
1. Introduction
In recent years, California has experienced a number of devastating wildfires. These fires adversely impact 
air quality both locally and regionally for long periods of time (Reisen et al., 2015), elevating concentrations 

Abstract Exposure to wildfire smoke increases the risk of respiratory and cardiovascular hospital 
admissions. Health impact assessments, used to inform decision-making processes, characterize the 
health impacts of environmental exposures by combining preexisting epidemiological concentration–
response functions (CRFs) with estimates of exposure. These two key inputs influence the magnitude 
and uncertainty of the health impacts estimated, but for wildfire-related impact assessments the extent 
of their impact is largely unknown. We first estimated the number of respiratory, cardiovascular, and 
asthma hospital admissions attributable to fire-originated PM2.5 exposure in central California during 
the October 2017 wildfires, using Monte Carlo simulations to quantify uncertainty with respect to the 
exposure and epidemiological inputs. We next conducted sensitivity analyses, comparing four estimates 
of fire-originated PM2.5 and two CRFs, wildfire and nonwildfire specific, to understand their impact on 
the estimation of excess admissions and sources of uncertainty. We estimate the fires accounted for an 
excess 240 (95% CI: 114, 404) respiratory, 68 (95% CI: −10, 159) cardiovascular, and 45 (95% CI: 18, 81) 
asthma hospital admissions, with 56% of admissions occurring in the Bay Area. Although differences 
between impact assessment methods are not statistically significant, the admissions estimates' magnitude 
is particularly sensitive to the CRF specified while the uncertainty is most sensitive to estimates of fire-
originated PM2.5. Not accounting for the exposure surface's uncertainty leads to an underestimation of 
the uncertainty of the health impacts estimated. Employing context-specific CRFs and using accurate 
exposure estimates that combine multiple data sets generates more certain estimates of the acute health 
impacts of wildfires.

Plain Language Summary Health impact assessments are public health decision-making 
tools that quantify the health impacts of environmental exposures by combining two key pieces of 
information: estimates of the population's level of exposure and a function describing the relationship 
between exposure and the risk of adverse health outcome(s). For wildfire smoke, an environmental 
exposure of increasing importance, it is largely unknown how different choices for these two inputs 
impact the magnitude and uncertainty of the health impacts estimated. To understand this, we evaluated 
the sensitivity of an impact assessment, which estimated the number of hospital admissions attributable 
to smoke exposure during the October 2017 California wildfires, to four different estimates of smoke 
exposure and two different health risk functions. We find that smoke exposure accounted for an estimated 
308 excess respiratory and cardiovascular admissions. The health impact assessment is sensitive to the 
inputs selected, with the admissions estimates' magnitude most impacted by the health risk function and 
the uncertainty most impacted by the estimates of exposure. In order to estimate the health impacts of 
wildfires with greater certainty, we recommend using more informed and accurate estimates of smoke 
exposure and health risk functions that are specific to wildfire smoke.
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Key Points:
•  PM2.5 exposure during the 2017 

California fires accounted for an 
estimated 308 excess respiratory and 
cardiovascular hospital admissions

•  Health impact assessments, used to 
inform decision-making processes, 
are sensitive to the exposure and 
epidemiologic inputs specified

•  Accurate exposure estimates and 
context-specific health risk functions 
estimate fire-attributable health 
impacts with greater certainty
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of fine particulate matter (PM2.5) to levels potentially hazardous to human health. The October 2017 north-
ern California wildfires resulted in record high PM2.5 concentrations, with daily average concentrations 
greater than 190 μg/m3, dangerously exceeding the 24-h PM2.5 standard of 35 μg/m3 and exposing large 
populations to unhealthy air (Bay Area Air Quality Management District, 2019; Cleland et al., 2020). Expo-
sure to fire-originated PM2.5 can cause a variety of adverse health outcomes, with substantial evidence for 
increased risk of respiratory morbidity and growing evidence for increased risk of cardiovascular morbidity 
and all-cause mortality (Jaffe et al., 2020; Liu et al., 2015; Reid et al., 2016). As the frequency, intensity, and 
spread of wildfires are likely to increase due to climate change (Boegelsack et al., 2018; Liu et al., 2016; 
Spracklen et al., 2009; Yue et al., 2013), increasing population-level exposure to fire-originated PM2.5 (Ford 
et al., 2018), it is necessary to improve upon existing methods to better identify and quantify the health 
impacts of wildfire smoke exposure.

Two primary ways of evaluating the health impacts of wildfire smoke are epidemiological studies, which 
aim to evaluate health risk and health burden based on health outcome data, and health impact assess-
ments, which aim to evaluate the overall health impact using health risk estimates from prior epidemiolog-
ical studies. There is a growing body of epidemiological evidence that short-term smoke exposure increases 
respiratory and cardiovascular hospital and emergency department (ED) admissions (Borchers-Arriagada 
et al., 2019; Deflorio-Barker et al., 2019; Delfino et al., 2009; Gan et al., 2020; Haikerwal et al., 2015; Liu 
et al., 2017; Rappold et al., 2012). While essential for understanding the public health implications of fire 
events, epidemiological risk estimates require detailed health outcome data to be available, which can lag 
in years, limiting the ability to inform decision making during or just prior to wildfire seasons. In contrast, 
impact assessments rely on preexisting concentration–response functions (CRFs) with estimated health 
risks from epidemiological studies, which when combined with current information on pollutant expo-
sure, baseline health incidence, and population density can estimate the total number of hospital and/or 
ED admissions attributable to wildfire smoke exposure (Borchers-Arriagada, Palmer, Bowman, Morgan, 
et al., 2020; Borchers-Arriagada, Palmer, Bowman, Williamson, et al., 2020; Bowman et al., 2019; Broome 
et al., 2016; Fann et al., 2013, 2018; Jiang & Yoo, 2019; Johnston et al., 2021; Matz et al., 2020; Rittmaster 
et al., 2006). Each of the inputs into a health impact assessment contributes to the overall precision and ac-
curacy of the wildfire smoke-attributable health impacts estimated, but their influence is largely unknown 
and rarely quantified.

