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Deficit of Cross-Frequency Integration in
Mild Cognitive Impairment and Alzheimer’s
Disease: A Multilayer Network Approach
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Background: Studies at specific frequencies have shown abnormalities in brain functional networks among mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) patients. Previous studies have failed to take into account the possibility
that optimal cognitive integration requires interactions between different frequency bands.
Purpose: To study whether there is abnormal cross-frequency integration in patients’ brains during disease progression.
Study Type: Retrospective.
Population: Forty-six normal control (NC), 85 patients with MCI, and 31 patients with AD.
Field Strength/Sequence: 3T.
Assessment: Multilayer network models were constructed for NC, MCI, and AD, and multilayer participation coefficient (MPC)
was used to study the changes of the interlayer relationship in the course of disease development. In addition, MPC and an
overlapping degree were combined to classify nodes in the network, and the role of key nodes in the interlayer interaction was
mainly observed. Finally, the correlation between multilayer network measures and cognitive function was investigated.
Statistical Tests: Pearson chi-squared two-tailed test, one-way analysis of variance (ANOVA), nonparametric Spearman
correlation coefficient r, and the false discovery rate.
Results: The MPC of the network decreased significantly in MCI (P < 0.05) and AD (P < 0.05). The number of intralayer nodes
increased significantly (MCI [P < 0.05], AD [P < 0.05]) and the number of interlayer nodes decreased significantly. Centrality loss
between frequencies of a large number of hub nodes, among which the damaged hub nodes included the left hippocampus,
left precuneus, right precuneus, left posterior cingulate gyrus, left precentral gyrus, right precentral gyrus, left medial superior
frontal gyrus, and right postcentral gyrus. MPC was significantly associated with memory impairment in patients (AD [Spearman’s
r = 0.526, P < 0.05], MCI [Spearman’s r = 0.229, P < 0.05]), and these related regions included damaged hub nodes in patients.
Data Conclusion: In the multilayer networks of patients, there was an obvious deficit in cross-frequency integration and
the hub nodes were preferentially damaged. Moreover, these vulnerable hubs are associated with patients’ cognitive
scores.
Level of Evidence: 1
Technical Efficacy Stage: 3
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ALZHEIMER’S DISEASE (AD) is a common neurode-
generative disease and has been of great interest to the

network neuroscience community because it can cause serious

progressive cognitive and functional impairment.1 Research
has shown that mild cognitive impairment (MCI) is an early
stage of AD.2 Therefore, exploring the neural relationship
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between AD and MCI may provide an opportunity for the
early diagnosis of AD.

Most functional magnetic resonance imaging (fMRI)
studies have demonstrated the gradual deterioration of brain
functional networks from MCI development to AD.3,4 In
these studies, brain signals are usually bandpass-filtered
between 0.01 and 0.1 Hz. However, studies have shown that
functional brain networks are frequency-dependent.5,6 Some
studies have reported that signals interact or modulate between
different bands to support cognitive functions.7-9 Moreover, a
study has shown that the presence of network connections and
hub nodes fluctuates in the 0.01–0.1 Hz frequency band.10

The importance of each region fluctuates dramatically due to
frequency changes, and hub nodes may be very different when
functional connections are measured in different frequency
bands.11 This study shows that the network in a specific fre-
quency range is not a separate entity. The interaction between
frequencies should be taken into account in future study.12

Therefore, multilayer networks have recently been used to
study the complex cognitive activity of the human brain.13 In
terms of centrality, hubs identified in multilayer networks are dif-
ferent from those identified in monolayer networks, and the use
of these brain regions to classify schizophrenia patients and
healthy subjects achieved higher accuracy and sensitivity than tra-
ditional single-layer networks.14 Dynamic topological changes in
the separation and integration of AD brain networks have been
explored previously in an individual frequency band.15 This
research showed that compared with the networks of normal con-
trol (NC), those of AD patients have reduced global information
processing (reduced interaction between modules) and increased
local information processing (increased interaction within mod-
ules). It also reveals that a decrease in the number of hubs between
modules and an increase in the number of hubs within modules
are also observed among nodes, indicating preferential impairment
of hub nodes in the patient brain network. These results indicate
that AD patient’s brain networks tend to feature increased isola-
tion and reduced integration. In addition, hub nodes have indeed
been shown to be damaged in AD.16 Electrophysiological study
has repeatedly shown that cross-frequency coupling is a mecha-
nism of interaction between different frequency layers.17 There is
evidence that coupling may occur between different frequency
bands in the process of cognition.18 However, in multilayer net-
works it has not been explored whether patients with AD have an
abnormal balance of intrafrequency (ie, multilayer networks tend
to be isolated) and interfrequency (ie, multilayer networks tend to
integrate) information exchange.

