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Quiescence is a cellular strategy for maintaining somatic stem cells in a

specific niche in a low metabolic state without senescence for a long period

of time. During development, neural stem cells (NSCs) actively proliferate

and self-renew, and their progeny differentiate into both neurons and glial

cells to form mature brain tissues. On the other hand, most NSCs in the

adult brain are quiescent and arrested in G0/G1 phase of the cell cycle.

Quiescence is essential in order to avoid the precocious exhaustion of

NSCs, ensuring a sustainable source of available stem cells in the brain

throughout the lifespan. After receiving activation signals, quiescent NSCs

reenter the cell cycle and generate new neurons. This switching between

quiescence and proliferation is tightly regulated by diverse signaling path-

ways. Recent studies suggest significant involvement of cellular proteostasis

(homeostasis of the proteome) in the quiescent state of NSCs. Proteostasis

is the result of integrated regulation of protein synthesis, folding, and

degradation. In this review, we discuss regulation of quiescence by multiple

signaling pathways, especially bone morphogenetic protein and Notch sig-

naling, and focus on the functional involvement of the lysosome, an orga-

nelle governing cellular degradation, in quiescence of adult NSCs.

Introduction

Neural stem cells (NSCs) actively proliferate and give

rise to all of the neurons and glial cells necessary to

constitute the embryonic brain. Although NSCs

decrease in number after production of mature brain

tissues is complete, they persist and maintain multipo-

tency in small areas of the adult brain. In the rodent

brain, adult NSCs reside in the subventricular zone

(SVZ) of the lateral ventricle and the hippocampal
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dentate gyrus (DG) (Fig. 1A,B) [1–3]. Adult NSCs are

mainly quiescent; however, some adult NSCs, called

active NSCs, proliferate and differentiate into mature

neurons, which then integrate into the pre-existing

brain network [4–7]. Quiescent NSCs become active

NSCs after receiving activation signals, and the transi-

tion from quiescent to active is reversible rather than

unidirectional [8,9]. Quiescence of adult NSCs is main-

tained by extrinsic and intrinsic factors, and diverse

signaling from local NSC niches is involved in this

process (reviewed in Ref. [6]) (Fig. 1C,D). For exam-

ple, bone morphogenetic protein (BMP) and Notch

signaling, which are activated by ligands secreted or

presented by neighbor cells, regulate adult NSC quies-

cence in both the SVZ and the DG. Here, we discuss

how NSCs are regulated by these signaling pathways

to maintain quiescence. The protein functions and sta-

bilities of these signaling molecules influence the down-

stream outputs and their diverse responses. Recently,

proteostasis (protein homeostasis [10]) was reported as

a significant regulator of the maintenance of adult

NSCs. Proteostasis is a consequence of integrated reg-

ulation of protein synthesis, proper folding, and pro-

tein degradation. We also discuss proteostasis in the

context of quiescence, focusing especially on the func-

tion of lysosomes, an organelle involved in degrada-

tion of cellular components.

Signals that control quiescent NSCs

Bone morphogenetic protein signaling in adult NSCs

has a long history of research. Previous studies

revealed that BMP is a dominant inducer of quies-

cence in NSCs in vitro and in vivo [5,8,11]. This canon-

ical BMP signaling upregulates the SMAD target

factors Id1-Id4 (Fig. 2A) as well as Hes1 and decreases

cell proliferation [11,12]. The SVZ exhibits enriched

expression of BMP components including the BMP

receptors BMPR Ia and BMPR II, BMP ligands, and

the BMP inhibitor Noggin [13,14]. Noggin is secreted

from the ependymal cells, ciliated glial cells in the sur-

face of lateral ventricle, in the adult brain [13]. In the

DG, NSCs express the BMPR BMPR1a and BMPR2.

These BMPR are activated by BMP2/4, members of

the decapentaplegic (Dpp) subfamily of BMP ligands,

which are secreted from dentate granule cells in the

hippocampus [12]. Genetic deletion of Bmpr1a and

Smad4, an effector of the canonical BMP pathway,

using lentivirus-mediated KO in Sox2+ cells in the DG

immediately, induces NSC proliferation, followed by

marked reduction in active NSCs and doublecortin

(DCX)+ immature neurons in the DG within 3 weeks

[12]. Blockade of BMP by Noggin recruits quiescent

NSCs into the cell cycle in the DG [12,15]. Thus, BMP

signaling plays an essential role in the maintenance of

quiescent NSCs. However, differential regulation of

BMP ligand and receptor subtypes may cause adult

NSCs to be differentially responsive to the BMP sig-

nal. For example, the cerebrospinal fluid (CSF) deliv-

ers many extrinsic factors to NSCs in the SVZ [13,16].