In prior assessments, PM2.5 exposure during wildfires has been estimated using three primary data sets: 
monitoring station observations, chemical transport models (CTMs), and satellite observations (Borch-
ers-Arriagada, Palmer, Bowman, Morgan, et al., 2020; Borchers-Arriagada, Palmer, Bowman, Williamson, 
et al., 2020; Bowman et al., 2019; Broome et al., 2016; Fann et al., 2013, 2018; Jiang & Yoo, 2019; John-
ston et al., 2021; Matz et al., 2020; Rittmaster et al., 2006). Fire-originated PM2.5 has been isolated using 
either monitoring station observations over the same geographic region during a nonfire period (Borch-
ers-Arriagada, Palmer, Bowman, Morgan, et al., 2020; Borchers-Arriagada, Palmer, Bowman, Williamson, 
et al., 2020; Bowman et al., 2019; Broome et al., 2016) or a CTM run during the fire period without fire emis-
sions (Fann et al., 2013, 2018; Jiang & Yoo, 2019; Matz et al., 2020). The CRFs selected also vary, with many 
assessments using CRFs for nonwildfire, ambient PM2.5 (Borchers-Arriagada, Palmer, Bowman, Morgan, 
et al., 2020; Borchers-Arriagada, Palmer, Bowman, Williamson, et al., 2020; Bowman et al., 2019; Broome 
et al., 2016; Fann et al., 2013; Johnston et al., 2021; Matz et al., 2020) and only some employing wildfire-spe-
cific (WF) CRFs (Fann et al., 2018; Jiang & Yoo, 2019). Further, the majority of prior wildfire-focused health 
impact assessments did not account for uncertainty beyond the uncertainty of the CRF and only a select few 
considered more than one exposure surface or CRF. As wildfires become an increasingly prevalent public 
health issue, it is important to identify which elements of the impact assessment framework have the most 
influence on the magnitude and uncertainty of the health impacts estimated in order to understand how 
best to conduct these assessments moving forward.

Here, we calculate the number of daily excess respiratory, cardiovascular, and asthma hospital admissions 
attributable to fire-originated PM2.5 exposure during the October 2017 California wildfires and characterize 
how these estimates change with alternative choices of CRFs and smoke exposure surfaces. More specifical-
ly, we evaluate how different epidemiological health risk and PM2.5 exposure estimates and their associated 
uncertainty influence both the number of attributable admissions estimated and their confidence bounds. 
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To our knowledge, this is the first systematic assessment of how choices of inputs for health impact assess-
ments affect estimates of the acute health impacts of wildfire smoke exposure. By showing how different 
sources of uncertain data influence health impact estimates for wildfires, our findings can help strengthen 
future impact assessments and inform public health decision-making processes before, during, and after 
fire events.

2. Data and Methods
2.1. PM2.5 Exposure Data

We used three different total PM2.5 and two different background PM2.5 exposure surfaces to generate four 
estimates of daily average, ground-level fire-originated PM2.5 at a 1-km resolution. In addition to the expo-
sure surface used in our base case impact assessment, three alternative approaches were used in a sensitivity 
analysis, described in detail below, two evaluating different estimates of total PM2.5 and one evaluating a 
different background PM2.5 estimate. The three estimates of total PM2.5 exposure, which were previously 
developed (Cleland et  al.,  2020), are: space–time (s/t) kriging of monitoring station observations, using 
the Bayesian Maximum Entropy (BME) Framework (BME kriging); bias-corrected Community Multiscale 
Air Quality (CMAQ) model output, using the Constant Air Quality Model Performance (CAMP) method 
(CC-CMAQ); and a BME data fusion of observations with CC-CMAQ and satellite-derived concentrations 
(BME data fusion). The two estimates of background PM2.5 exposure are: the percent of PM2.5 attributable 
to background emissions, obtained from CMAQ output with and without fire emissions (CMAQ percent 
attributable) and BME kriging of observations from October 2016 (October 2016). The four estimates of 
fire-originated PM2.5 are: BME data fusion with CMAQ percent attributable; BME kriging with CMAQ per-
cent attributable; CC-CMAQ with CMAQ percent attributable; and BME data fusion with October 2016.

To develop the BME kriging and BME data fusion exposure surfaces, daily average PM2.5 observations were 
used as input. Observations were obtained from permanent Federal Reference Methods (FRM)/Federal 
Equivalent Methods (FEM) and temporary non-FRM/FEM monitoring stations across California for Octo-
ber 1–31, 2017. For the CC-CMAQ and BME data fusion exposure surfaces, we used CMAQ simulations, a 
widely used CTM developed by the United States (U.S.) Environmental Protection Agency (EPA), as input. 
The CMAQ simulations, which used estimates of fire emissions derived from satellite observations and 
estimates of all other anthropogenic and natural emissions, provided estimates of daily average PM2.5 at a 
4-km resolution in central California for October 3–20, 2017. The third input into the BME data fusion was 
satellite-derived PM2.5 concentrations, which we generated by converting aerosol optical depth (AOD) ob-
servations to PM2.5 estimates using a day-specific linear mixed effects model. The 3-km resolution AOD data 
were acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Satellite across 
California for October 1–31, 2017.

