9 (hereafter, KC) mice (Fig. 4c, d, Extended Data Fig. 9h,i).
Similarly, AMBRA1 knockout led to increased levels of cyclin D1 and greater tumour
growth in a human xenograft model of lung adenocarcinoma (Extended Data Fig. 10a—c). In
the lung adenocarcinoma dataset from TCGA, lower expression of AMBRAI mRNA was
associated with worse overall survival in a Kaplan—Meier analysis of patients with
KRASCSZZ.mutant tumors (log-rank test, ~=0.0017) (Fig. 4e). This association was also
significant in a multivariate Cox proportional hazard model that adjusted for key clinical
covariates (log hazard ratio of —0.5, 95% confidence interval of —0.92 to —-0.09, A= 0.015)
(Fig. 4f). Additionally, a stepwise linear regression model that included RB pathway genes
(Supplementary Methods) identified a significant inverse correlation between AMBRA1
expression and protein levels of cyclin D1 (Extended Data Fig. 10d). These associations
were not observed in samples that contained wild-type KRAS or mutant EGFR (Extended
Data Fig. 10e—j). Thus, AMBRAL acts as a tumour suppressor in lung adenocarcinoma
driven by mutant KRAS.

Discussion

Our work, and accompanying studies?”-28, conclusively identifies CRL4AMBRAL a5 3 major
regulator of the stability of cyclin D in every context we examined and places AMBRAL as a
member of the RB pathway (Extended Data Fig. 11). Additional mechanisms may further
control the stability of D-type cyclins in more specific contexts*29. Given the various
cellular functions of AMBRAL1, it may serve as a central node to coordinate the cell cycle,
cell growth and cell death in response to a variety of inputs. However, our data in lung

Nature. Author manuscript; available in PMC 2021 July 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Chaikovsky et al.

Page 6

adenocarcinoma suggest that the oncogenic effects of the loss of AMBRAL may depend on
the genetic context, similar to other members of the RB pathway3C. Our work highlights the
complexities of the factors that regulate how cancer cells respond to CDK4/6 inhibitors.
Increased levels of cyclin D may promote resistance to CDK4/6 inhibitors by directly and
indirectly increasing the activity of both CDK4/6 and CDK2 in cells, but upregulation of
cyclin D has also previously been linked to increased sensitivity to CDK4/6
inhibition19:20.31-35 These observations underscore the need to further explore the
mechanisms that regulate the levels and activity of complexes containing CDK4/6 or CDK2
in human tumours to optimize the use of CDK4/6 or CDK?2 inhibitors in a broad range of
patients with cancer.

Online content

Any methods, additional references, Nature Research reporting summaries, source data,
extended data, supplementary information, acknowledgements, peer review information;
details of author contributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-021-03474-7.
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Extended Data Fig. 1 |. Identification of AMBRAL1 and other factorsinvolved in the response of
cellsto CDK 4/6 inhibitors.