The purpose of this study was to explore the trend of
information integration ability in patients’ brain networks
using a multilayer network model, which may help to under-
stand the neural mechanism of different frequency interac-
tions in resting brain networks. In addition, hub nodes in
single-layer networks have been proven to be high-risk factors
in AD.19 However, it is not clear whether hub nodes were

damaged in multilayer networks. Therefore, this research
focused on the core nodes in the network.

Materials and Methods
Participants
The resting-state fMRI data from this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) public data-
base. Data collection was conducted according to Good Clinical
Practice guidelines, US 21CFR Part 50- Protection of Human Sub-
jects, and Part 56-Institutional Review Boards (IRBs) / Research
Ethics Boards (REBs), and pursuant to state and federal regulations.
Written informed consent and HIPAA authorizations for the study
was obtained from all participants and/or authorized representatives
and the study partners before protocol-specific procedures were car-
ried out. This study included 46 NC subjects (74 � 6 years,
18 males), 85 patients with MCI (71 � 8 years, 41 males), and
31 patients with AD (73 � 7 years, 13 males).

Data Acquisition
The project used in this study was the ADNI2 dataset in the ADNI
database, mainly studying MRI and resting-state fMRI data of NC,
MCI, and AD subjects. Resting-state fMRI data were obtained from all
subjects using a 3T Philips Medical Systems (Best, Netherlands) MR
scanner. During the process of data acquisition, the subjects lay supine
in the scanner with their eyes closed; the head was stabilized as much as
possible to avoid artifacts caused by shaking, and the subjects tried to
avoid thinking in any systematic way. The equipment parameters for
the acquisition of T1-weighted magnetization prepared rapid gradient
echo (MP-RAGE) sagittal images were as follows: repetition time
(TR) = 6.8 msec, echo time (TE) = 3.16 msec, slice thickness =
1.2 mm, flip angle (FA) = 8�, sagittal slices = 170, matrix = 256 × 256,
field of view (FOV) = 256 × 256 mm2. All resting-state functional
images were collected by an echo-planar imaging (EPI) sequence. The
scanning parameters were as follows: number of slices = 48; TR = 3000
msec; TE = 30 msec; slice thickness = 3.3 mm; FA = 80�, number of
timepoints = 140, voxel size = 3 × 3 × 3 mm3, matrix = 64 × 59,
FOV = 212 × 198.75 mm2. The subjects meeting all the above scan-
ning parameters were obtained and the data were checked. Among
them, one NC subject was excluded because the timepoint was incom-
plete, and the other eligible subjects were preprocessed. Table 1 shows
the demographic information of the participants.

Data Preprocessing
The resting-state fMRI data were processed using the Data Processing
Assistant for Resting-State fMRI (DPARSF) toolbox (http://pub.
restfmri.net/), Statistical Parametric Mapping (SPM12) and the
Resting-State fMRI Data Analysis Toolkit (REST 1.8) package were
on a MatLab (R2016b, MathWorks, Natick, MA) platform.20,21

Data from the first 10 timepoints were removed. The data from the
remaining 130 timepoints were preprocessed using DPARSF software
as follows: 1) slice timing correction: layer 47, located in the middle,
was selected as the reference layer, and the remaining layers were
aligned to that layer to eliminate the impact of different acquisition
times on the data; 2) realignment: images with translational head
movement of more than 2 mm or a rotation angle greater than 2�

were discarded from the NC; images with translational head
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movement of more than 3 mm or a rotation angle greater than 3� were
discarded from the patients; and 3) normalization: after correction for
head motion, the image space was standardized to the Montreal Neuro-
logical Institute (MNI) head anatomy template and resampled with
3 × 3 × 3 mm voxels.4 Filtering: slow5 (0.01–0.027 Hz), slow4
(0.027–0.073 Hz), slow3 (0.073–0.198 Hz), and slow2 (0.198–
0.25 Hz) bandpass filters were used to eliminate the effects of
physiological noise above and below these frequency bands, such as
respiration and heartbeats.5,22 Smoothing: after spatial standardization,
the images were spatially smoothed using a Gaussian filter with a full-
width at half-maximum (FWHM) of 6 mm to reduce the random
noise of the images and improve the image signal-to-noise ratio.6 Nui-
sance covariate regression: physiological factors, white matter, cerebro-
spinal fluid, head movement, and other covariates were regressed out.