CC-CMAQ was generated using the CAMP method, which improves the accuracy of CTM output by ap-
plying a bias correction that accounts for the nonlinear, heteroscedastic relationship between observed and 
modeled concentrations (de Nazelle et al., 2010; Reyes et al., 2017). CC-CMAQ estimates both the bias-cor-
rected PM2.5 concentration and its associated variance. The BME kriging and BME data fusion surfaces were 
generated using the BME framework, which uses modern s/t geostatistics to accurately estimate PM2.5 and 
measures of associated uncertainty at unmonitored locations by combining information on the trends and 
variability of the data with information on concentrations at a set of known s/t locations (Christakos, 1990; 
Christakos et al., 2002; Serre & Christakos, 1999). To produce estimates of ground-level PM2.5 concentra-
tions and their associated variance, BME s/t kriging was used to interpolate monitoring observations and 
BME data fusion was used to fuse observations with both CC-CMAQ and the satellite-derived concentra-
tions. Compared to CC-CMAQ and BME kriging, BME data fusion provides the most accurate and precise 
estimates of ground-level PM2.5 in the fire-affected region and period (Cleland et al., 2020). While no prior 
acute health impact assessment has used the fusion of observed, modeled, and satellite-derived PM2.5 con-
centrations to assess smoke exposure, both monitoring station observations and CMAQ output, standalone 
and in combination, have been used as exposure estimates (Borchers-Arriagada, Palmer, Bowman, Morgan, 
et  al.,  2020; Borchers-Arriagada, Palmer, Bowman, Williamson, et  al.,  2020; Bowman et  al.,  2019; Fann 
et al., 2013, 2018; Jiang & Yoo, 2019; Johnston et al., 2021).
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To estimate background PM2.5, concentrations without emissions from the October 2017 fires, and isolate the 
fire-originated component from the total PM2.5, we used two different data sets: modeled concentrations when 
CMAQ is run without fire emissions and FRM/FEM monitoring station observations from October 2016, 
when California fire activity was identified to be low (Text S1; Figures S1 and S2). For the CMAQ percent at-
tributable approach, we used the ratio between the CMAQ output with only nonfire emissions and with both 
fire and nonfire emissions to identify the percent of PM2.5 attributable to background emissions at any s/t loca-
tion. Using this approach, fire-originated PM2.5,  Δ ,X ts , is calculated as        _Δ , , ,NF CMAQX t X t X ts s s , 

where  ,X ts  is the total PM2.5 concentration at location set s on day t, obtained from one of the three exposure 

estimates described above, and         _ , , , / ,NF CMAQ back fireX t X t CMAQ t CMAQ ts s s s , where backCMAQ  
and fireCMAQ  are the CMAQ model output without and with fire emissions, respectively. While prior impact 
assessments have used CTMs run without fire emissions to determine background PM2.5 during fires (Fann 
et al., 2013, 2018; Matz et al., 2020), only one has used it in a relative manner (Jiang & Yoo, 2019). For the Oc-
tober 2016 approach, we used BME kriging to spatially interpolate the monthly average of monitoring stations 
observations across California during October 2016. Using this approach, fire-originated PM2.5,  Δ ,X ts , is 
calculated as        _ 2016Δ , , NFX t X t Xs s s , where  _ 2016NFX s  is the estimated October 2016 monthly 
average PM2.5 concentration at location set s. We selected October 2016 because no large fires occurred in that 
time period and the seasonal meteorological conditions and nonfire emissions were likely similar to those 
during October 2017. Similar approaches have been used to identify fire-originated PM2.5 in previous impact 
assessments (Borchers-Arriagada, Palmer, Bowman, Morgan, et al., 2020; Borchers-Arriagada, Palmer, Bow-
man, Williamson, et al., 2020; Bowman et al., 2019). In both approaches, to avoid negative concentrations, 

 Δ ,X ts  is set to zero if  _ 2016NFX s  or  _ ,NF CMAQX ts  exceeds  ,X ts .

2.2. Concentration–Response Functions

We considered two types of CRFs: WF CRFs and ambient, nonwildfire-specific (NF) CRFs. The WF CRFs 
are from an epidemiological study of the 2003 southern California wildfires, which found a 2.8% (95% confi-
dence interval [CI]: 1.4, 4.1) increase in respiratory, a 0.8% (95% CI: −0.1, 1.8) increase in cardiovascular, and 
a 4.8% (95% CI: 2.1, 7.6) increase in asthma hospital admissions per 10 µg/m3 increase in 2-day average PM2.5 
(Delfino et al., 2009). Risk coefficients were also calculated for age subgroups for respiratory and asthma 
admissions and for sex subgroups for asthma admissions. These CRFs have been used in previous health 
impact assessments of wildfire smoke (Fann et al., 2018; Jiang & Yoo, 2019).

The ambient, NF CRFs are from an epidemiological study of 26 U.S. counties between 2000 and 2003, which 
found a 2.07% (95% CI: 1.20, 2.95) increase in respiratory and 1.89% (95% CI: 1.34, 2.45) increase in cardio-
vascular hospital admissions per 10 µg/m3 increase in 2-day average ambient PM2.5 (Zanobetti et al., 2009). 
These CRFs have been used in a previous health impact assessment of wildfire smoke exposure (Fann 
et al., 2018).

2.3. Hospital Admission and Population Data

We obtained annual county-level respiratory, cardiovascular, and asthma hospital admission rates for 2017 
across California from the U.S. EPA's Benefits Mapping and Analysis Program-Community Edition, which 
calculates hospitalization rates, per 100,000 population, using data from the Healthcare and Cost Utilization 
Project (Sacks et al., 2018). We then converted these annual rates into daily rates by dividing by 365 (Text S2 
and Figure S3). California census tract-level population data for 2017 were obtained from the U.S. Census 
Bureau.

2.4. Impact Assessment Methods

We calculated the number of excess respiratory, cardiovascular, and asthma hospital admissions attributable 
to fire-originated PM2.5 in central California on each day between October 8 and 20, 2017. We constrained 
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the study area to central California given the geographic extent of the CMAQ model. October 8–20 was 
identified as the fire period based on recorded fire activity.