a, Proliferation of U937 cells in the presence of 0.5 pM palbociclib (palbo) over 6 d,
determined by cell counting (r7= 1 experiment). b, Immunoassay of total RB and RB
phosphorylated at S807 and S811 (p-RB S807/811) in U937 cells over 36 h of palbociclib
treatment. ¢, Quantification of phosphorylated RB relative to total RB from b (n=1
experiment). d, Schematic of the CRISPR-Cas9 screen in U937 cells. e, Protein—protein
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interaction map of screen results, generated using Metascape. Coloured nodes represent
densely connected gene neighbourhoods. Legend indicates the gene ontology term that is
most significantly enriched within each neighbourhood. Node size indicates the degree of
connectedness. Gene names can be found in Supplementary Table 3. f, Schematic of the
screen results among RB-pathway genes expressed in U937 cells. g, Number of control and
knockout U937 cells treated with 0.5 uM palbociclib or DMSO control for 48 h. Each
symbol is an isogenic clone (7= 3 biological replicates per clone). h, Left, schematic of the
competition assay between GFP-negative parental U937 cells and GFP-positive knockout
cell populations. Right, example of flow cytometry analysis for one experiment with
AMBRAI-knockout cells. i, Percentage of GFP-positive control or knockout populations in
competition assays as in h (7= 3 biological replicates). j, Representative flow cytometry
plots of annexin V and propidium iodide (PI) staining in U937 cells treated with 0.5 pM
palbociclib for 24 h. k, Percentage of apoptotic (annexinV*PI*) U937 cells after a 24-h
palbociclib treatment (17 = 3 biological replicates per clone). Palbociclib does not induce
apoptosis in any genotype. |, Representative flow cytometry plots of BrdU and PI staining in
U937 cells treated with 0.5 uM palbociclib for 24 h. m, Percentage of S-phase cells by BrdU
and PI staining in U937 cells treated with 1 pM abemaciclib for 24 h (7= 3 biological
replicates per clone). n, Immunoassay for AMBRA1 and RB in control and knockout cancer
cell lines generated by CRISPR—Cas9. For U20S (osteosarcoma), NCI-H1792 (lung
adenocarcinoma) and NCI-H460 (large cell lung cancer), each lane is an isogenic clone.
MCFT7 cells (breast cancer) are populations. o, Percentage of cycling S-phase cells from n
after a 24-h treatment with palbociclib (0.5 uM for all cell lines except for MCF7 cells, 0.04
uUM). U20S, NCI-H1792 and NCI-H460 cells were analysed by BrdU and PI staining, and
each symbol is an isogenic clone (77 = 3 biological replicates per clone). MCF7 cells were
analysed by PI staining (n7= 3 biological replicates). p, Quantification of RB phosphorylated
at S795 (p-RB S795) over total RB in U937 cells treated with increasing doses of
palbociclib for 24 h, measured by immunoassay (7= 4 biological replicates). g, Fold-change
in mRNA levels of E2F target genes in U937 cells treated with 0.5 uM palbociclib for 24 h,
measured by quantitative PCR with reverse transcription (RT-gPCR) (n7= 3 biological
replicates). All data are mean + s.d. P values calculated by two-sided unpaired #test (g, k,
m, 0) and two-sided paired #test (i, p, ). Tubulin, HSP90 and actin are loading controls.
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Extended Data Fig. 2 |. AMBRAL lossregulates cyclin D post-transcriptionally and dependency
on AMBRAL1 correlateswith cyclin D signalling networks.

a, b, RT—-gPCR analysis of the genes encoding D-type cyclins (CCND genes) and CDK4 in
U937 cells (a) (7= 3 biological replicates per clone) or expressed D-type cyclins in other
cancer cell lines (b). For U20S, NCI-H1792 and NCI-H460 cells, each symbol is an
isogenic clone (n= 2 biological replicates per clone). MCF7 cells are populations (7= 3
biological replicates). Pvalues evaluate differences between knockout cells and controls for
each gene. ¢, Immunoassay of D-type cyclins in cancer cell lines in b. d, Immunoassay of
AMBRAL1, cyclin D1 and CDK4 in U20S cells after 48 h of AMBRA1 knockdown by
SiRNA pools. e, Quantification of cyclin D1 and CDK4 protein levels in d (n7= 3 biological
replicates). f, Correlation of gene dependency scores between AMBRAI, RB pathway genes
and additional cancer drivers, according to DepMap. Red lines mark the top and bottom 5%
of genes. g, The 20 most significantly enriched gene ontology terms among the top 100
genes, the loss of which best correlate with loss of AMBRAL in DepMap. h, Principal
component (PC) analysis of RNA-sequencing data from U20S cells, three biological
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replicates per cell line. i, Volcano plot of RNA-sequencing results comparing control and
AMBRAI-knockout U20S cells. Significantly differentially expressed genes (P < 0.01) are
in red. All data shown as mean + s.d. Pvalues calculated by two-sided unpaired #test (a, b),
two-sided paired #test (€), hypergeometric test (g) and Wald test (i).

b
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Extended Data Fig. 3|. AMBRA1 deletion in mouse embryosresultsin increased cyclin D levels.
a, SgRNA design to knockout Ambral in mouse zygotes by microinjection of sgRNAs and

Cas9. Controls were injected with a non-targeting sgRNA. b, Representative bright-field
images of control (n7=5) and mutant (n7 = 3) embryos at embryonic day (E)13.5. Similar to
previous reportsi®, the Ambral-mutant embryos generated here have neural tube defects
with midbrain and hindbrain exencephaly and/or spina bifida (arrows). Scale bar, 2 mm. c,
Representative cyclin D immunofluorescence (red signal, the antibody recognizes cyclin D1
and cyclin D2) in control and Ambral-mutant E13.5 embryos (from n= 3 embryos per
SgRNA). DAPI shows DNA. The liver is autofluorescent. Scale bar, 1 mm. d, High-
magnification view of the developing brain from one control and one Ambral-mutant
embryo (asterisks in c). v, ventricle, cp, choroid plexus. Scale bar, 500 pm. Representative of
three embryos per sgRNA.
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Extended Data Fig. 4 |. Pathways previously associated with AMBRA1 do not explain tolerance
to CDK4/6 inhibitors.