Functional Connectivity Analysis and Multilayer
Network Construction

MONOLAYER NETWORK CONSTRUCTION. An automated
anatomical labeling (AAL) template was used to divide the cerebral
cortex into 90 regions.23 Next, the time series of all voxels in each
of these 90 brain regions were extracted and averaged. The Pearson
correlation value between time series was used as the functional
connection value between brain regions. To exclude false connec-
tions between nodes in the network, the minimum spanning tree
(MST) was performed to binarize the matrix. Correlation matrices
for each layer were binarized using the MST, which yields four
90 × 90 adjacency matrices.

MULTILAYER NETWORK CONSTRUCTION. For multilayer
networks, there is a common representation method: the block adja-
cency matrix. A multilayer network with f layers can be expressed as:

A1 � � � H 1f

..

. . .
. ..

.

Hf 1 � � � Af

2
664

3
775

where Aα is the symmetric square matrix of layer α, 1 ≤ α ≤ f
and Hkl refers to the connection matrix between layers k and l,
1 ≤ k, l ≤ f. Each layer has the same dimensions (N × N) as the

adjacency matrix. In this study multilayer networks based on
fMRI data are constructed by integrating four (slow2, slow3,
slow4, slow5) frequency-specific networks in which each layer
shares the same set of nodes (N = 90) and the links in each layer
are composed of functional connections within each frequency
band. The same brain regions were connected on different layers
to construct a four-layer network based on resting-state
fMRI (Fig. 1).

Multilayer Network Analysis

MULTILAYER CENTRALITY METRICS. The hub properties of
multilayer networks were calculated. The importance of a region rel-
ative to the overall functional connectivity of the brain can be quan-
tified by centrality metrics. The degree in a single-layer network was
extended to a multilayer network as a measure called the overlapping
degree of nodes.24 The degree of node i in layer α can be defined in
the following formula:

M /½ �
i =

X
j

a /½ �
ij ð1Þ

where a α½ �
ij represents the number of nodes connected to node i on

layer α. The degree of node i in a multilayer network can be repre-
sented as a vector in the following formula:

Mi = M 1½ �
i ,…,M f½ �

i

n o
, i = 1,…,N ð2Þ

As a result, for node i, the overlapping degree can be represen-
ted in the following formula:

Oi =
X
/
M /½ �

i ð3Þ

The same above steps were used to obtain the overlapping
degree of each node. To compare multilayer networks of different
sizes, we calculate the Z-score and use the Z-score to divide the
nodes in the network into two types: hub nodes (Zi > 1) and non-
hub nodes (Zi ≤ 1).

TABLE 1. Subject Characteristics and Cognitive Scores

Group NC MCI AD P-value

n 46 85 31 —

Mean age � SD 74 � 6 71 � 8 73 � 7 0.126a

Gender (F/M) 28/18 44/41 18/13 0.577b

Mean MMSE score � SD 28.9 � 1.2 26.0 � 1.7 22.6 � 2.5 —

F = females; M = males; n = number of subjects; SD = standard deviation; NC = normal control; MCI = mild cognitive impairment;
AD = Alzheimer’s disease, MMSE = Mini-Mental State Examination. Age and MMSE score are presented as the mean and standard
deviation.
aOne-way ANOVA.
bPearson chi-squared two-tailed test.
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Z i =
Oi – < o >

σ
ð4Þ

where <o> is equal to the average overlapping degree of nodes
in the network, while σ represents the corresponding standard
deviation.

MULTILAYER PARTICIPATION COEFFICIENT. The multi-
layer participation coefficient (MPC) is an index to measure the
global information processing capacity of multilayer networks. It is
used to quantify the distribution of nodes’ links at each layer. Gener-
ally, the more evenly distributed nodes are, the larger their MPC
value will be. The MPC values belong to the range [0, 1], MPC = 0
means that the links of the node are only distributed at one layer,
whereas MPC = 1 means that the number of links of the node is the
same at each layer. Nodes with high MPC values are defined as
interlayer core nodes, while nodes with low MPC values are defined
as peripheral nodes. For node i, MPC is defined as:

MPCi =
f

f – 1
1 –
Xf
/ = 1

O /½ �
i

K i

 !2" #
ð5Þ

Since the Oi of the node represents its overall importance in
terms of the number of incident edges and the MPC gives informa-
tion on the cross-layer distribution of the incident edges, so it can be
classified by simultaneously looking at the MPC and Oi of the

multilayer network nodes.24 Depending on the size of the MPC, it
can divide the node into two types: interlayer node (MPCi > 0.94)
and intralayer node (MPCi ≤ 0.94). Combined with the total over-
lapping degree, nodes in the network are divided into four types, as
shown in Fig. 2a. There may be a situation in the network where
some nodes belong to the interlayer hub in NC but transitioned into
the intralayer hub in MCI or AD patients. These nodes that under-
went this node-type transformation were termed damaged hub
nodes.