One of these factors, BMP5, a member of the osteo-

genic protein 1 (OP-1) subfamily of BMPs that is

enriched in the CSF of young mice, was identified as a

factor that enhances in vitro activation of quiescent

NSCs from the SVZ in association with other growth

factors [epidermal growth factor (EGF) and basic

fibroblast growth factor] [17]. Thus, the Dpp subfamily

and the OP-1 subfamily of BMP ligands have oppos-

ing functions in regulating NSCs. Furthermore, post-

translational modification of BMPR1a receptor by

palmitoylation modulates NSC function through

receptor localization and signal transductions; different

palmitoylated positions in BMPR1a differentially

affect canonical and noncanonical BMP signaling,

which lead to SMAD activation and extracellular sig-

nal-regulated kinase activation, respectively [18]. In

addition, age-dependent different expression of BMP

ligands, such as BMP2/4 and BMP6, in NSC niches,

might affect the maintenance of quiescence in adult

NSCs [19].

The Notch signaling pathway includes four Notch

receptors (Notch1–Notch4), which are cleaved upon

binding of Notch ligands (members of the delta or

jagged families) expressed in neighboring differentiat-

ing cells (Fig. 2B). The intracellular domain of Notch

(NICD) is transferred into the nucleus, where it binds

to the transcriptional factor CBF-1, suppressor of

hairless, Lag-2 [recombination signal-binding protein

for immunoglobulin kappa J region (RBPJ) in mice] to

activate downstream genes such as Hes (reviewed in

Ref. [20]). Notch1–Notch3 are expressed in the neuro-

genic niche of the adult mouse brain [21]. Significant

involvement of Notch signaling in quiescence was

demonstrated using Hes5-GFP reporter mice, which

express GFP under the control of Notch signaling.

Both the SVZ [22] and DG [23] exhibit activated

Notch signaling in heterogeneous cell populations,

including active and quiescent NSCs. In canonical

Notch signaling, RBPJ is the common downstream

effector of all Notch receptors. Conditional knockout

of RBPJ in the DG of GLAST-Cre-ERT2 Tg mice [24]

and in the SVZ of Nestin-Cre-ERT2 Tg mice [25] or

Hes5-Cre-ERT2 mice [26] results in enhanced genera-

tion of new neurons within a few weeks, mediated by

NSC activation, followed by severe depletion of NSCs

and the loss of neurogenesis within a few months.
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These reports suggest that Notch signaling regulates

the maintenance of both active and quiescent NSCs in

both the SVZ and DG. Importantly, previous studies

showed that Notch1 and Notch2 play distinct roles in

adult NSCs. Conditional KO of Notch1 decreased

proliferation of neurogenic NSCs in the DG (using dif-

ferent Cre drivers: Nestin-Cre-ERT2 [27] and human

GFAP-Cre-ERT2 [28]) and the SVZ (using Nestin-Cre-

ERT2 [29] and Hes5-Cre-ERT2 Tg mice [26]). On the

other hand, conditional KO of Notch2 induced abnor-

mal activation of quiescent NSCs, resulting in exhaus-

tion of the NSC pool in both the SVZ and DG of

Hes5-Cre-ERT2 mice [26,30]. These differential outputs

were confirmed by the expression of active forms of

the Notch receptors. Noch1ICD and Notch2ICD using

a Cre-inducible expression system in hGFAP-Cre-

ERT2 Tg mice [28] and Hes5-Cre-ER T2 Tg mice [30]

enhanced and decreased proliferation of NSCs, respec-

tively. These results indicated that although Notch1

and Notch2 have distinct roles in adult NSCs, both

Notch1 cKO and Notch2 cKO caused aging pheno-

types by decreasing neurogenesis as well as reducing

the NSC pool [26,29,30]. Another Notch receptor,

Notch3, which is enriched in quiescent NSCs, affects

NSC maintenance [31]. Depletion of Notch3 expres-

sion induced proliferation of adult NSCs in the SVZ

Fig. 1. Two NSC niches, the SVZ and DG, in the adult mouse brain. Schematic representation of a lateral view of the whole adult mouse

