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Abstract

From fake news to innovative technologies, many contagions spread as complex contagions via a 

process of social reinforcement, where multiple exposures are distinct from prolonged exposure to 

a single source.1 Contrarily, biological agents such as Ebola or measles are typically thought to 

spread as simple contagions.2 Here, we demonstrate that these different spreading mechanisms can 

have indistinguishable population-level dynamics once multiple contagions interact. In the social 

context, our results highlight the challenge of identifying and quantifying spreading mechanisms, 

such as social reinforcement,3 in a world where an innumerable amount of ideas, memes and 
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behaviors interact. In the biological context, this parallel allows the use of complex contagions to 

effectively quantify the non-trivial interactions of infectious diseases.

On September 27th 2016, the World Health Organization (WHO) declared that measles had 

been eliminated from the Americas.4 Less than two years later, an outbreak of the disease in 

Venezuela sparked an epidemic across South America, which is ongoing and has sickened 

tens-of-thousands.5–7 Concurrently, the number of measles cases has increased in all but one 

of the WHO regions,8 over 80,000 cases (with a hospitalisation rate >60%) occurred in the 

European Union,9 and the United States of America experienced 17 measles outbreaks.5,10 

The majority of these cases occurred in unvaccinated individuals.11–13 From collapsing 

public health infrastructure14 and lack of access to vaccines7 to non-medical exemptions, 

e.g., religious beliefs,15,16 and the spread of fraudulent science,17–19 the precise reason 

individuals go unvaccinated are myriad; however, underlying all these mechanisms is the 

coupled transmission of two contagions, one biological and one—or more—social.

Clearly, contagions never occur in a vacuum, instead pathogens and ideas interact with each 

other and with externalities such as host connectivity, behaviour, and mobility. Nevertheless, 

many biological contagions are still considered to be “simple”, where infectious individuals 

transmit to susceptible individuals independently of anything else occurring around the 

individuals.2 The term simple contagion is somewhat of a misnomer, since many epidemic 

models need to be incredibly complicated to account for the rich diversity of biological 

pathogens and human behaviours; including non-Markovian dynamics,20 heterogeneous 

contact structure,21 vector-borne diseases22 and evolutionary dynamics.23 Yet, in almost all 

cases, the probability of a transmission event only depends on the states of the possible 

infector and infectee. Conversely, in complex contagions, as defined for instance in recent 

multidisciplinary work,1,24 the spreading mechanism explicitly depends on the context of 

transmission events, usually via the neighbourhood of the susceptible individuals, such that 

pairwise information becomes insufficient to model the transmission process.25,26 For 

example, social reinforcement can lead to a transmission rate effectively proportional to the 

number of different infectious contacts to which a susceptible individual is exposed.3 This 

mechanistic difference creates a false dichotomy, forcing us to choose the mechanism we 

think best describe the reality of a given contagion. In practice, the context of transmission 

events always matters.

When modeling a contagion, the choice of mechanism is critical because simple and 

complex contagions tend to induce substantially different dynamics and can lead to 

incompatible conclusions about intervention strategies or risk. An important difference is 

that complex contagions do not always feature a monotonous relation between the expected 

epidemic size and their average transmission rate, unlike simple contagions.27,28 Instead, 

microscopic variations in transmission rate can lead to macroscopic jumps in expected 

epidemic size. This effect, that small changes in transmission can lead to large differences in 

outbreak size, occurs because the population effectively builds up a latent epidemic 

potential29 where many individuals would infect their susceptible neighbours if only a few 

of them had one more infectious neighbour. Eventually, often due only to small variations in 

initial conditions or transmission rate, a macroscopic cascade of infections that releases this 
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latent epidemic potential will occur. The importance of correlations between the states of 

neighbours also explains why complex contagions can benefit from network clustering (i.e. 