To estimate the total attributable hospitalizations, we used a health impact function that is appropriate 
when evaluating health impacts attributed to wildfires relative to the long-term hospital admission rates 
(Borchers-Arriagada, Palmer, Bowman, Morgan, et al., 2020; Borchers-Arriagada, Palmer, Bowman, Wil-
liamson, et al., 2020; Bowman et al., 2019; Broome et al., 2016; Fann et al., 2013, 2018; Johnston et al., 2021), 
rather than relative to the elevated admission rates during the fire period, for which we do not have data. 
The health impact function, derived from a log linear model for the relationship between the exposure and 
health outcome

        
    

 

Δ ,
Δ , 1

X t
NFY t Y e Pop

s
s s s (1)

determines the number of attributable hospital admissions per square kilometer,  Δ ,Y ts , at location set s 

on day t, where       Δ , , NFY t Y t Ys s s . The location set s is taken at a set of points,  1 2, , ,
T

Ns s s , corre-

sponding to the cells on a regular estimation grid.  NFY s  is the background daily rate of hospital admissions 
at location set s (i.e., the admission rate without emissions from the October 2017 wildfires), estimated from 
the annual rate and interpolated from each county to the estimation grid.  ,Y ts  represents the daily rate 

of hospital admissions including admissions related to pollution from the fires.  Pop s  is the population 

density in grid cell s, interpolated from each census tract to the estimation grid. The quantity    
 

 

Δ ,
1

X t
e

s
 

is a positive multiplier, where   Δ ,X t
e

s
 is the rate ratio of admissions at concentration  Δ ,X ts , which de-

termines the percent increase in admissions from  NFY s  due to fire-originated PM2.5 exposure.   is the risk 
coefficient, where      3ln / 10 g/mRR  and RR is the rate ratio for the CRF, either WF or NF, for a 10 µg/

m3 increase in 2-day average PM2.5.       Δ , , ,NFX t X t X ts s s  and is the 2-day average fire-originated 

PM2.5 concentration at location set s on day t, where  ,X ts  is the 2-day average total PM2.5 concentration, 

obtained from one of the three exposure surfaces, and  ,NFX ts  is the background concentration (i.e., con-

centrations without emissions from the October 2017 wildfires), either  _ 2016NFX s  or the 2-day average of 

 _ ,NF CMAQX ts . A 2-day average is used for  Δ ,X ts  to match the CRFs. The total number of attributable 

admissions on day t,  n t , is calculated as the sum of excess admissions across all grid cells within central 
California,      Δ ,N

iin t Y ts .

To identify the most impacted subpopulations using the available CRFs, we stratified the impact assessment 
results by age for respiratory hospital admissions and by age and sex for asthma hospital admissions. All 
estimates were rounded to the nearest whole number, instead of two significant figures, given our focus on 
a small geographic region.

To account for uncertainty in the health impact assessment, we conducted Monte Carlo simulations, using 
100,000 iterations, on  ,X ts  and  . For the Monte Carlo simulations, we assumed that the total PM2.5 esti-
mations (  ,X ts ) and the CRFs () follow lognormal distributions. For  ,X ts , the uncertainty is defined by 
the variance of the PM2.5 estimate. For  , the uncertainty is defined from the 95% CI of the CRF. We neglect 
uncertainties in population and background admission rates since they are likely small and not time variant.

2.5. Evaluating Sensitivity of Assessment to Inputs

To determine which inputs have the largest impact on the estimated attributable respiratory and cardio-
vascular hospital admissions and their CIs, we conducted three sensitivity analyses, creating 10 alternative 
impact assessment approaches which used a different total PM2.5 surface, background PM2.5 surface, CRF, 
or sources of uncertainty compared to the base case (Table 1). The base case impact assessment used the 
following inputs: total exposure estimates from the BME data fusion, CMAQ percent attributable to isolate 
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fire-originated PM2.5, the WF CRF, and uncertainty from both the total PM2.5 estimate ( ( , ))X ts  and the CRF 
(). This was identified as the base case because we believe it incorporates the most accurate and represent-
ative information. For the sensitivity analyses, we only changed one input at a time from the base case to 
understand the individual impact of each.

The first sensitivity analysis evaluated the impact of the wildfire PM2.5 exposure estimates on the estimated 
excess hospital admissions and 95% CIs. For this, we first compared the base case total PM2.5 concentration 
surface (BME data fusion) to two simpler alternatives: CC-CMAQ and BME kriging of observations. We 
next compared the base case background PM2.5 surface (CMAQ percent attributable) to one alternative: 

the October 2016 approach. The second sensitivity analysis evaluated 
the impact of the CRF on the estimated excess hospital admissions and 
their CIs. For this, we compared the WF CRF used in the base case to 
the ambient NF CRF. The third sensitivity analysis aimed to identify the 
primary sources of uncertainty in the hospital admissions estimates. For 
this, we compared the estimated admissions' confidence bounds when 
uncertainty from both the total PM2.5 concentration surface (  ,X ts ) and 

the CRF () was accounted for, to when uncertainty from only  ,X ts  or 
  was accounted for. We conducted this sensitivity analysis for all three 
total PM2.5 surfaces to determine if the primary sources of uncertainty 
changed depending on the exposure estimate used.