a, Immunoblot analysis of autophagy flux by LC3 conversion (LC3-I to LC3-11, which
occurs during autophagosome formation) and RB phosphorylation (p-RB S795) in U937
cells treated with 0.5 pM palbociclib for 24 h and acutely treated with 25 uM chloroquine
(CQ) (an autophagy inhibitor) for the final 4 h. b, Quantification of LC3-11 levels with 4 h of
chloroquine treatment, indicating autophagy flux, from cells in a (7= 3 biological
replicates). No significant differences were identified by two-way ANOVA (Peel line = 0.44,
Prreatment = 0.38, Pinteraction = 0.92). ¢, Immunoblot of total and phosphorylated RB and LC3
conversion in wild-type U937 cells treated with 0.5 uM palbociclib, 25 pM chloroquine or
both for 24 h. Representative of three independent experiments. d, Representative flow
cytometry plots of BrdU and PI staining in cells from c. e, Quantification of S-phase cells
from d (7= 3 biological replicates). Autophagy inhibition does not alter palbociclib
response. f, Immunoassay of the mTORC1 target phosphorylation sites (52448 of mTOR,
and T37 and T46 of 4EBP1) in U937 cells following amino acid starvation. Representative
of two independent experiments. g, Immunoassay of MYC in U937 clones. h, Quantification
of MY C from g. Each symbol is an isogenic clone (7= 3 biological replicates per clone). i,
Immunoassay of PLK1 and AURKA and immunoblot of AURKB in control and AMBRAI-
knockout U20S cells. Each lane is a biological replicate. j, Quantification of i (n7=3
biological replicates). All data are mean = s.d. Pvalues calculated by two-way ANOVA (b),
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two-sided paired £test (e, j), and two-sided unpaired #test (h). HSP90, tubulin and actin are
loading controls.
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Extended Data Fig. 5|. Cyclin D mediates the phenotypes of AMBRA1- mutant cells.
a, Immunoassay of cyclin D1, D2, and D3 in wild-type U20S cells overexpressing all three

D-type cyclins from the same lentiviral vector or RFP as a control. b, Representative flow
cytometry plots of BrdU and PI staining in cells from a treated with increasing doses of
palbociclib for 24 h. c, Percentage of cycling S-phase cells from b (n7= 3 biological
replicates). Data are mean + s.d. Pvalues calculated by two-way ANOVA (Peell line <
0.0001) with post hoc Sidak test. d, Representative flow cytometry plots of BrdU and Pl
staining in U20S cells overexpressing stabilized cyclin D1(T286A)-HA or RFP control,
treated with increasing doses of palbociclib for 24 h. e, Representative flow cytometry plots
of BrdU and PI staining in control and AMBRAI-knockout U20S clones after 48 h of
cyclin D1 (CCNDI) knockdown with siRNA pools. f, Co-immunoprecipitation of p27 in
control, knockout and cyclin-D1(T286A)-overexpressing U20S cells, and immunoassay of
relevant protein complexes (77 = 2 biological replicates). HSP90 is a loading control.
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Extended Data Fig. 6 |. AMBRA1 regulates the ubiquitylation of D-type cyclins.
a, Immunoblot analysis of cyclin D3 in wild-type U937 cells (left) or cyclin D1 in wild-type
U20S cells (right) treated with 0.5 uM palbociclib, 25 uM chloroquine or both for 24 h. LC3
and HSP90 blots for U937 cells are the same as in Extended Data Fig. 4c, as the experiments
were performed simultaneously. Untreated AMBRAI-knockout cells serve as a control for
increased cyclin D expression. Asterisk, unspecific band. 7= 3 (U937) or n=1 (U20S)
biological replicates. b, ¢, Immunoassay quantification of cyclin D2 (b) and cyclin D3 (c) in
U20S cells treated with 1 pM bortezomib for 4 h (7= 4 biological replicates). d,
Quantification of ubiquitylated cyclin D1 relative to total cyclin D1 isolated from U20S
clones pretreated with 1 uM bortezomib for 4 h using TUBESs. Each symbol is an isogenic
clone (n= 3 (sgCtrl) or =5 (sgAMBRAIL)). e, f, Immunoassay of ubiquitylated cyclin D1
isolated using TUBEs following AMBRAL1 knockdown in U20S cells (€) or in populations
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of control and AMBRAI-knockout MCF7 cells (f). g, h, Quantification of ubiquitylated
cyclin D1 relative to total cyclin D1 in AMBRAZ1-knockdown U20S cells (g) (n=2
biological replicates) or AMBRAI-knockout MCF7 cells (h) (n=2 (sgCtrl) or =3
(syAMBRAI) biological replicates) as shown in g, f, respectively. For all TUBE
experiments, only quantification of samples with similar levels of ubiquitin pull down are
shown. See Supplementary Table 9 for all data. i, Immunoblot analysis of AMBRAL in 293T
cells expressing control or AMBRAI-targeting shRNAs, pretreated with 10 uM MG132 for
4 h. (n=1 experiment). j, Principal component analysis of mass spectrometry data from
cells in i (two replicates each of shNT no. 1 and shAMBRAI no. 1 and no. 2) after enriching
for ubiquitylated peptides. k, Volcano plot of mass-spectrometry data comparing
ubiquitylated peptides in control and AMBRAZ1 knockdown 293T cells. Each dot is a
peptide. Red symbols, significantly upregulated peptides; blue symbols, significantly
downregulated peptides, with the indicated cut-offs. All other data are mean + s.d. Pvalues
calculated by two-sided paired #test (b, c), two-sided unpaired £test (d) and two-sided
unpaired #test followed by Benjamini—-Hochberg correction (k). HSP90 and GAPDH are
loading controls.
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Extended Data Fig. 7 |. AMBRAL1 binding to CUL4 isrequired for regulating cyclin D.
a, Co-immunoprecipitation of transfected AMBRA1-Myc-Flag and cyclin D-HA (D1, D2