brain from the olfactory bulb (left) to cerebellum (right). Coronal planes dissected at lines (a) and (b) are shown in panels (A) and (B),

respectively, on the right. The two NSC niches are labeled in blue lines, highlighting the SVZ near the lateral ventricle (A) and the DG in the

hippocampus (B). Ventricles in the brain sections appear in white in panels (A) and (B). The detailed compositions of niches are represented

in panels (C) and (D) as enlarged views marked by red squares (c in A) and (d in B), respectively. Panel (C) displays the SVZ niche, which is

located near the lateral sides of the lateral ventricles. NSCs (blue) face the CSF in the lateral ventricle together with ependymal cells and

elongate their projection to blood vessels (red). Panel (D) displays the DG niche, surrounded by the granule cell layers (gray) and hilus. NSCs

are located in the subgranular zone next to the granule cell layer and elongate radial fibers, resulting in a radial glial morphology. NSCs in

both niches self-renew, differentiate into progenitor cells (green), and give rise to mature neurons (orange).
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[31], whereas ectopic Notch3 expression decreased pro-

liferation of NSCs derived from the DG [32]. The

downstream factors of these Notch receptors might

shed light on the diverse functions of Notch signaling

in adult NSCs. One example is Id4, originally identi-

fied as a target molecule of BMP signaling. Proteins in

the inhibitor of DNA binding (Id) family, members of

the HLH transcription factor family that lack a DNA-

binding motif, form heterodimers with other bHLH

factors that sequester the partner protein in non-

DNA-binding dimers (reviewed in Ref. [33]). Quiescent

NSCs derived from the DG express high levels of Id4,

and Id4 is a major effector of the Notch2 receptor and

a quiescence-inducing factor in NSCs [30,34]. Id4

decreases the protein stability of achaete-scute homo-

log (Ascl)1, a proneural bHLH factor expressed in

active NSCs, by sequestering E protein, the binding

partner for transcriptional activator function [34].

Another example of the differential output of Notch

signaling is Hes1, a canonical Notch effector and

bHLH transcriptional repressor that is expressed at a

higher level in quiescent NSCs [35]. Oscillatory expres-

sion of Hes1 regulates the expression dynamics of the

target genes, Dll1, Ngn2, and Ascl1, which contribute

to the switching from proliferation to differentiation of

embryonic NSCs [36,37]. In adult NSCs, higher

expression of Hes1 continuously inhibits Ascl1 expres-

sion and maintains NSCs in the quiescent state [35].

These reports suggest that the expression dynamics

and protein stability of bHLH factors might contribute

to differential outputs of Notch signaling.

The quiescent state of adult NSCs is also regulated

by other signaling receptors, for example, activation

of gamma-aminobutyric acid (GABA) receptors by

GABA secreted from NSC niche cells in the SVZ

and DG [38,39] and activation of integrin receptors

by binding of Mfge8, a phagocytosis factor, which is

secreted from quiescent NSCs of the DG [40]. Adult

NSCs express GABAA receptors and tonically

respond to GABA from niche cells, which are parval-

bumin-expressing (PV+) interneurons in the DG or

neuroblasts in the SVZ that can dictate the NSC

choice between quiescence and activation through

nonsynaptic GABA signaling [39,41]. On the other

hand, quiescent NSCs secrete Mfeg8 and promote

quiescence via suppression of the PTEN–Akt–mTOR1

pathway through binding to the integrin receptor

[40]. Tropomyosin receptor kinase C (TrkC) receptor

activation by binding of neurotrophin-3 from the

CSF or the nearby vasculature promotes NSC quies-

cence in the SVZ [42]. Together, these observations

indicate the importance of combinations of multiple

membrane receptors for maintaining NSC quiescence.

The activation of these signaling pathways is ligand-

induced upon binding to membrane receptors, most

of which induce the endocytic trafficking of receptors

to lysosomes or recycling back to the cell surface,

suggesting the important roles of lysosomes in NSC

A B

Fig. 2. BMP and Notch signaling cascades.

(A) Canonical pathway of BMP signaling.

BMPR bind to BMP ligands, and transduce

signals via SMAD molecules, which

ultimately enhance Id gene expression.