HUB DISRUPTION INDEX. To compare node centrality charac-
teristics between patients and healthy controls, the hub disruption
index (HDI) was calculated.25 To explore the abnormal pattern of
hub nodes in the multilayer network of patients, this study calcu-
lated the HDI of MCI and AD based on MPC. After obtaining the
MPC values of the individual subjects’ brain network nodes, we sub-
tracted the mean MPC values of the corresponding nodes in the
healthy control group’s brain network from these values. Then, tak-
ing the MPC values of the healthy control group’s brain network
nodes as a reference, the difference between the MPC values of the
individual subjects’ nodes and the average MPC values of the healthy
control group’s corresponding nodes were plotted as a scatterplot,
and linear regression was used to fit straight lines to these data
points; the slope (k) of the regression line was defined as the HDI.

STATISTICAL ANALYSIS. Before statistical analysis, it is necessary
to check the distribution of data and homogeneity of variance of the

Figure 1: The flow chart of the experiment. The results of fMRI data preprocessing were first divided into 90 brain regions using the
existing standard brain profile of the AAL template. Each brain region represents a node in the network. The brain physiological
signal is decomposed into four frequency segments, each frequency band used as a layer. The intralayer connection is calculated by
Pearson correlation, and the same nodes are connected between layers (regardless of the cross-frequency coupling between
different brain regions). Finally, some multilayer network measures were calculated.
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population. This is the first prerequisite for the follow-up difference
analysis. In this experiment, three groups are independent of each
other, each population obeys normal distribution, and has the same
variance. In this study, multilayer network analysis was researched
from a global perspective to a local perspective. From the overall
level of the network, in order to research whether the cross-
frequency integration is normal in the patient’s multilayer network,
one-way analysis of variance (ANOVA) was performed to examine
differences in the overall MPC of the three groups. Moreover, the
least significant difference (LSD) method that is most sensitive to
variance was selected for the post-hoc tests of ANOVA. Similarly, a
Pearson chi-squared two-tailed test was performed to examine differ-
ences between the number of intralayer nodes and interlayer nodes
to measure the changes in the relationship between the layers of the
multilayer network as the disease progressed. The significance level
for this study was set at P = 0.05.

From the node level, which brain area lesions caused the
abnormality of the patient’s multilayer network were researched.
During the whole process, the changes of hub nodes in the network
were given high attention. In addition, the nonparametric Spearman
correlation coefficient r was used to find the abnormal distribution
of hub nodes in the multilayer network and test the predictive ability
of the multilayer network indicators on patients’ cognitive
impairment.

In order to avoid the Type I error in hypothesis testing, the
results of intergroup difference analysis were corrected by the false
discovery rate (FDR).26 FDR is often used for P-value correction
under multiple tests; what this means is the proportion of the num-
ber of false rejects in the number of rejected tests. Please refer to
Appendix S1 for the specific algorithm of FDR.

Results
Loss of Interlayer Centrality
The difference between the three groups in the MPC value is
shown in Fig. 2b. The results showed that the MPC of MCI
patients decreased significantly compared with that of NC
(P < 0.05), and the MPC of AD patients decreased signifi-
cantly more that of the MCI patients (P < 0.05). Second,
comparison of the number of different node types indicated
that, as the disease progressed, the number of interlayer nodes
decreased significantly, while the number of intralayer nodes
increased significantly (Fig. 2c), and the MCI increase
(P < 0.05) was less than AD (P < 0.05).

For the sake of simplicity and intuition, this section
shows only the intralayer nodes to avoid overcrowding the fig-
ures. The distribution of intralayer nodes in different subjects

Figure 2: Central loss of the brain region in the multilayer network of MCI and AD patients. (a) Node type partitioning in the
network. R1 = intralayer hub; R2 = interlayer hub; R3 = intralayer nonhub; R4 = interlayer nonhub. Nodes in R1 and R3 are
collectively called intralayer nodes, while those in R2 and R4 are collectively called interlayer nodes. (b) The variation of the overall
MPC of the three groups of subjects. (c) The trends in the numbers of interlayer nodes and intralayer nodes in the three groups. The
differences are divided into three types according to the significance values: *(0.01 < P < 0.05),**(0.001 < P < 0.01), and
***(P = 0.000).
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is shown in Table 2. Compared with NC，the intralayer
nodes in the MCI group were mainly concentrated in the pari-
etal lobe and the AD group are mainly concentrated in the
frontal and temporal lobes (Fig. 3).