or D3) in 293T cells, analysed by immunoassay. b, Co-immunoprecipitation of transfected
Myc-tagged cullin proteins with endogenous AMBRAL in U20S cells, analysed by
immunoassay. ¢, RT-gPCR analysis of CCADI mRNA expression in U20S cells following
knockdown of AMBRAI or various cullin genes by siRNA pools (7= 3 biological
replicates). d, Co-immunoprecipitation of transfected wild-type (WT) AMBRAL and
AMBRA1(AH) with endogenous CUL4A and CUL4B in 293T cells. e, Immunoassay of
AMBRAL1 in control and AMBRAI-knockout U20S cells with doxycycline-inducible
expression of wild-type AMBRA1, AMBRAL(AH) or GFP control, after treatment with 500
ng ml~1 doxycycline (+Dox) or DMSO (-Dox) for 2 d. f, Immunoassay of cyclin D1
ubiquitylation in 293T cells with overexpression of wild-type AMBRA1 or AMBRAL(AH).
Cells were pretreated with 1 UM bortezomib for 3 h and lysed in denaturing conditions
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before immunoprecipitation of cyclin D1. Representative of two independent experiments. g,
Immunoassay of cyclin D1-HA in U20S cells expressing wild-type cyclin D1 or
phosphomutant cyclin D1 (cyclin D1(T286A)) treated with 10 pg ml~1 cycloheximide for up
to 2 h. Cells were transfected with control or AMBRA 1-targeted siRNA pools 3 d
previously. h, Quantification of cyclin D1-HA protein levels in U20S cells from g with
best-fit curves for one-phase decay (77 = 3 biological replicates). i, Co-immunoprecipitation
of cyclin D1-HA (wild-type or T286A) and endogenous AMBRAL in U20S cells. CDK4
serves as a positive control for cyclin D1 binding. Representative of two independent
experiments. All data are mean + s.d. Pvalues calculated by two-sided paired #test (c) and
two-way ANOVA (h). HSP90 and actin are loading controls.
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Extended Data Fig. 8 |. AMBRA1 ubiquitylates cyclin D.
a, Coomassie-blue-stained gel with protein extracts from insect Sf9 cells (=) or Sf9 cells

expressing cyclin D1 and CDK4 (arrows). b, Immunoblot for cyclin D1, cyclin D1
phosphorylated on T286 (P-T286) and CDK4 in protein extracts, similar to a. c,
Immunoassay of Flag and Myc tag in untransfected 293T cells (-) or 293T cells transfected
with AMBRA1-3xFlag or Myc3—-CUL4B. Actin is a loading control. 7= 1 experiment.
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Extended Data Fig. 9|. AMBRALisatumour suppressor in KRAS-mutant mouse lung
adenocar cinoma.

