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Abstract

Modern human contamination is a common problem in ancient DNA studies. We provide evidence that this issue is also present in

studies in great apes, which are our closest living relatives, for example in noninvasive samples. Here, we present a simple method to

detect human contamination in short-read sequencing data from different species: HuConTest. We demonstrate its feasibility using

blood and tissue samples from these species. This test is particularly useful for more complex samples (such as museum and

noninvasive samples) which have smaller amounts of endogenous DNA, as we show here.
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Main Text

Contaminationfrom exogenous sources is a problem common

in ancient DNA, where multiple tools exist (reviewed by

Peyr�egne and Prüfer (2020)), as well as in studies of nonhu-

man primates (Prado-Martinez et al. 2013). Specifically, hu-

man contamination may occur in great ape samples of various

origin and quality. Previously, differences in the mitochondrial

genome between species were used to assess contamination

(Prado-Martinez et al. 2013), which is a sensible strategy for

high-coverage data. However, this approach is of limited use

for shallow shotgun sequencing, especially of samples with

low endogenous DNA content, such as fecal, historical, or

ancient samples, as well as sequencing data obtained after

enrichment through capture (Fontsere et al. 2020). Here, we

devise a strategy based on diagnostic sites dispersed across

the autosomes which can help detecting human contamina-

tion in an unbiased manner and with sparse data available.

Determination of Diagnostic Sites

We used previously published diversity data on high-coverage

genomes from all great apes and modern humans (supple-

mentary table S1, Supplementary Material online, fig. 1A),

specifically, genomes from 58 chimpanzees and 10 bonobos

(Pan clade) (Prado-Martinez et al. 2013; De Manuel et al.

2016), 43 gorillas (Gorilla clade) (Prado-Martinez et al.

2013; Xue et al. 2015), 27 orangutans (Pongo clade)

(Prado-Martinez et al. 2013; Nater et al. 2017), and 19
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modern humans from Africa and western Eurasia (Mallick et

al. 2016). The latter was chosen to represent the most com-

mon variation across modern humans. All genomes were

processed as described previously (De Manuel et al. 2016):

Sequencing data were mapped to the human genome (hg19)

using BWA-MEM 0.7.7 (Li and Durbin 2009), PCR duplicates

were removed using samtools (Li et al. 2009), and reads were

locally realigned around indels using the GATK IndelRealigner

3.4-46 (McKenna et al. 2010). Genotypes were obtained in-

dividually using GATK UnifiedGenotyper with the

EMIT_ALL_SITES parameter, and GVCFs from individuals

were merged with GATK CombineVariants. The three species

complexes Pan, Gorilla, and Pongo were then filtered sepa-

rately: biallelic SNPs within each species complex together

with humans were retrieved and filtered to exclude repetitive

regions of the genome and regions with low mappability

(35mer mappability). Finally, for each individual, genotypes

were set to missing at sequencing coverage lower than 6

and higher than 100, and with a mapping quality lower

than 20.

We retrieved SNPs where at least 98% of the chromo-

somes in the species complex showed the alternative allele

(different from the human reference), with <5% of missing

genotypes, and where all modern human chromosomes in-

cluded in this study carried the human reference allele, with-

out allowing for missing genotypes. We allowed for residual

amounts of human-reference-like genotypes in the great ape

species, to account for residual sources of error in the refer-

ence set that might result in erroneous rare variation, and we

deemed tolerating these a conservative strategy for determin-

ing diagnostic sites. Across the whole genome, we find

4,460,987 diagnostic sites for Pan species, 6,981,108 diag-

nostic sites for Gorilla species, and 7,518,570 diagnostic sites

for Pongo species. The differences between species are par-

tially explained by their evolutionary divergence to humans

(Kaessmann and P€a€abo 2002; Prado-Martinez et al. 2013;

Kuhlwilm et al. 2016) but also the number of individuals

used, as well as sequencing quality and coverage. We used

the R package rtracklayer (Lawrence et al. 2009) to perform a

liftover of these positions to the human genome version 38

(GRCh38).