3. Results
3.1. Impact of Wildfire PM2.5 Exposure on Hospital Admissions

Using base case assumptions, we estimate there were an excess 240 (95% 
CI: 114, 404), 68 (95% CI: −10, 159), and 45 (95% CI: 18, 81) respiratory, 
cardiovascular, and asthma hospital admissions, respectively, attributa-
ble to fire-originated PM2.5 exposure between October 8 and 20 (Table 2). 
More than half of the total respiratory and asthma hospital admissions 
were people over the age of 65, who comprise only 14% of the total pop-
ulation but have higher background rates of hospital admissions. Two 
thirds of the excess asthma admissions were female, who have a higher 
risk of asthma-related hospitalization. The least impacted age groups for 
both respiratory and asthma admissions were people aged 5–19. While 
asthma hospital admissions have the highest risk coefficient for wild-
fire PM2.5 exposure, they account for the lowest number of attributable 
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Sensitivity analysis Total PM2.5 estimation Background PM2.5 estimation CRF type Sources of uncertainty

Base case BME data fusion CMAQ % attributable WF CRF and total PM2.5

(1) Sensitivity to fire-originated PM2.5 estimation

CC-CMAQ CMAQ % attributable WF CRF and total PM2.5

BME kriging CMAQ % attributable WF CRF and total PM2.5

BME data fusion October 2016 WF CRF and total PM2.5

(2) Sensitivity to CRF type BME data fusion CMAQ % attributable NF CRF and total PM2.5

(3) Sensitivity to sources of uncertainty

BME data fusion CMAQ % attributable WF CRF

BME data fusion CMAQ % attributable WF Total PM2.5

CC-CMAQ CMAQ % attributable WF CRF

CC-CMAQ CMAQ % attributable WF Total PM2.5

BME kriging CMAQ % attributable WF CRF

BME kriging CMAQ % attributable WF Total PM2.5

Table 1 
Definition of Inputs for the Three Sensitivity Analyses and 10 Alternative Impact Assessments to Compare to the Base Case

RR (95% CI)a # Admissions (95% CI)

Respiratory hospital admissions

 All ages 1.028 (1.014, 1.041) 240 (114, 404)

 Ages 0–4 1.045 (1.010, 1.082) 27 (6, 54)

 Ages 5–19 1.027 (0.984, 1.076) 15 (−9, 43)

 Ages 20–64 1.024 (1.005, 1.044) 65 (13, 131)

 Ages 65–99 1.030 (1.011, 1.049) 126 (44, 232)

Cardiovascular hospital admissions

 All ages 1.008 (0.999, 1.018) 68 (−10, 159)

Asthma hospital admissions

 All ages and sexes 1.048 (1.021, 1.076) 45 (18, 81)

 Male 1.031 (0.990, 1.073) 14 (−4, 35)

 Female 1.059 (1.022, 1.097) 29 (10, 55)

 Ages 0–4 1.083 (1.021, 1.149) 7 (2, 15)

 Ages 5–19 0.999 (0.935, 1.068) 0 (−10, 11)

 Ages 20–64 1.041 (0.995, 1.090) 17 (−2, 40)

 Ages 65–99 1.101 (1.030, 1.178) 27 (7, 57)
aRate ratio per 10  µg/m3 increase in 2-day average PM2.5 (Delfino 
et al., 2009).

Table 2 
Number of Excess Respiratory, Cardiovascular, and Asthma Hospital 
Admissions Attributable to Wildfire-Originated PM2.5, October 8–20, 2017, 
Estimated Using Base Case Assumptions
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admissions due to the low background admission rates. It is important to note that the admission counts 
for the age and sex subgroups do not sum to the all ages, all sexes count because different CRFs are used for 
each subgroup and are not designed to total to the number calculated using the general population CRF.

Hospital admissions varied daily, reflecting variation in smoke exposure (Figure 1). Between October 
8 and 20, October 11 had the highest number of excess respiratory and cardiovascular admissions, 40 
(95% CI: 19, 68) and 11 (95% CI: −2, 26), respectively. October 12 had the most excess asthma admis-
sions, with 8 (95% CI: 3, 14) total admissions. The days with the highest number of admissions have the 
largest uncertainty around the estimates. The peaks in excess admissions occurred the same day as or 
1 day after peaks in population-weighted fire-originated PM2.5 concentrations, a reflection of the CRFs 
which report an increase in attributable admissions per increase in 2-day average PM2.5. There were two 
peaks in excess admissions, October 11–12 and October 18, reflecting peaks in smoke concentrations. 
Daily counts of admissions for each health endpoint can be found in supporting information (Text S3 
and Table S1).

To understand the spatial distribution of hospital admissions across central California during the fires, we 
mapped the rate of the excess admissions (Figure 2) and the percent increase in hospital admissions due 
to wildfire PM2.5 exposure (Text S4 and Figure S4) and calculated county-level attributable admissions (Ta-
ble 3, Text S5, and Figure S5). Overall, attributable respiratory hospital admissions occurred at a higher rate 
in comparison to cardiovascular and asthma admissions, aligning with the results in Tables 2 and 3, and 
were more widespread across multiple counties. Between October 10 and 12, the regions with the highest 
rates of attributable admissions varied by health outcome. For respiratory hospital admissions, some of the 
highest rates occurred in Napa, Mendocino, Butte, Madera, and Contra Costa Counties. For cardiovascular 
and asthma hospital admissions, the highest rates occurred in Napa and Butte Counties and Madera and 
Alameda Counties, respectively. The counties with the highest number of excess admissions also varied 
by health outcome, with 56% of all respiratory and cardiovascular admissions occurring in the Bay Area 
(Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma Coun-
ties). Napa County had the most respiratory (12.9%) and cardiovascular admissions (17.6%), while Alameda 
County had the most asthma admissions (17.8%).

The counties with high excess admission rates and counts are determined by three primary factors: the 
fire-originated PM2.5 concentrations, background hospital admission rates, and population density. Since 
the smoke exposure estimates remain the same for all health outcomes, the differences in where high attrib-
utable admission rates are located are driven by the county-level background admission rates. For example, 
Napa County was exposed to some of the highest PM2.5 concentrations during the 2017 wildfires (Cleland 
et al., 2020), with more than a 30% increase in respiratory and asthma admissions due to fire-originated 
PM2.5 exposure (Figure S4). While Napa County also had the highest rates of excess respiratory admissions, 
it had notably lower rates of excess asthma admissions due to a low background rate of asthma hospital ad-
missions in 2017. Further, the differences in total attributable admissions are driven by population density. 

CLELAND ET AL.