triangles), again unlike simple contagions.30

Several models have been developed to study interacting contagions, often to investigate 

how the spread of awareness might slow an infectious disease through a dueling contagion 

framework.31–34 These models are often limited to two interacting contagions since, as we 

will see, the required number of parameters and assumptions grows exponentially with the 

number of considered contagions. Despite their complicated structure, these studies have 

provided several useful insights. Importantly, it was showed that positively interacting 

contagions feature discontinuous phase transitions and can benefit from network clustering.
35 Consider for example the interaction between influenza and other respiratory pathogens–

e.g., Streptococcus pneumoniae, Rhinoviruses, adenovirus, etc.–which can interact in 

different ways: An individual with a compromised immune system due to one infection 

might be more susceptible to the other, or an individual with both infections might exhibit 

heightened symptoms and increased transmission rates.36–39 A population can then build up 

a latent epidemic potential where many individuals would infect their susceptible neighbours 

if only a few of them were compromised by a second disease. Therefore, it might not be 

surprising that interacting contagions can also exhibit macroscopic jumps in expected 

epidemic size under microscopic variation in the average transmission rates, and that 

interacting contagions can also benefit from network clustering. Even for single pathogens 

spreading through a population, if different routes of transmission have drastically different 

transmission probabilities, e.g., HIV sexual transmission vs. needle sharing40,41 or Zika 

sexual transmission from men vs. women,42 they will spread more like complex contagions.

Here, we demonstrate that the connection between complex and interacting contagions runs 

far deeper than shared phenomenology. In Box 1, we present simple models of interacting 

and complex contagions in well-mixed populations and demonstrate that there exists an 

exact mapping between the two models, i.e. the simple model with interactions can always 

be expressed as a complex contagion. Figure 1 summarizes the interesting dynamical 

features of these models, namely their potential for discontinuous jumps in expected 

epidemic size as well as regimes of faster than exponential spread. Figure 1 also highlights 

the mathematical mapping between the two dynamics. Every curve of Fig. 1 can be obtained 

by solving the differential equations for either interacting or complex contagions. The 

solutions are identical. Consequently, it follows that in any context where the assumption of 

a well-mixed population holds, interacting contagion models are indistinguishable from 

complex contagions–provided we are unaware of potential interactions among pathogens, 

and are not collecting the corresponding coinfection data. Given that both assumptions, well-

mixed populations and data from a single pathogen, are often considered to hold in 

contained environments such as schools, workplaces, and homogenous social groups,43 our 

results demonstrate that, unless the process follows strictly simple dynamics, even perfect 

incidence data for a single contagion in these environments cannot be used to identify the 

true spreading mechanism.

The situation is different in heterogeneous environment, where contagions follow some 

underlying contact network. In this context, a contagion process is not fully described by 
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simply following the number of infections in time, and the identity and contacts of infected 

individuals matters for the dynamics. One recent study leveraged this idea to study memes 

by quantifying their spread within and across communities.25 Their approach is based on the 

fact that for complex contagions, unlike simple contagions, “the spread within highly 

clustered communities is enhanced, while diffusion across communities is hampered.” They 

identify a number of statistics that can help distinguish simple and complex contagions, e.g., 

the number of early adopters of memes (number of contagious nodes at early times) and the 

state of their neighbours. The logic is that if contagions benefit from network clustering, 

states of neighbours should be more correlated than expected from the network structure 

alone.

Unfortunately, interacting contagions also benefit from network clustering in similar ways,35 

which can lead us to confuse the two. Using simulations on a known contact networks, we 

find that looking for state correlations between neighbours can indeed distinguish interacting 

and complex contagions from simple contagions as previously claimed.25 However, we also 

find that this method cannot distinguish complex and interacting contagions from one 

another.

