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Abstract

Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurode-
generative disorders with an increasing number of CMT-associated variants identi-
fied as causative factors, however, there has been no effective therapy for CMT to
date. Aminoacyl-tRNA synthetases (aaRS) are essential enzymes in translation by
charging amino acids onto their cognate tRNAs during protein synthesis. Dominant
monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs vari-
ants affect enzymatic activity, demonstrating a loss-of-function property. In contrast,
loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs
variants to cause CMT. Instead, accumulating evidence from CMT patient samples,
animal genetic studies or protein conformational analysis has pinpointed toxic gain-
of-function of aaRSs variants in CMT, suggesting complicated mechanisms underly-
ing the pathogenesis of CMT. In this review, we summarize the latest advances in
studies on CMT-linked aaRSs, with a particular focus on their functions. The current
challenges, future direction and the promising candidates for potential treatment of

CMT are also discussed.
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aminoacyl-tRNA synthetases, animal model, charcot-marie-tooth disease, mutation,

pathogenesis
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2; CMT2N, CMT type 2N; CMT2U, CMT type 2U; CMT2W, CMT type 2W; dHMN, distal hereditary motor neuronopathy; dHMN-V, dHMN type V; DI-CMT, dominant intermediate CMT;
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spectrometry; MSC, multi-synthetase complex; Nrp1, neuropilin-1; PBMCs, peripheral blood mononuclear cells; SAXS, small-angle X-ray scattering; Trk, tropomyosin receptor kinase;
TrkR(s), Trk receptor(s); TrpRS, tryptophanyl-tRNA synthetase; TyrRS, tyrosyl-tRNA synthetase; VE-cadherin, vascular endothelial-cadherin; VEGF, vascular endothelial growth factor;
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Charcot-Marie-Tooth disease (CMT) is one of the most common
inherited neuromuscular disorders with an estimated prevalence of
1/2,500 worldwide (Rossor et al., 2016; Skre, 1974). The major clini-
cal manifestation of CMT is the degeneration of both motor and sen-
sory peripheral nerves, leading to a loss of muscle tissue and touch
sensation in bodily extremities (Patzko & Shy, 2011).

Based on electrophysiological and histopathological criteria,
CMT is divided into two major groups: demyelinating CMT type 1
(CMT1) and axonal CMT type 2 (CMT2). CMT1 is the most prevalent
type presented as demyelinating peripheral neuropathy, which man-
ifests as markedly decreased nerve-conduction velocities. In con-
trast, CMT2 accounts for approximately 20% of cases characterized
by pathological axonal loss at nerve biopsy and has relatively nor-
mal conduction velocities (Pareyson & Marchesi, 2009). Beyond this
clear classification, rapidly increasing knowledge of this disease has
led to the recognition of other forms of CMT, such as a dominant in-
termediate CMT subtype (DI-CMT) with features of both CMT1 and
CMT2, and a pure motor form, distal hereditary motor neuronopathy
(dHMN), characterized by the sparing of sensory nerves upon exam-
ination. Further subdivisions of these CMT types are mainly based
on causative genes and variants.

In typical cases, CMT onset often occurs in the first two decades
of life, and the disease processes slowly without affecting life ex-
pectancy (Laura et al., 2019; Pareyson & Marchesi, 2009). However,
the age of onset, disease course and severity vary greatly based on
the CMT subtype, causative genes and types of variants. Despite
significant advances in the genetic diagnosis of CMT using next-gen-
eration sequencing technology, no effective therapies have thus far
been developed.

To date, over 100 CMT-associated genes have been identified as
causative factors (Laura et al., 2019). Among them, five genes (GARS,
YARS, AARS, HARS and WARS) encode aminoacyl-tRNA synthetases
(aaRSs) including glycyl-, tyrosyl-, alanyl-, histidyl- and tryptopha-
nyl-tRNA synthetases (GlyRS, TyrRS, AlaRS, HisRS and TrpRS, re-
spectively) (Antonellis et al., 2003; Jordanova et al., 2006; Latour
et al.,, 2010; Tsai et al., 2017; Vester et al., 2013), which is the larg-
est family implicated in CMT and highlights the vital importance of
aaRSs in the pathogenesis of CMT.

The aaRS family comprises ubiquitously expressed enzymes
that are involved in the translation of the genetic code by charging
amino acids onto their cognate tRNAs during protein synthesis (Ling
et al., 2009). Based on structural features, 20 canonical aaRSs are
divided into two classes that differ in the architecture of their ac-
tive sites for adenylate synthesis. Class | aaRSs contain a typical
Rossmann-fold utilized for nucleotide binding and two well-con-
served signature sequences (HIGH and KMSKS), whereas class |l
aaRSs are less conserved and include three signature motifs (Motifs
1-3) within a seven-stranded f-sheet and three flanking a-helices.
Among the five known CMT-associated aaRSs, TryRS and TrpRS be-
long to class |, and the other three (GlyRS, AlaRS and HisRS) belong
to class II.

Intriguingly, variants of these tRNA synthetase genes are
strongly associated with CMT, but not all variants affect the amino-
acylation activities of the enzymes. More strikingly, CMT-like neu-
ropathy phenotypes in animal models generated by some variants
cannot be rescued by overexpression of wild type (WT) proteins,
suggesting that CMT is very likely linked to toxic gain-of-function
associated with the variants themselves. In this review, we discuss
the latest advances in studies on aaRSs in CMT, particularly focusing

on their roles in the pathogenesis of the disease.