Vulnerability of Central Nodes
The proportion of hub and nonhub nodes among the intra-
layer nodes and interlayer nodes of different subjects was fur-
ther analyzed (Fig. 4). The results of chi-squared statistical
tests show that the significant increase in the number of intra-
layer nodes from NC to AD is due to the significant increase
in the number of intralayer hubs (P < 0.05). In the interlayer
nodes, a significant decrease in the number of hub nodes in
patients with MCI (P < 0.05) and AD (P < 0.05) as the dis-
ease worsened was observed.

As shown in Fig. 4, in the multilayer network of
patients the hubs were preferentially damaged. Here, the dis-
tribution of hub nodes in the intralayer nodes of different
subjects was further studied. As shown in Fig. 5a, the intra-
layer hub nodes in the NC include the left middle frontal
gyrus (MFG.L), right middle temporal gyrus (MTG.R), and
left inferior temporal gyrus (ITG.L). In Fig. 5b, the addi-
tional intralayer hub added to the MCI in addition to the
original nodes in the NC are the left precentral gyrus
(PreCG.L), right dorsal superior frontal gyrus (SFGdor.R),
left hippocampus (HIP.L), left postcentral gyrus (PoCG.L),

right postcentral gyrus (PoCG.R), left superior parietal gyrus
(SPG.L), left precuneus (PCUN.L), right putamen (PUT.
R), and left middle temporal gyrus (MTG.L). In Fig. 5c,
the additional intralayer hubs added to the AD in addition
to the original nodes in the NC are as follows: PreCG.L,
right precentral gyrus (PreCG.R), left dorsal superior frontal
gyrus (SFGdor.L), SFGdor.R, right middle frontal gyrus
(MFG.R), left medial superior frontal gyrus (SFGmed.L),
left posterior cingulate (PCG.L), HIP.L, PoCG.L, PCUN.L,
right precuneus (PCUN.R), left Heschl’s gyrus (HES.L),
right Heschl’s gyrus (HES.R), MTG.L, and right inferior
temporal gyrus (ITG.R).

Heterogeneity of Central Node Cross-Layer
Distribution
HDI was used to demonstrate the abnormal patterns of hub
nodes. As shown in Fig. 6, AD patients (HDI = –0.4397,
P < 0.05) showed a more negative HDI than MCI patients
(HDI = –0.2688, P < 0.05). In addition, the result of the cor-
relation between MPC and the overlapping degree (Oi) is
shown in Fig. 7. The results showed that MPC was positively
correlated with Oi in the NC group (Spearman’s r = 0.315,
P < 0.05). However, in MCI (Spearman’s r = –0.3318,
P < 0.05) and AD (Spearman’s r = –0.6637, P < 0.05), MPC
was negatively correlated with Oi.

TABLE 2. Distribution of Intralayer Nodes of MCI and AD

Cortex NC MCI AD

Frontal Frontal_Sup [L/R]
Frontal_Mid [L/R]

Precentral [L]
Frontal_Sup [R]
Frontal_Mid [L/R]

Precentral [L/R]
Frontal_Sup [L/R]
Frontal_Mid [R]
Frontal_Inf_Oper [L]
Frontal_Inf_Orb [L]
Supp_Motor_Area [R]
Frontal_Sup_Medial [L]

Parietal Postcentral [L] Postcentral [L/R]
Parietal_Sup [L/R]
Precuneus [L/R]

Postcentral_L
Precuneus [L/R]

Temporal Temporal_Mid [L/R]
Temporal_Inf [L/R]

Temporal_Mid [L/R]
Temporal_Inf [L/R]

Heschl [L/R]
Temporal_Sup [L]
Temporal_Pole_Sup [L]
Temporal_Mid [L/R]
Temporal_Pole_Mid [L]
Temporal_Inf [L/R]

Limbic Hippocampus [L/R] Cingulum_Post [L/R]
Hippocampus [L/R]

Occipital Fusiform [L/R]

Basal Putamen [R]
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Changes in the Functional Roles of Central Nodes
The MPC of 12 brain regions in MCI patients was significantly
lower than that in NC patients, as shown in Fig. S1a. These
regions included: PreCG.L (PFDR < 0.05), left inferior frontal
gyrus, triangular part (IFGtriang.L) (PFDR < 0.05), HIP.L
(PFDR < 0.05), right hippocampus (HIP.R) (PFDR < 0.05), left
fusiform gyrus (FFG.L) (PFDR < 0.05), right fusiform gyrus
(FFG.R) (PFDR < 0.05), PoCG.R (PFDR < 0.05), PCUN.L