a, Lollipop plot for B and AMBRAI mutations in 10,953 patients (10,967 samples) in 32
studies from TCGA (data downloaded from https://cbioportal.org in September 2020). b,
Immunoassay of AMBRAL and cyclin D1 in AMBRAI-knockout U20S cells upon stable
expression of GFP, wild-type AMBRAL (WT) or two mutant forms of AMBRA1 from a
(stop codons at the position indicated by an asterisk). HSP90 is a loading control.
Expression of 217* was not detected, suggesting an unstable protein. c, Quantification of
cyclin D1 in b (n7= 3 biological replicates). Data are mean £ s.d. P values calculated by two-
sided paired ttest. d, e, Relative tumour sizes for each sgRNA in KT mice (lacking Cas9)
(d) (n=4 mice) and KPTC mice (e) (7= 5 mice). Tumour sizes were calculated from
merged data from all tumours in all mice and normalized to inert sgRNAs 15 (d) or 14 (e)
weeks after cancer initiation. f, g, Tumour number for each sgRNA in KTC mice (f) (7=9
mice) and KPTC mice (g) (7=5 mice). Data from all tumours in all mice were merged and
normalized to the average tumour number across inert SgRNAS. For d—g, error bars denote
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95% confidence intervals determined by bootstrap sampling. h, Representative H&E
staining of tumours from KC mice infected with lentiviral vectors encoding Cre recombinase
and either a control or AmbriI-targeted sgRNA. Scale bar, 100 um. 7=6 (Meono. 1) or n=5
(Ambral no. 1) mice). i, Representative immunofluorescence for cyclin D in control and
Ambral-knockout KC tumours. The cyclin D antibody used recognizes cyclin D1 and D2.
Scale bars, 100 ym. From 7= 2 mice per sgRNA).
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Extended Data Fig. 10 |. AMBRALisatumour suppressor in KRAS-mutant human lung
adenocar cinoma.

a, Immunoassay of AMBRAL, RB and cyclin D1 in control and knockout human A549 lung
adenocarcinoma cells. Actin is a loading control. b, Growth of control and mutant A549
xenografts in NOD-SCID-gamma (NSG) mice (/7= 8 tumours per SgRNA). **** B ieraction <
0.0001 by two-way ANOVA comparing the AMBRAI-knockout curve with control. Tumour
volume measurements for R#BI-knockout tumours were staggered 1 d behind control and
AMBRAI-knockout tumours, which precludes two-way ANOVA. Data are mean + s.e.m.,
with best-fit curves for exponential growth. ¢, Final tumour weights from b. Each symbol is
one tumour (7= 8 per sgRNA). Data are mean = s.d. d, g, j, Cyclin D1 protein levels as
measured by reverse phase protein array in relation to the mRNA expression as measured by
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RNA sequencing (upper quartile of fragments per kilobase of transcript per million mapped
reads (FPKM-UQ)) of RB pathway genes that best predict cyclin D1 protein in TCGA
KRAS G12-mutant lung adenocarcinoma (d) (7= 90 samples), KRAS wild-type lung
adenocarcinoma (g) (7= 257 samples) and EGFR-mutant lung adenocarcinoma (j) (7= 41
samples), using a step-wise regression model. For g, j, AMBRAI was not selected in the
final model but is shown for comparison. Each column is an individual sample, and samples
are sorted by cyclin D1 protein levels. e, h, Kaplan—Meier plot of AMBRAI expression
(high, upper third; low, bottom third) in TCGA KRAS wild-type lung adenocarcinoma (€) (7
= 361 patients) and EGFR-mutant lung adenocarcinoma (h) (s7= 60 patients). f, i, Forest plot
of Cox proportional hazard model of TCGA KRAS wild-type lung adenocarcinoma () (7=
340 patients) and £EGFR-mutant lung adenocarcinoma (i) (n= 60 patients). Model is
adjusted by stage, age and gender. Pvalues calculated by two-way ANOVA (b), two-sided
unpaired #test (c), ~test (d, g, j), log-rank test (e, h) and Wald test (f, i).