2 | GARS VARIANTS

GlyRS is a class Il aaRS with a conserved catalytic domain com-
posed of a central antiparallel f-sheet flanked with a-helices and
three conserved sequence motifs (Xie et al., 2007), followed by
an anticodon domain. The N-terminal extension contains a spe-
cific appended helix-turn-helix structural motif named the WHEP
domain, which derives from three of the five WHEP-containing
proteins TrpRS, HisRS and EPRS (Guo et al., 2010) (Figure 1a).
GlyRS was the first tRNA synthetase implicated in CMT (Antonellis
et al., 2003). To date, more than twenty missense variants of GARS
have been discovered in patients with CMT2D (OMIM# 601472),
an autosomal-dominant axonal subtype of CMT, or dHMN type
V (dHMN-V, OMIM# 600794), a subtype of dHMN with upper-
limb predominance (Motley et al., 2010) (Table 1). Among them,
most variants are located in the catalytic domain, one variant
is in the WHEP domain and the remaining two are in the anti-
codon domain (Figure 1a and b). Interestingly, several variants
(GARSE716, GARS'12%° GARSCZ4OR GARSI280F GARSH4I8R GARSGS26R
and GARS®?8A) are closely associated with the disease; however,
some affect aminoacylation activity, while others do not (Griffin
et al,, 2014) (Table 1). For example, GARSE716 segregates with
CMT2D in large families but has WT-like aminoacylation activ-
ity (Antonellis et al., 2003, 2006; Nangle et al., 2007; Niehues
et al., 2015). Given the differential enzymatic activities of GlyRS
variants, it is not surprising for scientists to seek out other disease-
associated functions of these variants that are distinct from the

canonical aminoacylation functions.

2.1 | Animal models of GlyRS-linked CMT

Among all CMT-associated aaRSs, GlyRS is well-established and the
most studied in animal models. In Drosophila models, GlyRS vari-
ants significantly reduce the levels of newly synthesized proteins,
and this translational defect is not attributed to altered tRNA ami-
noacylation because overexpression of Drosophila gars fails to res-
cue impaired protein translation (Niehues et al., 2015). Additionally,
the enzymatic activity in the tissues of mice carrying heterozygous

GarsN™?49* and Gars“?°**"* variants (corresponding to GARSPZ34KY
and GARS®>"R in human) was not significantly decreased compared

with that in WT animals (Achilli et al., 2009; Seburn et al., 2006).
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FIGURE 1 Distributionand
conservation of CMT-associated variant
sites in human GIlyRS. (a) Functional
domains of GlyRS including a WHEP
domain (in purple), a catalytic domain

(in grey) and an anticodon domain (in
yellow). (b) The crystal structure of human
GIlyRS (PDB entry 2PME). CMT variant
sites in either schematic diagram (a) or
crystal structure (b) are indicated with
different colors based on enzymatic
activity of each variant. CMT variants with
WT-like enzymatic activity (fully active)
are colored in green; variants with the
activity 21/2 are labeled in blue; variants
with the activity <1/2 are indicated in
pink; variants with no activity (inactive)
are colored in red; variants with activity
undetermined are indicated in black. The
priority of enzymatic activity displayed
here is ranked based on aminoacylation
assays in patient sample > animal models
> in vitro using purified human enzyme

> yeast orthologs. (c) Evolutionary
conservation analysis of CMT-linked
GIlyRS across archaea, bacteria and
eukaryotes. Sequence alignment of each
GIlyRS variant site is indicated by the color
intensity, with blue representing variable
and red representing conserved
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Notably, overexpression of WT GlyRS could not improve the neu-

ropathy phenotypes in either Gars
(Motley et al.,

Nmf249/+

or Gars“?™R* mice

2011), and the same conclusion regarding another
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GARSC®?0R yariant was reached with Drosophila CMT models, which
showed no phenotypic rescue upon overexpression of the WT pro-
teins (Niehues et al., 2015).
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Recently, one group identified a de novo GARS variant
(GARS*E™Q) in a single patient with severe peripheral neurop-
athy, and this allele was further introduced into a mouse model
(Morelli et al., 2019). This mouse model carrying a human dis-
ease allele displays primary features of peripheral neuropathy.
Strikingly, the allele-specific knockdown of GARS*E™R ysing RNAI
prevents the neuropathy phenotypes in mice, and the same effi-

Nmf249/* mice, both before and after onset.

cacy is confirmed in Gars
These findings provide important proof-of-concept for virally de-
livered RNAi-based gene therapy for treating CMT2D; however,
whether this approach can be applied to other CMT-causing sin-
gle-base pair variants requires additional research. Of note, in
this study, re-evaluation of in vitro kinetic properties and yeast
models for the P234KY allele supported a loss-of-function effect
(Morelli et al., 2019), contrary to previous reports (Table 1) (Nangle
et al., 2007; Seburn et al., 2006; Stum et al., 2011). Such discrepan-
cies in activity assays may reflect different sensitivities of experi-
mental settings.

Nmf249/+

Given the well-characterized Gars in mice, one group

further modeled the P234KY variant in Drosophila (gars"234<Y),

Ubiquitous expression of garsP234KY

was shown to severely affect
fly fitness, with no adults emerging, whereas pan-neuronal expres-
sion caused late pupal lethality, suggesting that toxicity may mani-
fest or derive from tissues beyond the nervous system (Ermanoska

P234KY

et al., 2014). Indeed, muscular expression of gars in flies in-

duces significant neuronal defects, and the same is true for the
gars®?*9R variant, suggesting that the pathology has a noncell auton-
omous contribution (Grice et al., 2015). Interestingly, the neuronal

P234KY

toxicity of gars is dependent on the WHEP domain since its

removal from ,gc)l’sP234KY

abrogates neuromuscular and survival de-
fects, revealing a clear dominant toxic gain-of-function mechanism
for variants that may contribute to the pathology of CMT2D (Grice
et al., 2015).