10.1029/2021GH000414

7 of 14

Figure 1. Daily excess respiratory, cardiovascular, and asthma hospital admissions attributable to wildfire PM2.5 and daily population-weighted average fire-
originated PM2.5 concentrations, October 8–20, 2017, estimated using base case assumptions.



GeoHealth

CLELAND ET AL.

10.1029/2021GH000414

8 of 14

Figure 2. Excess respiratory, cardiovascular, and asthma hospital admissions attributable to wildfire PM2.5, expressed as rate per 1,000,000 person-days, October 
10–12, 2017, estimated using base case assumptions.

County

# Admissions (95% CI)
Average fire-originated 

PM2.5 (Std. Dev.) (µg/m3)a
Total population 

(# persons)bRespiratory Cardiovascular Asthma

Napa 31 (15, 48) 12 (−2, 26) 3 (1, 5) 39.57 (17.73) 141,005

Santa Clara 25 (12, 42) 8 (−1, 20) 5 (2, 10) 10.50 (0.85) 1,911,226

Alameda 25 (12, 42) 6 (−1, 14) 8 (3, 14) 11.94 (2.77) 1,629,615

Contra Costa 17 (8, 28) 4 (−1, 10) 4 (2, 8) 14.54 (3.92) 1,123,678

Sacramento 12 (6, 21) 4 (−1, 10) 3 (1, 5) 10.00 (1.03) 1,495,400

Fresno 11 (5, 18) 4 (−1, 9) 2 (1, 4) 9.03 (2.01) 971,616

Solano 11 (5, 19) 3 (0, 7) 2 (1, 4) 19.64 (6.87) 434,981

Sonoma 10 (4, 17) 3 (0, 6) 2 (1, 3) 25.54 (5.21) 500,943

Butte 10 (5, 18) 2 (0, 5) 1 (0, 2) 9.67 (1.56) 225,207

San Joaquin 9 (4, 15) 2 (0, 5) 2 (1, 3) 10.18 (0.46) 724,153
aThe population-weighted average and standard deviation of the 1-km resolution fire-originated PM2.5 estimations 
across the county, October 8–20, 2017. bCounty-level total population calculated using 2017 census tract-level 
population data.

Table 3 
Number of Fire-Attributable Respiratory, Cardiovascular, and Asthma Hospital Admissions, Average Fire-Originated 
PM2.5 Concentrations, and Total Population in the 10 Counties With the Most Excess Admissions, October 8–20, 2017, 
Estimated Using Base Case Assumptions
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For example, while sparsely populated Madera County had the highest rates of excess asthma admissions, 
densely populated Alameda County, which had comparably lower attributable admission rates, had the 
most excess asthma admissions.

3.2. Sensitivity of Assessment to Inputs

To identify which impact assessment inputs had the most impact on the magnitude and uncertainty of the 
admissions estimates, we compared four different approaches that used a different total PM2.5 estimation 
method, background PM2.5 estimation method, or CRF relative to the base case. Overall, the health impact 
estimates are sensitive to all three inputs, but the overlapping CIs indicate that the sensitivity is not statisti-
cally significant (Table 4). Changes in the magnitude and range of uncertainty of the admissions estimated 
are present both across the entire fire period (Table 4) and on each day (Text S6 and Figure S6). The loca-
tions of the excess admissions also change depending on the impact assessment approach used (Text S6 and 
Figure S7).

Of the three inputs, the NF CRFs have the largest impact on the magnitude of the estimate compared to the 
base case, with a 26% decrease and 140% increase in the estimated number of excess respiratory and cardio-
vascular admissions, respectively. These changes are due to the NF CRFs having a lower risk coefficient for 
respiratory and considerably higher risk coefficient for cardiovascular hospital admissions compared to the 
WF CRFs. The widths of confidence bounds shrink slightly when using the NF CRFs, due to their narrower 
95% CIs. The CRFs' large impact on the estimated excess admissions emphasizes the importance of using a 
WF CRF, especially as the PM2.5 composition of smoke affects toxicity (Liu & Peng, 2019).

The method used to estimate background PM2.5 also impacts the magnitude and uncertainty of admissions 
estimates. When the October 2016 approach is used to isolate fire-originated PM2.5 instead of the CMAQ 
percent attributable approach, there is a 25% and 24% increase in the excess respiratory and cardiovascular 
admissions estimated, respectively, and a 44% and 31% increase in the CI width, respectively. Using the 
October 2016 surface increases the frequency of low estimated fire-originated PM2.5 concentrations, shown 
by the reduction in both the spatial and population-weighted average and the 95th percentile of concentra-
tions. This shift in the distribution of smoke concentrations across California during the fires increases the 
number and associated uncertainty of excess admissions estimated.

Changing the method for estimating total exposure to either CC-CMAQ or BME kriging has the least impact 
on magnitude but the largest impact on uncertainty, especially for respiratory admissions. CC-CMAQ in-
creases the estimated excess respiratory and cardiovascular admissions by 5% and 3%, respectively, and the 
width of the CIs by 87% and 31%, respectively. There is a slight increase in admissions because, compared 
to BME data fusion, CC-CMAQ has a higher frequency of high estimated smoke concentrations, shown 
by the increase in the 95th percentile of fire-originated PM2.5. BME kriging increases the estimated excess 
respiratory and cardiovascular admissions by 16% and 15%, respectively, and increases the width of the CIs 
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Impact assessment method # Admissions (95% CI) Fire-originated PM2.5 (µg/m3)a

Total PM2.5 estimation Background PM2.5 estimation
CRF 
type Respiratory Cardiovascular

Population-weighted 
average (Std. Dev.)

Spatial average 
(Std. Dev.)