CRL4AMBRA1 CRL4AMBRA1

§

Extended Data Fig. 11 |. AMBRA1 regulates cyclin D protein stability and signalling through the
RB pathway.

AMBRAL1 limits CDK4/6 activity by mediating ubiquitylation and degradation of D-type
cyclins as part of the CRL4 E3 ligase complex. Loss of AMBRAL leads to accumulation of
cyclin D protein and decreased sensitivity to CDK4/6 inhibitors, owing to sustained RB
phosphorylation and therefore persistent cell cycle progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1|. AMBRAL lossregulatesthe response to CDK4/6 inhibition as well as levels of cyclin D.
a, Volcano plot of a CRISPR-Cas9 screen for genes that regulate the response to palbociclib

in U937 cells, analysed using the Cas9 high-throughput maximum likelihood estimator
(casTLE). FDR, false-discovery rate. b, Immunoassay for AMBRAL or RB in control and
AMBRAI- or RBI-knockout U937 cl ones. sgAMBRAI no. 1 and no. 2 denote two
different sgRNAs against AMBRA1; sgCtrl, control sgRNA. ¢, Change in U937 cell
numbers after a 48-h treatment with 0.5 pM palbociclib or DMSO. d, BrdU and propidium
iodide staining analysis of cycling S-phase U937 cells treated with 0.5 uM palbociclib for 24
h. Each symbol in ¢, d is an isogenic clone (7= 3 biological replicates per clone). g,
Immunoassay of RB phosphorylation (at S795) in U937 cells treated with increasing doses
of palbociclib or DMSO (=) for 24 h. f, Immunoassay of G1 cyclins and cyclin-dependent
kinases in U937 clones. U937 cells do not express cyclin D1. g, Volcano plot of shotgun
mass spectrometry comparing control and AM BRA1-knockout (KO) U20S cells.
Significant hits (|log,-transformed fold change| > 1, adjusted £< 0.05) are in red. BH,
Benjamin—Hochberg. h, Immunoassay of cyclin D1 and haemagglutinin (HA) in U20S cells
overexpressing HA-tagged, stabilized cyclin D1 (cyclin D1(T286A)—-HA) or red fluorescent
protein (RFP) control. i, Analysis of cycling S-phase cells from h treated with increasing
doses of palbociclib for 24 h (n= 3 biological replicates). j, Top, analysis of cycling S-phase
U20S cells after cyclin D1 (CCNDI) knockdown by siRNA pools. Bottom, corresponding
immunoassay 48 h after siRNA transfection (/7= 3 biological replicates). NT, non-targeting
control. k, I, Co-immunoprecipitation (IP) of cyclin D1 (k) and CDK2 (1) in control,
AMBRA1-knockout and cyclin-D1(T286A)-overexpressing U20S cells, and immunoassay
of relevant protein complexes (7= 1 (k) or n=2 (I) biological replicates). Tubulin and
HSP90 are loading controls. All data are mean + s.d. Pvalues calculated by two-sided
unpaired #test (c, d), negative binomial test (g), two-way analysis of variance (ANOVA)
with post hoc Sidak test (i, ANOVA Peeli line < 0.0001) and two-sided paired #test (j).
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Fig. 2|. AMBRAL1 regulates the stability of cyclin D.
a, Immunoassay of cyclin D1 in control and AMBRAI-knockout U20S cells treated with 10