In our experiments we simulate simple, interacting, and complex contagions on both regular 

random contact networks with 20 random contacts for every node and equivalent but 

clustered networks where nodes now belong to cliques of size 12 (11 contacts per node 

within cliques) and have 9 additional random contacts; see Fig. 2. We use these regular 

networks to avoid confounding the effect of clustering with that of assortativity35 and to 

reduce noise in the observed statistics. We increase the transmission rates of both contagions 

by a factor of 7 when they appear on the same contact—this interaction parameter might 

appear high but is actually far from, for example, the interaction factor between influenza 

and pneumococcal pneumonia which can be up to 100-fold.44 The results of these 

simulations are straightforward (Fig. 2): When parametrized correctly such that all 3 

contagion models can reach the same level of prevalence after some desired time period, we 

find that interacting and complex contagions can be easily distinguished from simple 

contagions, but not from one another. This shows that not only do non-simple contagions 

benefit from clustering in network structure, but that network structure also leads to similar 

increases in statistical correlations between cases.

Altogether, the results from Box 1, Fig. 1, and Fig. 2 show that complex contagions and 

interacting simple contagions possess the same dynamical and statistical features, even if the 

mechanisms behind both models are completely different. Since we know real-world 

pathogens can interact with unknown numbers of other pathogens–or different strains/

serotypes of the same pathogen–the logical conclusion is that we ought to model real 

contagions as complex contagions. Critically, these contagions need not all be biological and 

pathogens can interact with, for example, the spread of a behaviour. Additionally, simple 

contagions dynamics are a subset of the complex contagion model, meaning that if the 

pathogen does not interact with other contagions, the model can recapitulate its dynamics. 

More importantly, by using the complex contagion model, we avoid the need to procure 

exponentially more data and estimate exponentially more model parameters as the number 

of interacting contagions increases; instead we can use a general parametrization to find a 
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complex transmission function β(I) governing the effective infection rate for every pathogen 

of interest.

We thus develop a framework to infer a function β(I) that reproduces some contagion time 

series from a complex contagion Markov model of Susceptible-Infectious-Recovered 

dynamics.2 Essentially, this is the same well-mixed model as shown in Box 1 but where 

individuals who recover are now immune to the contagion instead of returning to the 

susceptible state. Because most real contagion data tend to be non-monotonous, i.e., they 

have a growth period, a peak, and a period of decay, the SIR model is likely more 

appropriate for empirical data. In this framework, we inverse the differential equations to 

infer a β(I) function from data by assuming some Gaussian noise around the deterministic 

I(t) equation and using a parametrization of β(I) in terms of Bernstein polynomials (a 

detailed description is given in the Supplementary Information).

Our procedure focuses on β(I) instead of an instantaneous transmission rate β(t) as used 

previously45 for two reasons. First, using a β(I) instead of an instantaneous β(t) avoids 

overfitting to noise in the instantaneous growth rate of a time series I(t), since we combine 

the information contained in both the rise and fall of a contagion. Second, using β(I) maps 

real data to well-studied Markovian (i.e. memory-less) complex contagions and therefore 

also provides an easy way to compare contagions independently of time and initial 

conditions. Lastly, we provide formulation of the inference procedure for both prevalence 

(current infectious cases) and incidence data (new cases per unit time) in the Supplementary 

Information.

We illustrate the value of this inference procedure on simulations of both interacting and 

non-interacting simple contagions in Fig. 3. We selected parameter values to produce two 

very similar time series to test our framework on a hard instance of the contagion inference 

problem. While the only noise in the data is that of the regular stochasticity of epidemic 

simulations, we used a relative low sampling rate and used a single realization of both 

interacting and non-interacting contagion process. Even in this context we find that the 

strength of the interaction is reflected in how much the inferred β(I) function deviates from a 

simple constant transmission rate, as measured by the ratio of the maximal to minimal 

values in the inferred β(I) function. One advantage of using the inferred β(I) functions is that 

it highlights features of a contagion not readily visible in its time series alone, such as the 

velocity of the contagion, which is not restricted to exponential spread unlike classic models. 

Our results therefore showcase how a robust framework of complex contagion can be used 

to quantify interactions or simply distinguish and classify contagions.