95th 
percentile

1b BME data fusion CMAQ % attributable WFc 240 (114, 404) 68 (−10, 159) 10.05 (6.58) 7.05 (9.81) 26.59

2 CC-CMAQ CMAQ % attributable WF 251 (77, 620) 70 (−10, 211) 9.84 (6.10) 6.56 (9.63) 27.47

3 BME kriging CMAQ % attributable WF 280 (124, 512) 78 (−12, 192) 11.02 (7.08) 8.19 (11.17) 26.40

4 BME data fusion October 2016 WF 299 (126, 544) 84 (−13, 208) 8.77 (7.50) 6.56 (8.48) 22.65

5 BME data fusion CMAQ % attributable NFd 177 (87, 305) 163 (95, 261) 10.05 (6.58) 7.05 (9.81) 26.59
aThe population-weighted average and standard deviation, spatial average and standard deviation, and 95th percentile of the 1-km resolution fire-originated 
PM2.5 estimations across central California. bBase case impact assessment. cWildfire-specific CRFs (rate ratio per 10 μg/m3 increase in 2-day average PM2.5)—
respiratory: 1.028 (95% CI: 1.014, 1.041); cardiovascular: 1.008 (95% CI: 0.999, 1.018) (Delfino et al., 2009). dNonwildfire-specific CRFs (rate ratio per 10 μg/m3 
increase in 2-day average PM2.5)—respiratory: 1.021 (95% CI 1.012, 1.030); cardiovascular: 1.019 (95% CI: 1.013, 1.025) (Zanobetti et al., 2009).

Table 4 
Comparison of Methods for Estimating Excess Respiratory and Cardiovascular Hospital Admissions and Fire-Originated PM2.5 Exposure, October 8–20, 2017
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by 33% and 21%, respectively. This increase in admissions occurs because, compared to BME data fusion, 
BME kriging on average estimates higher fire-originated PM2.5 concentrations across central California. The 
observed decrease in the impact assessment results' precision when either BME kriging or CC-CMAQ is 
used occurs because both exposure surfaces have higher estimation variance than BME data fusion (Cleland 
et al., 2020).

To further understand how estimates of fire-originated PM2.5 exposure differed between methods, we com-
pared the four exposure surfaces spatially on October 10 (Figure 3) and temporally between October 8 and 
20 (Text S6 and Figure S8). Using BME kriging or CC-CMAQ to estimate total exposure instead of BME data 
fusion changes the smoke plume characteristics, impacting both the location and magnitude of concentra-
tions and the number of attributable admissions estimated. Both CC-CMAQ and BME kriging have larger 
plumes of high fire-originated concentrations north of San Francisco Bay compared to BME data fusion, 
partly explaining the increase in estimated admissions. When the October 2016 approach is used instead of 
the CMAQ percent attributable approach to estimate background concentrations, there appears to be less 
clear isolation of the smoke plumes, with widespread low fire-originated PM2.5 concentrations south and 
east of the Bay Area. The increased area covered by wildfire PM2.5 using this method partly explains the in-
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Figure 3. Comparison of methods for estimating exposure to fire-originated PM2.5 on October 10, 2017. (1) Base case, BME data fusion with CMAQ % 
attributable as background; (2) CC-CMAQ with CMAQ % attributable as background; (3) BME kriging with CMAQ % attributable as background; and (4) 
BME data fusion with October 2016 as background. BME, Bayesian Maximum Entropy; CMAQ, Community Multiscale Air Quality; CC-CMAQ, corrected 
Community Multiscale Air Quality model output, using the Constant Air Quality Model Performance.
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crease in estimated admissions. It is possible that ambient, nonfire PM2.5 
across California changed between 2016 and 2017, which would limit the 
October 2016 surface's ability to accurately isolate smoke concentrations.

We then quantified, for each of the three total exposure surfaces, the con-
tributions of uncertainties in the total PM2.5 estimate and CRF to the over-
all uncertainty of the number of excess respiratory admissions estimated 
(Figure  4). Only accounting for one source of uncertainty, regardless 
of the exposure surface used, produces optimistically small confidence 
bounds and underestimates the admissions estimates' uncertainty. When 
uncertainty from both the total exposure estimate and CRF is accounted 
for, CC-CMAQ, the least precise PM2.5 estimate, produces the least precise 
admissions estimates. BME data fusion, the most precise PM2.5 estimate, 
produces the most precise admissions estimates. With BME data fusion, 
the majority of uncertainty in the admissions estimate comes from the 
CRF; accounting for the CRF's uncertainty, when uncertainty from the 
PM2.5 exposure surface is already accounted for, increases the CI width 
by 121%. In comparison, the primary source of uncertainty when using 
CC-CMAQ is the exposure surface; accounting for the CRF's uncertainty, 
when uncertainty from the PM2.5 exposure surface is already accounted 
for, only increases the CI width by 14%. The exposure surface and the 
CRF contribute comparably to uncertainty when BME kriging is used. In 
health impact assessments, when using CRFs from previously published 
literature, the uncertainty of the CRF is predefined. In this case, when 
there is not control over the CRF's uncertainty, there is often control over 
the uncertainty of the exposure surface, especially if it is developed for 
the purpose of the assessment. Reducing the variance of the exposure 
estimate, which BME data fusion does by incorporating three different 
data sets into the PM2.5 estimation surface, not only changes the prima-
ry source of uncertainty but also increases the overall precision of the 
final respiratory admissions estimate. Similarly, when estimating excess 
cardiovascular hospital admissions using BME data fusion, the CRF con-
tributes the vast majority of uncertainty to the final admissions estimate 
(Text S6 and Figure S9).

4. Discussion and Conclusions
Using the base case impact assessment, we estimate that exposure to 
fire-originated PM2.5 during the October 2017 wildfires accounted for 
over 300 excess respiratory and cardiovascular hospital admissions, with 
the majority of admissions occurring in the Bay Area. The regions with 
the highest estimated rates and number of attributable admissions were 
those with extreme smoke concentrations and high background admis-
sion rates and population density, such as Napa and Alameda County, 
where 14% and 10% of the total estimated respiratory and cardiovascular 
admissions were associated, respectively. While there is only an estimated 
1%–4% increase in respiratory and cardiovascular hospital admissions per 
10 µg/m3 increase in PM2.5, since wildfires elevate PM2.5 concentrations 
to hazardous levels across large geographic regions for multiple weeks, 
the overall health impact of fire events can be noticeable and widespread.