Noggin sequesters BMP and antagonizes

BMP signaling. (B) Canonical pathway of

Notch signaling. Notch receptors bind to

ligands on neighboring cells, inducing

gamma-secretase-mediated cleavage in the

signal-receiving cells (lower). Cleaved Notch

receptor (NICD) translocates into the

nucleus and activates the expression of Hes

genes.
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states. In the next part, we will discuss the involve-

ment of lysosomes in quiescent NSCs.

The lysosome: a digestive organelle
and a hub of nutrition signaling

Subsequent to ligand-induced activation, membrane

receptors are internalized in endosomes and ultimately

degraded in lysosomes after endolysosomal trafficking

or recycled into membrane surface (Fig. 3A). Lyso-

somes are membrane-enclosed cytoplasmic organelles

that degrade a variety of biological macromolecules,

including proteins, lipids, carbohydrates, and nucleic

acids (reviewed in Ref. [43,44]). The lysosomal lumen

is highly acidic; the low pH is maintained by a vacuo-

lar ATPase (V-ATPase) on the lysosomal membrane.

Cells contain between 50 and 1000 lysosomes, in which

more than 60 acidic hydrolases digest macromolecules

delivered from the endolysosomal and autophagic

pathways. Lysosomes were once thought of as static

organelles involved in the waste disposal system. How-

ever, recent reports have shown that lysosomes act as

regulatory hubs for cellular homeostasis by switching

the metabolic state between catabolism and anabolism.

In nutrient-rich environments, multiple sensors of

amino acid levels cause Rag GTPases to interact with

the Ragulator–protein complex [45]. Then, the Rag–
Ragulator complex recruits mTORC1 and other fac-

tors including transcriptional factor EB (TFEB), a

master transcriptional regulator of lysosomal compo-

nents, to the lysosomal membrane [46,47]. TFEB is

phosphorylated by mTORC1, resulting in inhibition of

nuclear translocation of TFEB (Fig. 3B) [47]. TFEB, a

member of the microphthalmia-transcription factor E

(MiT-TFE) family of HLH leucine zipper transcription

factors [48], activates lysosome-related genes under the

coordinated lysosomal expression and regulation

(CLEAR) gene network [49]. Nutrient starvation pro-

motes dephosphorylation of TFEB, leading to its

nuclear translocation. In the nucleus, TFEB upregu-

lates genes involved in lysosomal function and autop-

hagy, resulting in the recycling and clearance of

biomolecules inside cells. Thus, lysosomes control their

functions to adapt to environmental cues. TFE3,

another member of the MiT-TFE family, is also

involved in this process. Moreover, lysosomes regulate

extracellular conditions by lysosomal exocytosis after

fusion to the plasma membrane [50] and by the degra-

dation of extracellular matrix protein for extracellular

remodeling [51]. Lysosomes are also involved in a

broad range of cellular functions such as lipid home-

ostasis and transfer to other organelles (reviewed in

Ref. [52]), calcium signaling by lysosomal calcium

channels (reviewed in Ref. [53]), and responses to

stress such as proteostatic dysfunction (reviewed in

Ref. [54]). Next, we will discuss the role of lysosomal

functions in proteostatic regulation in quiescent stem

cells.

Lysosomes in quiescent NSCs

Lysosomes are involved in the regulation of proteosta-

sis (protein homeostasis). Proteostasis is maintained by

the protein quality control machinery, which consists

of protein synthesis on ribosome, proper protein fold-

ing assisted by molecular chaperones, and proteolysis

[55]. Proteolysis is mainly mediated by the ubiquitin–
proteasome and autophagy–lysosome pathways. Dif-

ferential regulation of these two proteolytic pathways

was recently reported in adult NSCs [56,57] (Fig. 4).