To illustrate the potential our framework for real-world contagions, we can infer the 

presence of complex contagion dynamics in a wide range of contagion data. In doing so, we 

identified a few interesting cases that go against the conventional wisdom that biological 

pathogens spread as simple contagions while social pathogens spread as complex contagions 

through social reinforcement. First, we focus on social pathogens, namely memes and news, 

to find cases where loss of novelty of the pathogen, or depletion of susceptibles, decreases 

its transmission rate (i.e. dβ/dI < 0 ∀ I) contrarily to most other social contagions. We show 

one such case in Fig. 4(a), using the incidence of news and social media posts related to 
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Walter Cronkite’s death in 2009. Nevertheless, recent work on collective attention dynamics 

on social media finds evidence that meme spreading is–as expected–often characterized by 

accelerating rates of spreading.46 Our results provide a general explanation for why such 

dynamics are expected to occur often in social contagions, but can still account for 

“contagions” where novelty causes a decrease in transmission rate, e.g., the previous 

example of Walter Cronkite’s death.

Second, we pick a biological contagion with known interactions: dengue virus. Indeed, there 

are well documented interactions across dengue strains based on antibody-dependent 

enhancement.47,48 In this interaction mechanism, antibodies from a primary dengue 

infection bind to dengue virus particles of a different serotype, which does not neutralize 

virus particles and in fact helps them infect cells. To illustrate the utility of our inference 

methodology, we focus on the 2005 dengue outbreak in Puerto Rico–as it features a 

combination of two dengue strains (DENV 2 and 3)–and, as expected from our previous 

simulations, we find a significant increase in transmission rate from the onset of the 

outbreak to about half of its peak value. Surprisingly, the inferred transmission function is 

non-monotonous and then declines around peak incidence; potentially due to the depletion 

of more susceptible individuals (see Supplementary Information).

Future work should focus on leveraging our effective, complex contagion model to more 

broadly uncover known and unknown interactions across infectious diseases and social 

contagions. For example, with data on co-infections by dengue serotype, we could test the 

model’s ability to distinguish between multi- and single-strain dengue virus outbreaks using 

only aggregate data. After demonstrating the utility of our model to distinguish dengue 

outbreaks, one could attempt to quantify unknown biological interactions between various 

infectious diseases. In doing so one must take care to correctly assess the impact of varied 

network structures45 and different model mechanisms including: spontaneous infections,49 

disease vectors,22 or multiple exposures.50 In addition, our complex contagion model–paired 

with high-resolution epidemiological data–can be used to search for the presence of 

complex, biological contagions, i.e., single pathogen systems where the probability of 

infection is a non-linear function of the number of exposures.

In summary, interacting simple contagions are mathematically equivalent to complex 

contagions if we assume well-mixed populations. And, even if we know the underlying 

contact network, previously proposed statistics–such as the number of infectious neighbours 

upon infection or recovery–mostly help to distinguish complex contagions or interacting 

contagions from simple contagions, but not necessarily from one another. That we are 

unable to distinguish interacting contagions from complex contagions on networks using 

these statistics suggests that their physical equivalence can be proven even the absence of 

mass action mixing. Unfortunately, this non-identifiability also implies that phenomenology 

and model fitting cannot identify nor quantify spreading mechanisms if we are not fully 

aware of all possible interactions and coinfections. One consequence being that 

measurements of complex spreading mechanisms, such as social reinforcement, might be 

practically impossible unless one can explicitly control for unknown interactions. Otherwise, 

observations of the spread of an individual meme or biological contagion in a real social 

system will always be confounded by the innumerable number of ideas, pathogens and 

Hébert-Dufresne et al. Page 6

Nat Phys. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



behaviours that might be interacting with each-other and with the contagion. Even worse, in 

practice we rarely have a perfect knowledge of the underlying contact network, such that the 

variations in transmission rate due to interactions are also combined with variations due to 

the unknown contact structure.