We also show that choices of inputs used in the health impact assessment 
have an impact on both the magnitude and uncertainty of the number of 
attributable admissions estimated. In our assessment, the CRF had the 
greatest impact on the number of excess admissions estimated, while the 
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Figure 4. The individual contributions of uncertainties in the CRF and 
total PM2.5 surface to the total uncertainty in estimated respiratory hospital 
admissions when uncertainties in both the CRF and total PM2.5 surface 
are accounted for. Uncertainties are shown as 95% confidence intervals 
with the vertical line marking the mean estimate. Results are shown using 
the three total PM2.5 exposure estimates (CC-CMAQ, BME kriging, and 
BME data fusion), which all use CMAQ % attributable for the background 
concentrations and the WF CRF. CRF, concentration–response function; 
CC-CMAQ, Constant Air Quality Model Performance-corrected 
Community Multiscale Air Quality model output; BME, Bayesian 
Maximum Entropy; WF, wildfire specific.
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uncertainty was most impacted by the exposure surface. Regardless of the health effect being studied, the 
impact of the CRF will depend on which CRFs are selected. Our findings indicate that using a NF CRF 
may underrepresent respiratory admissions and overrepresent cardiovascular admissions attributable to 
fire-originated PM2.5. Since there is often variety between CRFs for ambient versus wildfire PM2.5 exposure, 
we recommend that future impact assessments of smoke exposure use a WF CRF when available.

The method used to isolate fire-originated PM2.5 also has implications when assessing the acute health 
impacts of smoke exposure. Since ambient PM2.5 and other meteorological conditions in the same geo-
graphic region can change over time, using a CTM run during the fire period without fire emissions, rather 
monitoring station observations in the study area during a nonfire period, may be able to more realistically 
isolate fire-originated PM2.5. Additionally, while prior acute health impacts assessments of wildfires have 
primarily used either monitoring station observations or CTM output to estimate total exposure, we show 
that combining multiple PM2.5 data sets through data fusion reduces the variance of the exposure estimate 
and increases the precision of the excess admissions estimates. Using multiple PM2.5 data sets also often 
increases the accuracy of the exposure surface (Cleland et al., 2020; Lassman et al., 2017; Reid et al., 2015), 
in turn likely increasing the accuracy of the estimated acute health impacts.

We further show that accounting for uncertainty from only the CRF or the exposure estimate leads to an 
underestimation of the health impact estimates' uncertainty, emphasizing the importance of accounting 
for multiple sources of uncertainty. In many prior assessments that only propagated uncertainty using 
the CRF's distribution (Borchers-Arriagada, Palmer, Bowman, Morgan, et al.,  2020; Borchers-Arriagada, 
Palmer, Bowman, Williamson, et al., 2020; Broome et al., 2016; Fann et al., 2013, 2018; Matz et al., 2020), 
the confidence bounds around the admissions estimates may be optimistically small. Since PM2.5 exposure 
surfaces are inherently uncertain, it is important to include them as a source of uncertainty to obtain more 
realistic CIs.

Once uncertainties from both are accounted for, the importance of a good exposure surface becomes more 
evident. A less precise estimate of total PM2.5, like CC-CMAQ, contributes far more uncertainty to the final 
health impact estimates than a more precise exposure estimate, like the BME data fusion output. A prior 
health impact assessment similarly found that when using a calibrated CMAQ model to estimate WF PM2.5 
exposure, the PM2.5 surface contributed more uncertainty than the CRF to the final health impact estimate 
(Jiang & Yoo, 2019). Since CRFs and their parameterized uncertainty are often drawn from published epi-
demiological studies, one simple way to reduce the overall uncertainty of health impact assessments is to 
improve the quality of the exposure surfaces used. To further improve impact assessments and obtain a 
clearer understanding of the health impacts of wildfires, we recommend that epidemiological studies also 
use more accurate and informed exposure estimates that integrate multiple PM2.5 data sets to increase the 
accuracy and precision of CRFs. In order to improve access to more advanced smoke exposure estimates, it 
is necessary to increase collaboration and data sharing among those investigating the air quality and health 
impacts of fires.

While our study has many strengths, there are also some important limitations. First, we are unable to 
validate the accuracy of our attributable admissions estimates because we do not know the number of daily 
hospital admissions that occurred during October 2017, nor do we know how many were attributable to 
smoke exposure. Further, our analyses only focused on the central California region, given the bounds of 
the CMAQ model. By limiting the geographical bounds of our analysis, we likely underestimate the total 
number of admissions attributable to the October 2017 wildfires, since smoke from the fires impacted re-
gions beyond central California. We also do not account for locations that were evacuated due to the fires, 
nor for time-activity patterns among the exposed population, and as a result may have under or overesti-
mated population exposure and the number of excess admissions. Additionally, the exposure, background 
admission rate, and population data all have different geographic scales which may introduce additional 
uncertainty into our analyses. Finally, we do not account for uncertainty from the estimation of background 
concentrations.

By showing that health impact estimates are sensitive to different exposure and epidemiological inputs, 
and by demonstrating the importance of accounting for multiple sources of uncertainty, employing con-
text-specific CRFs, and using more advanced PM2.5 exposure estimates, our work can help improve the 
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quality of health impact assessments, for wildfire smoke and for other exposures, moving forward. Using 
these insights in combination with available resources, future impact assessments can better identify the 
appropriate data and methods for estimating, with greater certainty, how extreme air pollution events im-
pact hospitals, EDs, and the population's health. These more informed and realistic estimates of the health 
impacts of wildfires can better inform decision-making processes and improve public health evaluation 
before, during, and in the aftermath of fire events.
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