In contrast, mice carrying homozygous GARS variants, such

Nmf249/Nmf249 C201R/C201R’ are not viable

as those of Gars and Gars
or even undergo early death, and perinatal lethality can be res-
cued by overexpression of the WT proteins (Achilli et al., 2009;
Seburn et al., 2006). Likewise, a homozygous gars variant (gars"?8%)
in Drosophila, although not the cause of CMT, leads to defects
in dendritic and axonal terminal arborization, which can be fully
rescued by transgenic expression of WT human GARS (Chihara
et al., 2007). This finding provides evidence that human GlyRS
has equivalent functions in Drosophila. However, the defects in
fly models could be only partially rescued by the human GARSE’¢
variant, whereas the GARS"'??" variant did not show any rescue
capability, indicating that human CMT2D variants do have loss-of-
function properties and may affect the normal function of GlyRS
to different degrees. Thus, based on studies from animal models,
different GARS variants may cause the same disease via distinct
mechanisms, with some variants having toxic gain-of-function
effects and others demonstrating undefined loss-of-function

properties.

a 359
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2.2 | Conformational changes in CMT-linked
GARS variants

Neurochemistry

To date, crystal structures of three GARS variants, GARSC>%6R
GARSS*81L and GARSY’1C, have been solved; however, few confor-
mational changes were observed compared with the WT proteins
(Cader et al.,, 2007; Qin et al., 2014; Xie et al., 2007) (Table 1).
Nonetheless, different CMT-causing variants have distinct ef-
fects on dimer formation. For example, GARSP?ON GARSG526R 5ng
GARSS®8L strengthen the capacity of dimer formation, whereas
GARS'™??P and GARSC®?*°R disrupt dimer formation (Nangle
et al., 2007). Because the dimeric form of GlyRS is essential for ami-
noacylation, both GARS"'2?" and GARS®?*°R show a loss of enzyme
activity, while GARSP*°°N and GARS**8! demonstrate full ami-
noacylation activity compared to that of the WT enzyme. However,
despite an enhanced dimer formation capability, GARS®*?R has
abolished aminoacylation activity (Nangle et al., 2007). Therefore,
considering this together with another fully active variant
(GARSE7'®), almost half of these CMT-causing variants are active,
further supporting the conclusion that CMT is not simply caused by
a deficiency in aminoacylation. Furthermore, this finding also raises
the possibility that CMT-causing variants may disrupt an unknown
function of GlyRS, leading to a toxic gain-of-function that is associ-
ated with only GlyRS variants.

Considering these data, the same research group further ex-
plored five GARS variants (GARS''??", GARS®%40R GARSC526R,
GARS>%8 and GARS®*78A) in solution utilizing hydrogen-deuterium
exchange (HDX) analysis monitored by mass spectrometry (MS)
(He et al., 2011). Interestingly, despite their differential effects
on dimerization and aminoacylation activity (Griffin et al., 2014,
Nangle et al., 2007), all five variants exhibit the same neomorphic
conformational opening that is mostly buried in WT GIyRS (He
et al., 2011). This conformational change also occurs in the mouse

carrying the GARSP234KY

variant, which has a similar neomorphic
structural opening. Further small-angle X-ray scattering (SAXS)
analysis of the GARS®>2R variant confirmed that this neomorphic
structural opening is associated with an unknown physiological
function of GlyRS that is suppressed by the WHEP domain. Perhaps
for this reason, these CMT-causing variants might disrupt WHEP-
mediated suppression, resulting in gain-of-function phenotypes.
Whether the induced conformational changes confer the variants
with the ability to interact with other proteins needs to be further
addressed.

It is important to note that, based on conservation analysis
(Figure 1c), some variant sites such as E71 and G526 in GARS, show
less divergence in the evolutionary progression to humans, suggest-
ing essential roles of these sites during evolution; however, based
on the above findings, variations in these sites do not significantly
affect enzymatic activity, further supporting non-canonical activi-
ties outside of aminoacylation imparted by these variants. Other
essential functions of aaRSs beyond translation have been well doc-
umented (Guo & Schimmel, 2013; Guo et al., 2010).
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2.3 | Interaction partners of GARS variants

Neurochemistry

In fact, several interaction partners of GARS variants as well as
the molecular mechanisms underlying the interactions have been
uncovered. Variant, but not WT, GIyRS are capable of binding the
neuropilin-1 (Nrp1) receptor, and such an aberrant interaction
competitively interferes with the binding of the cognate ligand
vascular endothelial growth factor (VEGF) to Nrp1, thereby con-
tributing to motor defects in CMT2D (He et al., 2015). More im-
portantly, aberrant signaling of GlyRS/Nrp1/VEGF is observable in

Nmf249/+

the neural tissues of Gars mice, and VEGF overexpression

Nmf2497+ mice. The same

can partially rescue motor defects in Gars
GlyRS-Nrp1 interaction also occurs in lymphocytes from CMT2D
patients with the GARS*??P variant. This work demonstrates that
CMT arises from the neomorphic activity of misfolded GIyRS in-
teracting with susceptible signaling targets independent of ami-
noacylation. Nonetheless, not all GlyRS variants contribute to the
disease through the GIlyRS-Nrp1l interaction. For example, the
GARS“ET™Q yariant does not have a strong interaction with Nrp1,
suggesting distinct mechanisms for different variants (Morelli
et al., 2019). The possibility of Nrpl-interacting GlyRS variants in-
teracting with other extracellular and/or intercellular targets can-
not be ruled out.