We therefore suggest embracing complex contagions as scientifically meaningful, even in 

context where one believes the underlying mechanisms are not complex (i.e. the complex 

contagion model can be falsified with experiments). In fact, we claim that, even when social 

reinforcement and/or non-linear infection rates has little mechanistic support, complex 

contagions remain a general, effective framework for contagions of all nature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

Well-mixed compartmental SIS models

We use the simple Susceptible-Infectious-Susceptible (SIS) process to highlight the 

mathematical mapping between complex contagions and interacting simple contagions. 

In the SIS process, infectious individuals infect susceptible individuals, but also recover 

back to the susceptible state. A general complex contagion model can be followed using 

an ordinary differential equation (ODE) for the density I(t) of infectious individuals at 

time t. Omitting the obvious temporal dependency, we write

İ = β(I)I(1 − I) − γI (1)

where γ is the recovery rate and where β (I) describes the transmission rate per contact 

given that there is a density I(t) of infectious individuals in the population. For example, 

an increasing β (I) can describe a social reinforcement mechanism.

We can write similar equations for two interacting simple contagions by tracking the 

density [SS] of individuals which are susceptible to both contagions, the densities [IS] 

and [SI] that are infected by the first or second contagion only, and the density [II] that 

are coinfected. We are mostly interested in the density of nodes Ĩ = [IS] + [II] which are 

infected by the first contagion. We therefore follow

[Iİ] = [IS] β2[SI] + αβ2[II] + [SI] β1[IS] + αβ1[II] − γ1 + γ2
[II] (2)

[IṠ] = [SS] β1[IS] + αβ1[II] + γ2[II] − γ1[IS] − [IS
] β2[SI] + αβ2[II] . (3)

Comparing the sum of Eqs. (2) and (3) with Eq. (1) shows that the two models are 

equivalent under the mapping

β(I) ≡ β(I) = β1[IS] + αβ1[II]
[IS] + [II] (4)

which is a valid mapping from interacting contagions to a complex contagion, for every 

monotonous form of [IS]+[II] (the vast majority of possible SIS curves). A similar 

mapping can be obtained for Susceptible-Infectious-Recovered dynamics using the 

monotonicity of the recovered curve assuming recovered individuals are now immune.
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FIG. 1. Analytical solutions of both SIS ODE systems from Box 1: Interacting simple contagions 
and complex contagions.
In panel a) we present the expected final epidemic size, which can undergo a continuous, 

hybrid, or discontinuous transition at varied epidemic thresholds. All contagions use the 

same recovery rate, γ1 = γ2 = γ, while other parameters are specified in the figure. We 

highlight three parameter sets (circled) whose full behaviour is explored in panel b) and c). 
In panel b) we present the effective transmission rate per infectious contact, which are 

monotonously increasing in all cases. In the continuous transition regime (blue curve), β(Ĩ) 
is almost but not quite constant at β1. In the hybrid transition regime (green curve), β1 is flat 

until Ĩ reaches the expected epidemic size Ĩ∗ of its second epidemic transition, at which 

points the synergistic interactions start. In the discontinuous transition regime (orange 

curve), β(Ĩ) is a linear function of Ĩ. Panel c) illustrates the varied time evolution of Ĩ(t) 
through time. In the continuous regime (blue curve), we see an exponential growth with 

saturation at equilibrium. In the discontinuous regime (orange curve), we see an exponential 

growth followed by a regime of rapid acceleration. In the hybrid regime (green curve), we 

see both behaviours in an evolution with two plateaus; mostly visible on the inset which 

shows the longer, complete time evolution. All results were obtained both by integrating 

Eqs. (2)–(3), and by using the obtained β(Ĩ) curve as an input to Eq. (1). We found that the 

two approaches, interacting simple contagions or complex contagions, give the exact same 

results in all regimes.
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FIG. 2. Statistics of SIS simulations of simple, interacting and complex contagions.
(left) The contact network structure used in the simulations. All 104 nodes belong to a single 

clique of size 12 and have an additional 9 random neighbors, for global clustering coefficient 