(PFDR < 0.05), PCUN.R (PFDR < 0.05), left lenticular nucleus
(PUT.L) (PFDR < 0.05), PUT.R (PFDR < 0.05), HES.R
(PFDR < 0.05). Among these nodes, the damaged hub nodes
included the PreCG.L (PFDR < 0.05), HIP.L (PFDR < 0.05) and
PoCG.R (PFDR < 0.05) (Fig. S1c). The MPC of 16 brain regions
in AD patients was significantly lower than that in NC patients,
as shown in Fig. S1b. These regions included: PreCG.L
(PFDR < 0.05), PreCG.R (PFDR < 0.05), left inferior frontal

Figure 3: (a–c) The distribution of intralayer nodes in the NC, MCI, and AD groups.

Figure 4: Comparison of the number of different node types in the multilayer networks of the three groups of subjects. (a,b) The
proportions of hub and nonhub nodes among the intralayer nodes and interlayer nodes, respectively.
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gyrus, opercular part (IFGoperc.L) (PFDR < 0.05), right supple-
mentary motor area (SMA.R) (PFDR < 0.05), SFGmed.L
(PFDR < 0.05), PCG.L (PFDR < 0.05), right posterior cingulate
gyrus (PCG.R) (PFDR < 0.05), HIP.L (PFDR < 0.05), HIP.R
(PFDR < 0.05), PCUN.L (PFDR < 0.05), PCUN.R (PFDR < 0.05,
left caudate nucleus (CAU.L) (PFDR < 0.05), HES.L

(PFDR < 0.05), HES.R (PFDR < 0.05), left temporal pole: superior
temporal gyrus (TPOsup.L) (PFDR < 0.05), left temporal pole:
middle temporal gyrus (TPOmid.L) (PFDR < 0.05). In the AD,
the damaged hub nodes included the PreCG.L (PFDR < 0.05),
SFGmed.L (PFDR < 0.05), PCG.L (PFDR < 0.05), HIP.L (PFDR
< 0.05), and PCUN.L (PFDR < 0.05) (Fig. S1d).

Figure 5: (a–c) The distribution of intralayer hubs in the NC, MCI, and AD groups.

Figure 6: HDI of the functional network of MCI (a) and AD (b) patients. Both groups had very significant negative HDI, and the AD
damage was more severe than MCI.
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Correlation Between Multilayer Centrality Metrics
and Mini-Mental State Examination Scores
The MPC was significantly correlated with the clinical symp-
toms of AD and MCI (Fig. S2). Moreover, the correlation
between MPC and the Mini-Mental State Examination
(MMSE) score was stronger in AD patients (Spearman’s r
= 0.526, P < 0.05) than in MCI patients (Spearman’s r

= 0.229, P < 0.05).The specific relevant brain regions were
located (Table 3). In these brain regions, the MPC values of
some damaged hub nodes in MCI (PreCG.L: Spearman’s r
= 0.232, PFDR < 0.05) and AD (PreCG.L: Spearman’s r
= 0.604, PFDR < 0.05; PCG.L: Spearman’s r = 0.544,
PFDR < 0.05; HIP.L: Spearman’s r = 0.507, PFDR < 0.05;
SFGmed.L: Spearman’s r = 0.391, PFDR < 0.05) were signifi-
cantly correlated with MMSE scores.

Discussion
The results of this research found that the process of atrophy
in AD can lead to impaired cross-frequency integration in
patient multilayer networks, which is mainly reflected in a
decrease in interlayer interaction. With the deterioration of
the disease, the number of intralayer nodes increases, indicat-
ing that a large number of nodes tend to work in the layer.
Among these nodes, the proportion of hub nodes increases,
indicating that hub nodes are more vulnerable to damage
than nonhub nodes are. Moreover, these vulnerable hubs
were correlated with the cognitive scores of patients with
MCI and AD, indicating that the cognitive function of
patients was related to the vulnerability of central regions in
the multilayer network.