In addition to Nrp1, tropomyosin receptor kinase (Trk) receptors
(TrkRs) were subsequently shown to interact with CMT2D-linked
GlyRS variants (GARS™T2P)_ Unlike Nrp1/VEGF signaling, which tar-
gets motor axons, TrkR signaling specifically acts on sensory axons.
Variant, but not WT, GlyRS misactivates Trk signaling by binding to
multiple TrkRs, leading to defective differentiation and development
of sensory neurons (Sleigh et al., 2017). Interestingly, GarsC2OR/
mice exhibited nonprogressive perturbation of sensory neuronal
fate during early stages of development, in line with the clinical fea-
tures of some CMT2D patients who present subtle and undiagnosed
sensory symptoms in advance of motor deficits (Sleigh et al., 2017).
This finding also explains the absence of sensory defects in patients
with dHMN-V who present predominantly with motor degeneration.

The aberrant interaction of GlyRS with Nrp1 or TrkR depends on
the extracellular domains of Nrp1 or TrkR. One intracellular partner,
histone deacetylase 6 (HDAC6), was recently identified and surpris-

SMT2D yariants

ingly shown to aberrantly interact with almost all GAR
in reach (GARS®1¢, GARS''?7P, GARS®?''F, GARSC?*0R GARSE27%P,
GARSH¥ER GARSS32R GARSSS®IL and GARSC®784), and this aberrant
crosstalk was shown to functionally stimulate the deacetylase activ-
ity of HDAC6 on a-tubulin (Mo et al., 2018). Deacetylation of a-tu-
bulin further causes axonal transport deficits prior to disease onset

Nmf249/+

in Gars mice, with specific targeting at peripheral nerves

rather than the brain or spinal cord. More essentially, the defective
phenotypes can be rescued by the HDAC6 inhibitor, and the same
is true for Gars“201R/*

Although abnormal GlyRS-HDACS6 interactions have been identi-
GCMT2D

mice from another study (Benoy et al., 2018).
fied in many human GAR. variants, the differential degrees of
interplay among variants is closely associated with distinct clinical

manifestations among CMT2D patients. For example, the GARSS>81L

and GARS®7®A variants trigger the strongest HDAC6 interaction

SGS?SA

among all variants, of which the GAR variant can also interact

with Nrp1, concordant with unfavorable clinical features of infantile
onset and extreme severity for patients harboring the GARS®>%8A
variant (Mo et al., 2018). For the other human GARS™T?P variants
with relatively weak HDACS6 interactions, the possibility of alterna-

tive pathogenic mechanisms in CMT2D cannot be excluded.

2.4 | Mitochondrial role of GlyRS in CMT

It is worth noting that GlyRS is one of two aaRSs (the other is lysyl-
tRNA synthetase) encoding both cytosolic and mitochondrial forms;
however, little is known about the mitochondrial role of GlyRS and
how it affects the phenotypes of diseases such as CMT.

A recent study identified a novel disease-associated dominant
variant of GARS™62R (reported as GARS"21R because of inclusion of
the mitochondrial target sequence) in patients presenting with typ-
ical clinical and electrophysiological signs of dHMN-V (Boczonadi
et al., 2018). Indeed, GlyRS is present in RNA granules in mitochon-
dria and is involved in mitochondrial translation; downregulation
of GARS results in defective mitochondrial translation in neuronal
cells and myoblasts but not in fibroblasts, indicating a tissue-specific
feature (Boczonadi et al., 2018). Interestingly, reduced mitochon-
drial respiration and decreased calcium uptake are found in induced
neuronal progenitor cells (iNPCs) generated from patient carrying
the GARS™2R variant, suggesting that this neuropathy-associated
variant leads to a complicated alteration of mitochondrial function

in neurons. In Gars®?°R

mice, mitochondrial dysfunction is found in
only the sciatic nerve, while the other five highly metabolic tissues
display no mitochondrial defects, further supporting a tissue-spe-
cific mechanism in vivo. This study, together with the complex in-
teractions of GIyRS exemplified above, suggests that more cellular
compartments are involved in aaRS-linked CMT in addition to the

cytoplasm and mitochondria.

3 | YARS VARIANTS

Similar to other class | aaRSs, TyrRS has a Rossmann-fold domain
that consists of mostly parallel -strands connected by a-helices as
the catalytic domain (Blocquel et al., 2017); however, both TyrRS and
TrpRS function as homodimers, while the remaining class | aaRSs
are functional monomers. In addition to an N-terminal catalytic do-
main and an anticodon domain, the C-terminal fragment of human
TyrRS is highly homologous to endothelial monocyte-activating
polypeptide Il (EMAPII) (Kao et al., 1992), a known cytokine that is
dispensable for aminoacylation by TyrRS (Figure 2a). To date, five
catalytic domain variants of YARS have been reported in DI-CMT
type C (DI-CMTC or CMTDIC, OMIM# 608323) (Gonzaga-Jauregui
et al., 2015; Hyun et al., 2014; Jordanova et al., 2006) (Table 1 and
Figure 2a and b); three variants (YARSC*IR| YARSEY7¢K and YARSEY7¢Q)