C = 0.29. (right) Observed phenomenology: fraction of infected nodes 5000 time steps and 

average number of infectious neighbors upon infection of a node, as well as a comparison of 

the same features versus expectations on an equivalent random network (same degree 

distribution, but all edges are uniformly randomized). We show the median value of all 

statistics as well as their 50% confidence interval. Parameters were chosen such that the 

fraction of infected nodes are similar after the 5000 time steps. The simple contagion uses a 

transmission probability of 8 · 10−5 and a recovery probability of 10−3. The interacting 

simple contagions use a transmission probability of 12 · 10−6 and a recovery probability of 

10−3, but the transmission probability increases by a factor of 15 if the other disease is 

present on the contact (in either the susceptible or infectious node) and the recovery 

probability decreases by a factor of 2 and 3 for the first and second disease if a node is 

infected by both. The statistics shown are for the first disease only. Finally, the complex 

contagion uses transmission and recovery probability that depend on the number k of 

infectious neighbor. The transmission probability follows a sigmoid p0 +(3/4)p0/(1+ 

exp(−2(k − 2)) with p0 = 5 · 10−5 whereas the recovery probability simply falls as 10−3/k.
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FIG. 3. Signature of non-interacting and interacting SIR epidemics.
We simulate the Susceptible-Infectious-Recovered (SIR) process in the case of non-

interacting and interacting simple contagions on clustered contact networks where each of 

10,000 individuals belongs to 2 cliques of size 5. (a) Dynamics of the density of infected 

individuals for epidemics taking place on the same networks, and (c) corresponding 

incidence time series. Parameters were chosen to produce roughly similar time series. In one 

case (blue data), two diseases with transmission rate 3/10 and recovery rate 1/3 spread 

without interaction, and we show the evolution of only one of them. In the other case (green 

data), two diseases with transmission rate 1/10 and recovery rate 1 interact positively by 

increasing their transmission rate by a factor of 7 whenever the other disease occurs on the 

same contact and decreasing their recovery rate by the same factor when an individual is co-

infected. We again show the evolution of only one of the two diseases. The coloured curves 

are Bayesian fits of a continuous model of complex contagion in a well-mixed population;51 

the simulated time series are shown with small closed symbols. (b) Inferred complex 

contagion function β(I)/γ for the two series from prevalence data, with the density of 

observation illustrated with bar plots below. The maximum a posteriori fit is shown with a 

dotted line, alongside with the 5th to 95th percentiles (shaded region), and 100 randomly 

selected posterior samples (coloured transparent lines) that highlight the samples-to-samples 

variability. The insets describe how close the inferred transmission functions are to a flat 

transmission rate by plotting the distribution of the ratio of the maximal to minimal values in 

the posterior samples. In both cases, the transmission functions inferred on the time series of 

interacting contagions are significantly different from the transmission functions inferred on 

non-interacting contagion data. (d) Same inference, but from incidence data.
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FIG. 4. Complexity of real social and epidemiological contagions
We fit the time series shown in the insets—the empirical incidence of two real complex 

contagions—using the SIR version of our model. The series in (a) depicts the number of 

mentions of Walter Cronkite’s death on social media,52 whereas (b) shows the overall 

incidence for the 2005 dengue outbreak in Puerto Rico.53,55 The main plot shows the 

posterior distribution and MAP estimate for the contagion function. The maximum a 

posteriori fit is shown with a dotted line, alongside with the 5th to 95th percentiles (shaded 

region), and 100 randomly selected posterior samples (coloured transparent lines) that 

highlight the samples-to-samples variability Note that the prevalence (second inset, in blue) 

are not actually observed. Both contagions slow down as the infected density increases, one 

from the start (social contagion), and the other after a rapid initial acceleration (Dengue).
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