Transcriptome analyses of fluorescence-activated cell

sorting-sorted active and quiescent NSCs derived from

the SVZ revealed higher expression of lysosomal genes,

including TFEB, and lower expression of both protea-

somal and ribosomal genes in quiescent vs. active

NSCs [56]. In regard to molecular chaperones, quies-

cent NSCs express higher levels of ER stress–related
genes and lower levels of chaperonin TCP-1 ring com-

plex/chaperonin-containing TCP-1 subunits than active

NSCs [56]. Quiescent NSCs exhibit much higher lyso-

somal proteolytic activity and lower proteasomal activ-

ity than active NSCs in vitro [57]. These results suggest

that quiescent NSCs alter proteostasis, shifting the pre-

dominant sites of proteolysis from proteasomes to

lysosomes in order to adapt to their environment. In

in vitro cultures, BMP is a strong inducer of quies-

cence in proliferating NSCs [8]. BMP-induced quies-

cent NSCs derived from the SVZ [56] and the DG [58]

contain detergent-insoluble aggregates, which might

concentrate both proteasomes and their substrates for

the rapid reactivation into active NSCs [58]. In this

regard, these aggregates might be similar to protea-

some storage granules observed in quiescent yeast cells

[59]. BMP treatment of NSCs induces dephosphoryla-

tion and activation of TFEB, followed by nuclear

localization and increased gene expression, thereby

increasing lysosomal activity [57]. TFEB-KO NSCs

exhibit delayed entry into the quiescent state after

BMP treatment with higher levels of activated mem-

brane receptors [57]. Consistent with the in vitro

results, conditional knockout of TFEB in adult NSCs

(in GLAST-Cre-ERT2 mice) increases the number of

active NSCs in the DG, concomitant with the accumu-

lation of activated membrane receptors [57]. Ectopic

expression of a constitutively active mutant of TFEB

(caTFEB) or TFEB activation by mTORC1 inhibitors,
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rapamycin and Torin1, decreases NSC proliferation

in vitro [57]. In vivo, ectopic caTFEB expression in

NSCs of the DG by injection of lentivirus under the

control of the Hes5 or GFAP promoter decreases the

number of active NSCs in young adult mice [57].

These results suggest that lysosomal activation by

TFEB leads to quiescence in young NSCs and main-

tains their quiescence in the DG. On the other hand,

aged quiescent NSCs from the SVZ express less of the

lysosomal protein Lamp-1 than young quiescent NSCs,

at levels similar to those in active NSCs [56]. Ectopic

expression of caTFEB in vitro decreases the abundance

of aggregates in primary NSC cultures from the SVZ

in aged mice and promotes reactivation of quiescent

NSCs in the presence of the growth factors EGF and

FGF [56]. Rapamycin increases abundance of active

NSCs in the SVZ of old mice by its dietary supple-

mentation [56]. These results demonstrate that proteo-

static regulation by lysosomes differs between young

and aged NSCs (Fig. 4), and imply differential regula-

tion of lysosomes in the SVZ and the DG. Differential

outputs by TFEB activation in NSCs, including induc-

tion of quiescence in young NSCs of the DG [57] and

enhancement of reactivation in aged NSCs of the SVZ

[56], suggest an additional role of lysosomes in aged

NSCs in alleviating severe damage caused by aging.

Aged quiescent NSCs become more resistant to activa-

tion than young quiescent NSCs, a process in which

inflammatory signals from niche cells are involved

[60, 61]. Interferon (IFN)-c decreases NSC prolifera-

tion in vitro and inhibition of IFN response through

deletion of IFN-a and IFN-c leads to a similar

A

B

Fig. 3. The lysosome functions as a

degradative organelle and a signaling hub.

(A) Lysosomes digest cargo from

endosomes and autophagosomes in the

acidic lumen. The endolysosomal pathway

degrades biomolecules, including

membrane receptors, in lysosomes

following their internalization by

endocytosis. Autophagy encloses

cytoplasmic materials, including organelles,

into autophagosomes, which fuse with

lysosomes where their contents are

digested. Lysosomes secrete their contents

via lysosomal exocytosis. Lysosomes

function as a signaling hub for nutrient

sensing. The gray square is enlarged in

panel B. (B) The lysosome is a hub where

signaling molecules localize and transduce

their signals. v-ATPase maintains a low pH

by pumping protons. Nutrient-rich

conditions activate Ragulator-RAG, which

recruits and activates mammalian target of

rapamycin complex 1 (mTORC1) to

lysosomes. Activated mTORC1 (pink)

inhibits lysosomal biogenesis through

inhibitory phosphorylation of TFEB. Low

nutrient concentration results in inactivation

of mTORC1 and activation of TFEB, thereby

inducing expression of lysosomal genes.
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fraction of active NSCs in young and old NSCs in the

SVZ [61], implying an additional role for lysosomes in

inflammatory responses in aged NSCs.