segregate with DI-CMTC in large families, whereas the remaining
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FIGURE 2 Distribution and conservation of CMT-associated
variant sites in human TyrRS. (a) Functional domains of TyrRS
including a catalytic domain (in grey), an anticodon domain (in
yellow) and an EMAPII domain (in green). (b) The crystal structure
of human TyrRS without the C-terminal EMAPII domain (PDB entry
AN3L). CMT variant sites in either schematic diagram (a) or crystal
structure (b) are indicated with different colors based on enzymatic
activity of each variant with the same priority ranking as Figure 1b.
(c) Evolutionary conservation analysis of CMT-linked TyrRS across
species. Sequence alignment of each variant site is indicated by the
color intensity, with blue representing variable and red representing
conserved

two variants (YARSDBiI and YARSA153'156) have been found in only one
patient each. Notably, the highly conserved YARS®*'R and YARSA1%%-
156 variants (Figure 2c) are defective in their ability to activate tyros-
ine, whereas the YARS®7¢X variant does not affect the formation of
the tyrosyl-adenylate intermediate but rather enhances the catalytic
rate compared with that achieved with the WT enzyme (Froelich &
First, 2011). In Drosophila models, the same conclusion of transgenic
YARSEY®K variant overexpression severely impairing motor perfor-
mance but having normal enzymatic activity is reached (Storkebaum
et al., 2009). In contrast, the YARSC*'R and YARS2131%¢ yariants
induce less toxicity in flies than the YARSEY® variant despite
the severely decreased enzymatic activities of the YARS®*R and
YARSA153156 yariants in Drosophila. Furthermore, Drosophila in which
the yars is inhibited by 50% display normal motor performance.
These findings indicate that the loss of aminoacylation activity is
neither necessary nor sufficient to cause peripheral neuropathy,
suggesting that TyrRS-linked neurodegeneration results from a gain-

of-function of TyrRS variants separate from aminoacylation.

Neurochemistry

To further pinpoint the functions gained from YARS variants,
Xiang-lei Yang and her colleagues uncovered conformational changes
induced by the YARSC4R and YARSE'?®X variants; the YARSA1°3-15¢
variant did not induce conformational change but did expose the
same area that was opened by the YARS®“!R and YARS®7K variants
(Blocquel et al., 2017). In addition, all three variants had the same
enhanced binding affinity for TRIM28. These data suggest that DI-
CMTC, like CMT2D, is caused by a specific protein structure change
that allows the generation of an alternative stable conformation for
potential pathological interactions. The fact that the YARSA15315¢
variant lacks conformational change but aberrantly interacts with
TRIM28 suggests that residues 153-156 act as a structural blocker
to prevent aberrant interactions of the WT enzyme (Blocquel
etal., 2017).

Nevertheless, the abnormal TyrRS-TRIM28 interaction should
not be the only dysregulated pathway for DI-CMTC variants since
the TRIM28 ortholog is not found in Drosophila, suggesting alterna-
tive pathological mechanisms for CMT-like phenotypes in fly mod-
els. Indeed, TyrRS can translocate to the nucleus for protection from
DNA damage under oxidative stress, and this beneficial effect of
nuclear TyrRS is achieved by activation of the transcription factor
E2F1 (Wei et al., 2014). Further studies verified significant increases
in the expression levels of E2F1-regulated target genes in periph-
eral blood mononuclear cells (PBMCs) from patients with DI-CMTC
carrying the YARS®*'R and YARS®'?°K variants (Bervoets et al., 2019).
Remarkably, inhibition of nuclear TyrRS using pharmacological or
genetic approaches suppresses the hallmark phenotypes of CMT
in Drosophila, highlighting the importance of nuclear TyrRS variant
for CMT neuropathology; however, the involvement of other cellu-
lar compartments or molecules mediating the toxicities outside the
nucleus cannot be excluded.

Collectively, despite completely different molecular archi-
tectures for catalysis of class | and class Il aaRSs (e.g., TyrRS and
GlyRS), both types of architecture may predispose the enzymes to
conformational perturbations that permit aberrant interactions. The
nuclear involvement of TyrRS CMT neurotoxicity could also have es-
sential implications for other CMT-associated aaRSs.

4 | AARS VARIANTS

AlaRS is the third aaRS known to be involved in CMT. Unlike other
CMT-associated aaRSs, AlaRS does not have an anticodon domain
but rather has an editing domain and a C-terminal domain C-Ala
(Figure 3a). To date, nine AARS variants leading to dominant ax-
onal CMT type 2N (CMT2N, OMIM# 613287) have been reported
worldwide (Bansagi et al., 2015; Latour et al., 2010; Lin et al., 2011;
McLaughlin et al., 2012; Motley et al., 2015; Weterman et al., 2018;
Zhao et al., 2012) (Table 1). Among them, five variants (AARSN7YY,
AARSCIOR - AARSRIZEW - AARSRIZIH and AARSR3¥7X) are located in
the N-terminal catalytic domain, two (AARS%®?7Y and AARSE88C)
are located in the editing domain and the final two (AARSE’78A and
AARSPE7®N) are located in the C-Ala domain (Figure 3a and b). Of these
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FIGURE 3 Distribution and conservation of CMT-associated
variant sites in human AlaRS. (a) Functional domains of AlaRS
including a catalytic domain (in grey), an editing domain (in
palegreen) and a C-Ala domain (in orange). (b) The structure model
of AlaRS was generated by the protein structure homology-
modelling server SWISS-MODEL (Waterhouse et al., 2018). Human
AlaRS catalytic domain (PDB entry 5KNN) and C-Ala domain (PDB
entry 5T5S) were further docked into the model and adjusted
manually. CMT variant sites in either schematic diagram (a) or
structure model (b) are indicated with different colors based on
enzymatic activity of each variant with the same priority ranking
as Figure 1b. (c) Evolutionary conservation analysis of CMT-linked
AlaRS across species. Sequence alignment of each variant site is
indicated by the color intensity, with blue representing variable and
red representing conserved