pg mi~1 translation inhibitor cycloheximide (CHX) for 0 to 4 h. b, Quantification of cyclin
D1 (left), cyclin D2 (middle) and cyclin D3 (right) levels as in a (7= 3 biological replicates).
¢, Immunoassay of cyclin D1 phosphorylated at T286 and total cyclin D1 in U20S cells
treated with 1 pM proteasome inhibitor bortezomib (BTZ) for 4 h. d, e, Quantification of
cyclin D1 (d) and cyclin D1 phosphorylation at T286 (€) in cells from ¢ (n7 = 4 biological
replicates). f, Schematic of the tandem ubiquitin binding entities (TUBE) assay to
immunoprecipitate ubiquitylated proteins. g, Immunoassay of ubiquitylated cyclin D1
isolated from U20S cells using TUBEs. h, Quantification of cyclin D1 ubiquitylation
relative to total cyclin D1 from g (n7= 3 biological replicates). Data from both AMBRA1
SgRNAs are pooled. Only data from samples with similar levels of ubiquitin pull down are
shown. See Supplementary Table 9 for all data. i, Schematic of mass spectrometry (MS)
analysis to detect ubiquitylated proteins after immunoprecipitation with anti-K-e-G-G
antibodies. j, Quantification of cyclin D1 ubiquitylation at the three lysines detected by
immunoprecipitation and mass spectrometry of K-e-G-G peptides. shAMBRA/no. 1 and no.
2 denote two different short hairpin RNAs (shRNA) against AMBRA1; shNT, non-targeting
shRNA. k, Co-immunoprecipitation of endogenous AMBRAL and cyclin D in U20S cells
pretreated with 1 uM bortezomib for 4 h, analysed by immunoblot. DDBL is a positive
control for AMBRAL binding. The cyclin D antibody recognizes cyclin D1 and D2.
Representative of two independent experiments. HSP90 and tubulin are loading controls. All
data are mean + s.d. Pvalues calculated by two-way ANOVA (b), two-sided #test (paired &
test for d, €; unpaired #test for h), and two-sided unpaired #test with Benjamini-Hochberg
correction (j).
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Fig. 3|. CRL4AMBRAL ubiquitylates cyclin D.
a, Immunoassay of cyclin D1 and MYC in U20S cells treated with 1 pM neddylation

inhibitor MLN4924 for 0 to 8 h. b, Quantification of a (7= 3 biological replicates). Left,
cyclin D1; right, MYC. ¢, Immunoassay of cyclin D1 in U20S cells following knockdown
of AMBRAL1 or various cullin proteins. Asterisk, nonspecific band. The CUL4B antibody
appears to cross-react with CUL4A. d, Quantification of cyclin D1 in ¢ (7= 3 biological
replicates). e, Immunoassay of cyclin D1 ubiquitylation in 293T cells following
overexpression of AMBRAL and knockdown of CUL4A or CUL4B. Cells were pretreated
with 1 uM bortezomib for 3 h. Representative of two independent experiments. f,
Immunoassay of cyclin D1 and AMBRAL in U20S cells with doxycycline-inducible wild-
type AMBRA1 (WT), AMBRAZL(AH) (AH) or GFP control, treated with 500 ng ml~1
doxycycline for 2 d. g, Quantification of cyclin D1 in f (x7= 3 biological replicates). h,
Immunoblot of cyclin D1 polyubiquitylation (poly-Ub) from in vitro ubiquitylation assays
performed on purified cyclin D1. AMBRAL and CUL4B (CRL4-AMBRA1) were
independently purified from 293T cells, and E1, E2 and ubiquitin (Ub) are recombinant
proteins (s7= 1 experiment). i, Immunoblot of cyclin D1 polyubiquitylation from in vitro
ubiquitylation time-course assays, similar to h. Representative of two independent
experiments. HSP90 and actin are loading controls. All data are mean + s.d. Pvalues
calculated by two-way ANOVA (b) or two-sided paired #test (d, g).
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Fig. 4|. AMBRALlisatumour suppressor in KRAS-mutant lung adenocar cinoma.
a, Schematic of multiplexed CRISPR-Cas9 gene editing and Tuba-seq in KPTC mice, KTC

mice (wild type for p53) and KT mice (wild type for p53 and lacking Cas9). sgID-BC, dual
barcode to identify each individual tumour and its associated SgRNA. Aeo denotes the
neomycin resistance gene. b, Relative tumour sizes for each sgRNA in KTC mice (n=9
mice). Tumour sizes were calculated from merged data from all tumours in all mice and
normalized to inert sgRNAs 15 weeks after cancer initiation. Error bars denote 95%
confidence intervals determined by bootstrap sampling. c, Representative haematoxylin and
eosin (H&E) staining of lung sections from control and Ambrai-mutant KC mice 15 weeks
after cancer initiation. Scale bars, 1 mm. d, Quantification of tumours in c. 7= 6 (sg/Veo no.
1) or 5 (sgAmbral no. 1) mice. Data are mean + s.e.m. e, Kaplan—Meier plot of AMBRA1
expression (high, upper third; low, bottom third) in TCGA KRAS G12-mutant lung
adenocarcinoma (7= 136 patients). f, Forest plot of Cox proportional hazard model of
TCGA KRAS G12-mutant lung adenocarcinoma (/7= 131 patients). Model is adjusted by
stage, age and gender. Hazard ratios are given with 95% confidence interval in parentheses.
Pvalues calculated by two-sided unpaired #test (d), log-rank test () and Wald test (f).
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