TABLE 3. Abnormal Cognitive Function of MCI and AD Patients Is Positively Correlated With the Vulnerability of
Central Regions

Group Correlation Rank ROI label Cortex R coeff PFDR-value

MCI MPC-MMSE 1 PCUN.L Parietal 0.417 PFDR < 0.05

2 SPG.L Parietal 0.296 PFDR < 0.05

3 HES.R Temporal 0.284 PFDR < 0.05

4 IPL.R Parietal 0.258 PFDR < 0.05

5 MFG.L Frontal 0.257 PFDR < 0.05

6 PreCG.L Frontal 0.232 PFDR < 0.05

AD MPC-MMSE 1 HES.R Temporal 0.782 PFDR < 0.05

2 SFGdor.R Frontal 0.713 PFDR < 0.05

3 PreCG.L Frontal 0.604 PFDR < 0.05

4 PCG.L Limbic 0.544 PFDR < 0.05

5 HIP.L Limbic 0.507 PFDR < 0.05

6 HES.L Temporal 0.474 PFDR < 0.05

7 PCUN.R Parietal 0.450 PFDR < 0.05

8 ORBmid.R Frontal 0.405 PFDR < 0.05

9 SFGmed.L Frontal 0.391 PFDR < 0.05

The entries are sorted according to the obtained P values. The brain areas written in bold in the table belong to the hub regions that
were significantly damaged in the corresponding subjects.

Figure 7: Heterogeneity in the cross-layer distribution of brain
regions in patients.
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Compared with NC, MCI and AD patients had impaired
cross-frequency integration. This can be explained by an evi-
dent decrease in the overall MPC of the network and an evi-
dent increase in the number of intralayer nodes. As mentioned
above, nodes with high MPC values are considered hubs
between layers, as they facilitate information exchange between
different layers and play a crucial role in communication
between different layers. Therefore, during disease progression
the decrease in MPC in a large number of brain regions indi-
cates that the ability of these brain regions to communicate
between layers is gradually lost, and their function in promot-
ing the spread of information across frequency bands is
reduced.

Among MCI patients, this loss of interfrequency cen-
trality is mainly concentrated with the parietal region, indicat-
ing that the brain regions with obvious impaired interlayer
information exchange ability are mainly distributed in the
parietal lobe. Parietal dysfunction is an important feature of
early AD.27 A recent neuroimaging study using structural,
functional and metabolic imaging methods has demonstrated
abnormal brain changes in patients with MCI or prodromal
AD.28 The results show that regions within the parietal lobe
undergo a degenerative process and that the parietal lobe is
involved in the early stages of AD. The results of this study
further supported the conclusion that parietal function is
abnormal in early AD, and parietal function is abnormal in
multilayer network interlayer interactions.

This study also found that AD patients have a greater
reduction than MCI patients in the global propensity for
cross-layer information exchange. During AD, it is evident
that a large number of intralayer nodes are mainly concen-
trated in the frontal and temporal lobes, indicating that the
brain regions with impaired interlayer information exchange
ability are mainly distributed in the frontal and temporal lobe
regions. Damage in these regions can lead to inadequate
attention, awareness, and planning. A pathological study sug-
gests that both clinical and pathological progression of AD is
characterized by persistent loss of pyramidal cells in the fron-
tal and temporal cortex.29 Frontal and temporal cortical atro-
phy is associated with mental symptoms in AD patients.30,31

The above conclusions have shown that, during disease
progression, a large number of hub nodes begin to work
within the layer, resulting in a significant increase in the
number of nodes in the layer. Therefore, it can be concluded
that the hub nodes in the multilayer network are preferen-
tially destroyed. The degree of damage in MCI patients is
intermediate between NC and AD. The HDI results further
confirm this conclusion. The hub nodes in the network face a
high risk of damage in AD and provide the easiest explana-
tion for the pathological mechanisms of AD. However, it is
not clear whether the central region in AD is also destroyed
in multilayer networks. It is clearly of great significance to
explore the characteristics of central nodes in patients’

multilayer networks. The results of this study not only identi-
fied the vulnerability of central nodes in the patient’s multi-
layer network but also showed that the degree of damage to
central nodes increased with the progression of the disease.

Moreover, this study found that there was heterogeneity
in the cross-layer distribution of central nodes in the multi-
layer network of MCI and AD patients compared to NC. The
MPC is used to quantify the degree of participation of each
node in each layer. Previous study has shown that two nodes
with the same overlapping degree (Oi) may have great hetero-
geneity in their MPC values, which means that the roles of
nodes in different layers are also different.24 The negative cor-
relation between MPC and Oi indicates that the degree of the
hub region in patients is unevenly distributed at all levels. This
heterogeneity is more pronounced in AD than in MCI. This
indicates that the hub region has different connection modes
on different layers and plays different roles in different fre-
quency bands. At the same time, it also reflects that the topol-
ogy of different frequency bands is not consistent and that
these bands are not independent. In the process of cognition,
each brain region has different functions in different frequency
bands, and optimal cognitive function may require the interac-
tion of each frequency band.18

In this study we found that the main damaged hub
regions in the multilayer network of patients. The node types
of these nodes changed from interlayer hub in NC to intra-
layer hub in patients, with a loss of interlayer centrality. This
study also detected a positive correlation between these vul-
nerable hub nodes and the MMSE scores of patients with
MCI and AD, indicating that cognitive dysfunction in
patients is associated with the vulnerability of hub regions in
the multilayer network.