variants, the AARSR®2’ variant was first discovered to segregate with
CMT2N in two unrelated French families (Latour et al., 2010) and was
then identified in a large Australian family (McLaughlin et al., 2012)
and in a cohort of patients from one Irish and four British families
(Bansagi et al., 2015), thus representing a recurrent variant world-
wide. Yeast complementation assay results revealed impaired enzyme
functions of the AARSR®??M variant as well as the AARSNYY, AARSC1OR
AARSRZOW and AARSS4?7L variants (McLaughlin et al., 2012; Motley
et al., 2015; Weterman et al., 2018). In contrast, the cellular growth

SE778A variant

of yeast was not shown to be affected by the AAR
compared to that of the WT enzyme (McLaughlin et al., 2012), and
the AARSR®¥7X variant even improved yeast cell growth and showed
a nearly 4-fold increase in tRNA charging activity (Weterman

et al., 2018). Interestingly, although different enzyme functions are

caused by the AARSR32W AARSR337K and AARSS6?’! variants (Table 1),
equivalent neural developmental toxicities were observed in the em-
bryos of zebrafish after microinjections of human variant mRNAs,
suggesting that the abnormal phenotypes in zebrafish are dominant-
negative or toxic gains of function (Weterman et al., 2018).

Other variants in AARS, including AARSP8?3N from a Chinese
family (Zhao et al., 2012) and AARSF88G from an Irish family (Bansagi
et al., 2015), were identified; however, their impacts on enzymatic
activity and phenotypes in animal models need to be verified in the
future.

As mentioned above, AlaRS includes an editing domain wherein
two human CMT-linked AlaRS variants (AARS®*?’" and AARSE4%8)
are located (Figure 3a and b). In mice, a missense variant at A734E in
the editing domain of murine AlaRS (Aars"”**f) can cause cell-lethal
accumulation of misfolded protein in neurons, leading to severe neu-
rodegenerative phenotypes (Lee et al., 2006). Although the A734E
variantin Aars is recessive, this finding, to some extent, pinpoints the
fundamental roles of the editing activity of AlaRS for maintaining the
accurate processing of genetic information and provides insight into
novel mechanisms underlying human neurodegenerative diseases,
such as AlaRS-linked CMT.

Interestingly, the C-Ala domain was once termed the dimeriza-
tion domain because it provides contacts for dimerization in archaeal
AlaRS (Naganuma et al., 2009). Over evolutionary time, the C-Ala
domain has been completely dispensable for aminoacylation but has
developed distinct roles in higher organisms (Sun et al., 2016). Such a
functional evolution of the C-Ala domain allows AlaRS to be the sin-
gle exception among the 19 other human aaRSs with no new motif or
domain additions (Guo, Schimmel, et al., 2010). Perhaps for this rea-
son, the AARSE778A variant in the C-Ala domain shows WT-like cat-
alytic activity (McLaughlin et al., 2012), implying that nonenzymatic
gain-of-function mechanisms underlie the pathogenesis of CMT2N.

5 | HARS VARIANTS

HisRS has a domain structure identical to that of GIyRS, as it consists
of a WHEP domain, a catalytic domain and an anticodon binding do-
main (Figure 4a). HARS variants have been successively identified in
dominant axonal CMT type 2W (CMT2W, OMIM# 616625) (Laura
et al., 2019), with all variants being located in the catalytic domain
(Figure 4a and b). Of eight variants, seven result in a loss of function
as determined by yeast complementation assays, and neurotoxicity
has been successfully recapitulated in transgenic C. elegans models
of HARSRY7Q and HARSP34Y variants (Abbott et al., 2018; Safka
Brozkova et al., 2015; Vester et al., 2013). However, the discrepan-
cies between yeast model phenotype and aminoacylation activities
in vitro (e.g., the HARSP3**Y variant is lethal in yeast cells but has
normal charging activity in vitro) (Table 1), as well as the causal link
between these variants and CMT2W, remain unclear.

Based on these considerations, a recent study further inves-
tigated charged tRNAs in actual patients with CMT using assays

enabling the detection of aminoacylation within the human cell
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FIGURE 4 Distribution and conservation of CMT-associated

variant sites in human HisRS. (a) Functional domains of TyrRS
including a WHEP domain (in purple), a catalytic domain (in grey)
and an anticodon domain (in yellow). (b) The crystal structure

of human HisRS (PDB entry 6076). CMT variant sites in either
schematic diagram (a) or crystal structure (b) are indicated with
different colors based on enzymatic activity of each variant
with the same priority ranking as Figure 1b. (c) Evolutionary
conservation analysis of CMT-linked HisRS across species.
Sequence alignment of each variant site is indicated by the color
intensity, with blue representing variable and red representing
conserved

environment. Unexpectedly, no differences in the aminoacylation
levels of tRNAM® and other tRNAs were observed between patients

carrying the HARSP'34H

variant and their unaffected family mem-
bers. Additionally, no correlation between the enzymatic activi-
ties of variants causing CMT2W and disease severity were found
(Blocquel et al., 2019). Further biochemical and biophysical analyses
of HisRS variants (HARS™%?' HARSP*3*" HARSPY73E and HARSP344Y)
demonstrated a conformational change that opens the dimerization
interface of HisRS and likely exposes neomorphic surfaces that may
mediate aberrant interactions with CMT2W-causing variants. This
work ruled out a correlation between enzymatic activity and disease
severity, but instead showed a link between the degree of variant-in-
duced structural opening and disease severity, strongly support-
ing that HARS-linked CMT disease is in fact not simply caused by
a loss-of-function mechanism or a dominant-negative effect of the

variants but actually by open conformation-driven gain-of-function

Neurochemistry

mechanisms. The nonenzymatic functions gained by the HARSP*34H
and HARSP3* variants in CMT are also rationalized by conservation
analysis which showed highly conserved P134 and D364 sites with
full enzymatic activity (Figure 4c).