The autophagy–lysosomal pathway degrades cellular

proteins and organelles. There are three types of

autophagy in mammals: macroautophagy, microau-

tophagy, and chaperone-mediated autophagy [62].

Macroautophagy is a major lysosomal catabolic pro-

cess induced by cellular stresses such as starvation and

abnormal protein accumulation. Damaged cellular

components and organelles are engulfed into

autophagosomes and degraded after fusion to lyso-

somes. This process is called macroautophagy.

Microautophagy and chaperone-mediated autophagy

directly incorporate cellular components and proteins

into lysosomes without the use of autophagosomes.

Several reports have shown that the autophagy–lysoso-
mal pathway is involved in the adult NSC mainte-

nance, progenitor cell differentiation, and neuronal

maturation. Removal of the autophagy-related gene

(Atg) FIP200, an essential gene for autophagic induc-

tion, in NSCs of hGFAP-Cre cKO mice, induced pro-

gressive loss of NSCs and defects in neurogenesis in

the adult brain, concomitant with increases in mito-

chondria and reactive oxygen species (ROS) [63]. Dele-

tion of Atg5, a gene important for autophagosome

formation, in dividing neural progenitor cells, was ana-

lyzed using a retrovirus encoding Cre recombinase in

the SGZ of adult mouse brain. Atg5 deletion decreases

survival of NSCs and delays neuronal maturation [64].

Hypomorphic mutation of Atg16L1, another impor-

tant gene for autophagosome formation, decreases

autophagy and proliferation but increases Notch1ICD

level in the SVZ of adult mouse brain [65]. Reduced

expression of Beclin1 or activating molecule in Beclin-

1-regulated autophagy (Ambra)1, both of which are

involved in the initial step of autophagosome forma-

tion, decreases proliferation and increases apoptosis in

the adult SVZ in heterozygote mice relative to wild-

type mice [66]. These reports suggest that autophagic

flux exists in adult NSCs and maintains the survival

and differentiation of these cells, as well as their pro-

geny, in both the SVZ and DG. Recent reports

demonstrated that upstream factors regulating autop-

hagic genes are regulators of adult neurogenesis. For

example, let-7, an miRNA for cell-cycle exit, affects

migration of newly generated neurons and their mor-

phology, both of which depend on autophagic activity

[67]. Forkhead box O (FOXO) transcriptional factors

are critical regulators for autophagic flux and pro-

teostasis in the adult NSCs [68–71]. Knockout of

FoxO1, FoxO3, and FoxO4 in hGFAP-Cre [68] and

GLAST-CreERT2 [70] mice induced an initial increase

in proliferating NSCs and progenitor cells and a subse-

quent severe decline in the NSC pool associated with

abnormal accumulation of autophagosomes. FoxO3

directly binds to numerous Atg, regulates proteostasis,

and avoids protein aggregates via autophagic clearance

in cultured neural stem and progenitor cells derived

from the adult SVZ [71,72].

Proteostatic regulation has also been reported in

stem cell differentiation; NSC differentiation is asso-

ciated with rewiring of chaperone networks [73],

while embryonic stem cell differentiation decreases

proteasomal activity [74]. Asymmetric cell division

causes selective delivery of the cellular degradation

machinery and damaged proteins, and contributes to

cell fate decisions through proteostatic regulation in

neural and hematopoietic stem cells (HSC)

[58,75,76]. Proteomic approaches are essential for

understanding such proteostatic regulations in detail.

For example, recent proteomic studies revealed speci-

fic regulation of extracellular matrix in the SVZ

niches in comparison with other brain regions; these

differences were not identified by transcriptomic

analysis. Detergent extraction methods for tissue sec-

tions enabled fractionation of proteins depending on

their association strength with extracellular matrix.

Several core matrix proteins are more detergent-sol-

uble in the neurogenic niches, suggesting the exis-

tence of mechanical regulation such as stiffness in

the stem cell niche [77].