A feature of the brain map is the presence of nodes with
a central role in the network, ie, “hubs.” The presence of
hubs in the network makes the graph more resilient to ran-
dom attacks on nodes or edges.32 However, hubs are also the
weakest links in the network.33 Studies have shown that hubs
in the network may be selectively vulnerable in AD
patients.34,35 Hub loss in AD may be explained by atrophy in
specific regions that are known to be compromised. The areas
of cortical atrophy in AD are mainly memory-related struc-
tures, such as the hippocampus and other medial temporal
lobe regions, as well as the precuneus, cingulate, and prefron-
tal regions.36,37 A study has reported a decreased centrality of
the posterior cingulate and medial temporal structures, which
also indicated hub loss.38 Moreover, lower local centrality was
associated with greater cognitive decline.39

A study of gray matter volume in early AD suggests that
the left hippocampus atrophy is a useful feature for the early
diagnosis of AD.21 In this study it also found that the left
hippocampus was selectively vulnerable in MCI and AD
patients’ multilayer networks, and damage to this region was
more severe in AD than in MCI. The posterior cingulate and
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precuneus are the hubs of the default-mode network (DMN),
vulnerable to functional connectivity interruptions in MCI
and AD.40 This study also found abnormal patterns of these
regions in patients’ multilayer networks, which was more
impaired in AD than in MCI. A previous study confirmed
that the precentral gyrus is a connecting hub in human brain
networks.38 Similarly, its centrality in AD patient’s multilayer
network was also disrupted. Previous research has found that
the precentral gyrus shows significant gray matter volume
reduction in patients with amnestic MCI, indicating that this
region is atrophied in early AD.41 In this study the progres-
sion from MCI to AD is also accompanied by the gradual
development of significant anomalies in multilayer networks.
In addition, an anomaly of the postcentral gyrus in multilayer
networks of MCI was found. Taken together, the evidence
suggests that integrating functional networks with different
frequencies into a multilayer network framework can provide
additional information that traditional network methods miss.
This study not only demonstrates the abnormal decline of
cross-frequency integration in patients with MCI and AD,
but also determine which hub nodes in the multilayer net-
work are especially vulnerable.

Limitations
1) In multilayer networks, the estimation and allocation of
interlayer links still needs further study. The strength of the
interlayer connection is parametric and therefore arbitrary,
and the biological interpretation of its representative remains
to be elucidated. 2) Studies have shown that cross-frequency
coupling is a mechanism of interaction between different fre-
quencies. Interlayer interactions between functional networks
established in this study may reflect the corresponding mech-
anisms of fMRI signals. Nevertheless, the electrophysiological
significance represented by this interlayer interaction is not
clear, and the fMRI neural mechanism represented by differ-
ent frequency components is not clear. This study only con-
sidered the interaction of the corresponding brain regions
between different layers, but this is only the case in a multi-
layer network. In the future, we can consider researching the
multilayer network of patients in more complex situations,
such as considering the cross-frequency coupling between dif-
ferent brain regions. 3) In this study only single centrality
(the overlapping degree) was used to define hub regions.
However, the number of hub regions may be influenced by
the type of centrality measure. In future research, we should
add other centrality measures. 4) The experimental results are
based on the small ADNI dataset, which may lead to a lack
of universality of the results. This method will be applied to a
larger number of samples in future work. 5) Due to the limi-
tation of data sources, the data used in this experiment were
obtained by the conventional slow sampling rate (TR = 3).
Although we have tried to eliminate noise during data
preprocessing, spectrum leakage, and aliasing due to low

sampling may still cause the BOLD signal to be affected by
physiological noise such as breathing and heartbeat.

Conclusion
This study analyzed the multilayer frequency brain networks
of MCI and AD and found that there was an evident deficit
in cross-frequency integration in the multilayer networks of
these patients compared to those of healthy controls. The rea-
son for this anomaly is the loss of centrality between the fre-
quencies of the hub nodes in the network, and these
vulnerable hubs are associated with patients’ cognitive scores.
This research indicated that the multilayer network provides
an effective framework for integrating networks of different
frequencies, and this method can be used to identify the
interfrequency neural mechanisms of AD.
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