It is worth noting that both GlyRS and HisRS contain a WHEP
domain, which is indispensable for the neuronal toxicity caused
by the garsP?**¢Y variant in Drosophila (Grice et al., 2015). WHEP-
mediated suppression has also been shown to be a gain of function
in the GARS®>2R variant (He et al., 2011). In the case of HisRS, the
conformational changes induced by HisRS variants strengthen the
interactions between the WHEP domain and the C-terminal part of
the catalytic domain, which may help to open the dimerization in-
terface (Blocquel et al., 2019). Interestingly, removal of the WHEP
domain mostly had no effect on the aminoacylation activities of the
WHEP-containing aaRSs (Guo, Schimmel, et al., 2010), suggesting a
potential relevance of the WHEP domain for CMT.

6 | WARS VARIANTS

WARS encodes the human cytosolic TrpRS, which is composed of a
WHEP domain, a catalytic domain and an anticodon binding domain
(Figure 5a-c). WARS variants have just recently been identified in
CMT, and the research on TrpRS in CMT is thus very limited.

The first missense variant of WARS (WARSH257R) was identified
in two unrelated Taiwanese pedigrees with autosomal-dominant
dHMN and later found in one additional dHMN family of European
ancestry in Belgium (Tsai et al., 2017). This recurrent catalytic do-
main variant of WARS does not affect protein dimerization but does
have a damaging and dominant-negative effect on the enzymatic ac-
tivity of TrpRS, resulting in disturbed protein synthesis and defective
cell viability (Tsai et al., 2017). Furthermore, the variant, but not the
WT, TrpRS inhibits neurite outgrowth in primary motor neurons and
leads to neurite degeneration. Interestingly, in contrast to human
WT TrpRS, which fails to complement wrs1 deficiency in yeast mod-
els, the WARSH?57R variant can partially complement wrs1 deficiency
in yeast cells, suggesting that the WARS"2°’R variant may change
the structure of human TrpRS, enhancing the catalytic ability of the
TrpRS variant toward yeast tRNA. Notably, the variant proteins ex-
hibit enabled and enhanced binding to vascular endothelial-cadherin
(VE-cadherin), leading to an enhanced angiostatic effect. This result
is very similar to the previous finding that an aberrant GlyRS-Nrp1
interaction interferes with the binding of VEGF, thus causing motor
defects (He et al., 2015). In this regard, axonal neuropathy is very
likely to be closely associated with the angiogenesis pathway, but
this nonenzymatic function needs to be further investigated.

Very recently, another novel heterozygous WARS variant
(WARSP314%) was reported in a Chinese family presenting with
a mild-to-moderate and late-onset phenotype of dHMN (Wang
et al.,, 2019). Further structural model analysis predicted that this
catalytic domain variant might have an impact on the recognition,
binding and activation of tryptophan; however, other functional as-

says are lacking.
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FIGURE 5 Distribution and conservation of CMT-associated
variant sites in human TrpRS. (a) Functional domains of TrpRS
including a WHEP domain (in purple), a catalytic domain (in grey)
and an anticodon domain (in yellow). (b) The crystal structure

of human TrpRS (PDB entry 1R6T). CMT variant sites in either
schematic diagram (a) or crystal structure (b) are indicated with
different colors based on enzymatic activity of each variant
with the same priority ranking as Figure 1b. (c) Evolutionary
conservation analysis of CMT-linked TrpRS across species.
Sequence alignment of each variant site is indicated by the color
intensity, with blue representing variable and red representing
conserved

7 | OTHER PUTATIVE NEUROPATHY-
ASSOCIATED VARIANTS

7.1 | MARS variants

Unlike other CMT-linked aaRSs, methionyl-tRNA synthetase (MetRS)
functions as a monomer and associates with the multi-synthetase
complex (MSC), which is anchored by the N-terminal GST domain.
MetRS also has a conserved class | catalytic domain and an antico-
don domain, followed by a C-terminal-appended WHEP domain with
an unclear function. Four MARS variants have thus far been linked
to CMT type 2U (CMT2U, # OMIM 616280) (Table 1). Three vari-
ants are located in the anticodon binding domain, and one is in the
catalytic domain. The monoallelic variant of R618C in the MARS
(MARSR®'8%) was first described in a family with two affected patients
who presented with late-onset CMT2U and one unaffected member
(Gonzalez et al., 2013). The MARSR¢'8C yariant is nonfunctional in

yeast models, suggesting a loss-of-function feature; however, the
potential mechanisms and contributions of this variant in CMT are
less well characterized (Gonzalez et al., 2013). Subsequently, the
MARSPET variant was identified in a Korean family with late-onset
CMT2U (Hyun et al., 2014), and then in another Japanese family
with late-onset CMT2U (Hirano et al., 2016) and a Korean family
with CMT2U but with a relatively early onset (Nam et al., 2016), sug-
gesting that this recurrent variant causes variability and diversity
of the CMT phenotype. Recently, two novel, likely disease-associ-
ated missense variants, MARSR”®"W and MARS"%""T were reported
in a 13-year-old girl with CMT2U (Sagi-Dain et al., 2018) and in an
11-year-old girl with early-onset CMT2U (Gillespie et al., 2019), re-
spectively. These findings enrich the spectrum of the MARS variants
in CMT2U, but disease-associated function of the variants is unclear,
and the human genetic evidence for MARS variants in CMT remains

unequivocal.