Fig. 4. Lysosomal regulation of NSC quiescence. To maintain

proteostasis, active NSCs have higher proteasomal activity and

lower lysosomal activity, while quiescent NSCs have lower

proteasomal activity and higher lysosomal activity. Quiescent NSCs

contain more lysosomes, but lysosomal abundance decreases over

the course of the aging process. On the other hand, the level of

protein aggregates and ROS increases with age, in turn affecting

the depth of quiescence. In active NSCs, TFEB activation induces

quiescence, whereas in quiescent NSCs, it rejuvenates the cells

and decreases the abundance of aggregates. Thus, lysosomes

serve as a switch for maintaining NSC quiescence.
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Lysosomes in other quiescent cells

Quiescence is a fundamental mechanism by which vari-

ous types of cells, such as HSC and fibroblasts, main-

tain themselves in a low-metabolism state for long

periods of time [78]. Recent reports revealed the

importance of lysosomes in the quiescent state. HSCs,

the major source of multilineage hematopoietic cells,

mostly remain quiescent in order to protect themselves

from metabolic stresses, while their entry into the cell

cycle is accompanied by an increase in mitochondrial

activity (reviewed in Ref. [79]). Interestingly, deeply

quiescent HSCs, which contain small punctate mito-

chondria with low mitochondrial activity, express ele-

vated levels of lysosomal genes; however, this causes

not the degradation of mitochondria, but rather their

transient sequestration into enlarged lysosomes [80].

Autophagy, including mitophagy, involves many regu-

latory steps prior to fusion with lysosomes, but the

mechanisms by which HSCs regulate lysosomal activ-

ity in the enlarged lysosomes remain unknown. Fur-

ther investigation is required to elucidate the

degradation of cargos such as membrane receptors

[81]. In the adults, mitochondrial activity (as indicated

by mitochondrial membrane potential) does not signifi-

cantly differ between BMP4-induced quiescent NSCs

and active NSCs, whereas neuronally differentiated

progenitor cells have higher levels of mitochondrial

respiration than NSCs [82]. Lysosomes might affect

the differentiation of neural progenitor cells by regu-

lating mitochondrial activity. In addition, lysosomes

play a role in cell division of HSCs [76]. As in NSCs,

lysosomes are asymmetrically segregated in daughter

cells during cell division of HSCs. This controls the

fate of daughter cells, as cells receiving fewer lyso-

somes are prone to differentiate [76]. Lysosomes are

co-inherited with other factors, including autophago-

somes, mitophagosomes, and Notch factors such as

Numb and Notch1, which might act together.

Rat embryonic fibroblasts can be induced to

undergo quiescence by serum starvation for 2 days

[83]. In a transcriptome analysis aimed at identifying

factors governing long-term quiescence, lysosomal

genes exponentially increased their expression 2 days

after serum starvation and then increased continuously

for 2 weeks [83]. Endosomal genes also exponentially

increased their expression for 2 days but kept the same

expression level at later time points. Lysosomal inhibi-

tion by chemicals increased the abundance of mito-

chondrial ROS and induced deeper quiescence, a state

associated with lower responsiveness to serum stimula-

tion. On the other hand, lysosomal activation by ecto-

pic expression of Mitf, a member of the MiT/TFE

family, in quiescent cells, reduced ROS levels and

allowed more efficient reactivation by serum stimula-

tion. These observations suggest that lysosomes main-

tain a quiescent state between shallow and deep

quiescence that is associated with cellular metabolism

and stresses, implying important links with cellular

senescence and aging.

Conclusion

Here, we discussed recent findings related to adult

NSC quiescence, ranging from signaling pathways to

lysosomal regulation of quiescence. Recent reports

have suggested that lysosomes are associated with qui-

escence in many types of cells. In a long-lived quies-

cent state of Caenorhabditis elegans, which can survive

for months without food, TFEB is a master regulator

of reproductive quiescence that is required for entry

into quiescence as well as survival and recovery [84].

Further investigations, using both proteomic

approaches and protein analysis at the molecular level,

are required to reveal the role of lysosomes in quies-

cence. Imaging in live cells with fluorescent probes for

lysosomal activity could also be used to monitor lyso-

somal function and dynamics [51,85–87]. Because the

lysosome is a multifunctional organelle, the inhibition

or activation of lysosomes alters multiple aspects of

cellular functions, including metabolic changes and

environmental stresses associated with aging. Lyso-

somes also regulate lipid metabolism in cells [52,88,89],

suggesting that they are involved in lipid regulation in

adult NSCs [90]. Taken together, these observations

suggest that further studies of lysosomes will provide

deep insights into stem cell quiescence.
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