7.2 | NARS variants

In addition to CMT, aaRSs variants have been frequently impli-
cated in other neuropathies. For example, biallelic NARS variants
were identified in 7 affected patients with recessive microcephaly
from three unrelated families (Wang et al., 2020). Another study
described de novo dominant heterozygous and biallelic recessive
variants in the NARS in 32 individuals from 21 families, presenting
with multiple neurodevelopmental defects (Manole et al., 2020).
Interestingly, functional data indicated that genotypes with domi-
nant heterozygous NARS variants produce a toxic gain-of-function,
whereas the homozygous recessive variants probably induce a par-
tial loss of function (Manole et al., 2020; Wang et al., 2020). Although
neuropathies other than CMT are outside the scope of this review,
these studies do shed light on the complex pathogenic mechanisms

of aaRSs in neuropathies.

8 | SUMMARY AND PROSPECTS

Despite the identification of an increasing number of causative
genes, CMT remains incurable. A more accurate classification and
deeper understanding of CMT remain great challenges to scientists.

One major challenge in this field is understanding the pathogenic
commonalities among different aaRS-linked CMT subtypes. Some
aaRS variants may cause CMT through a loss of function (either
through haplo-insufficiency or a dominant-negative effect). Many
CMT-linked aaRS variant sites, such as D146, P244, ETAQ, G273 and
1280 in GARS (Figure 1c), G41 in YARS (Figure 2c), G102 and R329
in AARS (Figure 3c), and T132, R137 and Y330 in HARS (Figure 4c),
are evolutionarily highly conserved, suggesting their important
roles, and variations in them do have loss-of-function properties in
vitro or in yeast models (Table 1). In addition, phenotypes caused by
recessive homozygous variants or those beyond CMT can be res-
cued by WT proteins in animal models (Achilli et al., 2009; Chihara
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etal., 2007; Seburn et al., 2006), suggesting that some variants result
in undefined loss of function. Nevertheless, the specific mechanism
by which aminoacylation deficiency causes peripheral neuropathy
remains unknown.

Many lines of evidence have confirmed the toxic functions
gained from aaRS variants, and this discovery may serve as a shared
disease-causing mechanism for aaRS-associated CMT. For example,
different CMT-linked variants of GIlyRS, HisRS and TyrRS lead to
shared neomorphic structural opening which allows aberrant inter-
actions with membrane receptors or intracellular proteins, thereby
interfering with certain signaling pathways and trafficking in motor
and sensory neurons (Blocquel et al., 2017, 2019; He et al., 2011,
2015). This shared property may facilitate the identification of
new therapies by targeting these opened sites in all aaRS-linked
CMT subtypes. In addition, both CMT2D and DI-CMTC models in
Drosophila share common genetic modifiers with nuclear localization
(Ermanoska et al., 2014). This finding implies that the nuclear involve-
ment of CMT-linked aaRSs, such as TyrRS (Bervoets et al., 2019), may
very likely be another shared pathogenic mechanism, but this topic
needs further exploration. Last, except for TyrRS and AlaRS, three
CMT-linked aaRSs (GlyRS, HisRS and TrpRS) and one putative CMT-
associated MetRS contain a specific appended WHEP domain, which
mostly does not affect the enzymatic activities of their aaRSs (Guo,
Schimmel, et al., 2010) but does show a close association with aaRS-
linked CMT (Blocquel et al., 2019; Grice et al., 2015; He et al., 2011),
implying a potential shared pathogenic mechanism. Further stud-
ies on the specific role of the WHEP domain in CMT are of great
interest. Nonetheless, we cannot rule out the possibility that both
functional losses and functional gains are simultaneously involved
in the pathogenic mechanisms in certain CMT forms, although the
underlying factors remain unknown.

Furthermore, multiple aaRS variants have been identified in
CMT, but only a few have been tested in animal models or patient
cells. To date, the CMT-causing GlyRS is the only one that has been
successfully recapitulated in mouse models, while the functions of
the other aaRS variants have been determined in only yeast strains,
which are apparently insufficient to illustrate the true regulatory
functions of aaRSs under physiological conditions. The discrepant
aminoacylation levels of the HARSP***" variant in yeast models and
CMT patients suggests that the pathogenic mechanisms caused by
aaRS variants in CMT are highly context-dependent. Furthermore,
simple experimental models of aaRS variants established in flies,
fish and worms also require re-evaluation in mammalian animal
models or patient cells. As such, detailed analysis of a higher model
system will be critical for addressing this issue, and it will help to
not only distinguish the contributions of each aaRS variant to CMT,
but also to determine the pathogenic commonalities among differ-
ent aaRS-associated CMT subtypes to further advance therapeutic
interventions.

Last but not least, neither ideal biomarkers nor therapeutic tar-
gets are currently available for slowly progressive CMT, although
we do have some promising candidates to target in the diagnosis
and treatment of CMT, such as Nrp-1, TRIM28 and nuclear TyrRS.
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Deeply understanding why peripheral nerves are predominantly af-

Neurochemistry

fected in aaRS-linked CMT and how they work within the human cell
environment will hopefully lay the foundation for the precise strati-

fication and targeted treatment of CMT in the future.
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