Contamination Assessment and
Performance

Contamination is defined here as the proportion of observed

human reference alleles at diagnostic positions in short se-

quencing reads (fig. 1B). The test itself is wrapped in an R

script (confirmed to work with R versions 3.2.0, 3.4.4, 3.5.0,

3.6.0, and 4.0.1 (R Core Team 2015)), to directly process the

number of reads carrying the reference or the alternative al-

lele. We use samtools mpileup (tested for version 1.0 and 1.9)

to obtain read depth and alternative read depth at diagnostic

sites, and join these data with information on the alternative

allele in the test species. We then calculate the number of

reads matching the target species complex allele and subtract

this value from the total read depth, thus retrieving the num-

ber of reads matching the human reference allele (more

strictly, not matching the target species complex allele). We

perform this calculation for each chromosome separately in

order to obtain the standard variation and report the genome-

wide point estimate, one standard deviation, and the number

of positions observed by the test. The latter value is useful to

assess the reliability of the test at extremely shallow sequenc-

ing. The test can be applied to files with a bam or cram ex-

tension, containing short sequencing reads mapped to the

human genome (hg19 or GRCh38). The basic filtering at

this step can be simple, but it is advisable to remove adapter

sequences (Schubert et al. 2016) and PCR duplicates to assess

the unique contaminant fraction, as well as unmapped reads,

nonprimary alignments, and sequences with a low mapping

quality (<30). We specifically recommend filtering the

sequences on fragment/insert length (�35 base pairs) to avoid

spurious alignments, which may happen at a high rate in the

case of samples with large amounts of bacterial DNA (Meyer

et al. 2016).

We tested the contamination test by artificially introducing

modern human sequencing reads into bam files from the

other species (in silico contamination), using eight human

individuals that were not part of the reference panel (supple-

mentary table S2, Supplementary Material online) (Auton

et al. 2015), and great ape samples from other studies

(Locke et al. 2011; Prüfer et al. 2012; Besenbacher et al.

2019). First, each human bam file was downsampled to

�1.14 M reads and merged with a chimpanzee bam file

(ERR032960), to simulate �5% of human contamination.

Since the read length differs between sequencing libraries

from different studies, we account for the expected amount

of human contamination by using the percentage of human

base pairs added to the final bam file. After running the hu-

man contamination test in each file, we detect an average of

5.5% human contamination (supplementary table S2,

Supplementary Material online), with minimal differences be-

tween humans from different world regions. When testing a

gradient of increasing amounts of introduced human sequen-

ces from �0.1% to �39% to a chimpanzee bam file (sup-

plementary table S3, Supplementary Material online, fig. 1C),

the contamination is estimated correctly. The test is perform-

ing well for in silico contamination from modern humans in

each of the great ape species (supplementary table S4,

Supplementary Material online).

We also determined the inferred amount in the case of

crosstesting, that is, performing the test of diagnostic sites

for one clade in samples from the other clades (supplementary

table S5, Supplementary Material online). Practically, this

could be the relevant when, for example, a fecal sample

was attributed to a chimpanzee but originated from a gorilla.

We find contamination estimates of 44–82%, depending on
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FIG. 1.—Summary of this study. (A) Schematic tree of the great ape species, with approximate divergence times (Besenbacher et al. 2019). (B) Schematic

representation of the method. (C) Performance of detection of in silico-contamination in a gradient from �0.1 to 39%, point estimate 6 one standard

deviation. (D) Performance when downsampling sequencing data from fecal samples with 1–3.5% of human contamination. Point estimates 6 one

standard deviation. (E) Contamination estimates of blood samples for sequencing libraries from all species (violet; bonobo N¼52, chimpanzee N¼15;

gorilla/orangutan N¼47), fecal samples before and after capture (brown; N¼109, without sample N42003 which has high levels of non-great ape

contamination), museum samples (grey; N¼8) and RNA-sequencing data (green; N¼4).

HuConTest GBE
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the species combination. This is a consequence of the shared

ancestry between humans and the other clades, where, for

example, some of the chimpanzee-diagnostic alleles are the

same in humans and gorillas, and other the same in chimpan-

zees and gorillas. This demonstrates that the test is clade-

specific, and large amounts of reads that do not carry

clade-specific alleles will be detected when a different primate

species are present.

Application to Other Sample Types

We first applied the test to blood samples from all great ape

species, which are generally expected to contain at most small

amounts of human contamination. For 67 randomly chosen

sequencing libraries from seven chimpanzees and four bo-

nobo individuals (Prüfer et al. 2012), we found an average

of 0.28% (0.13–0.61%) of reads that are putatively due to

human contamination (fig. 1E). Four tissue samples from

chimpanzees (White et al. 2019) show low estimates of con-

tamination (0.03–0.067%), as expected for samples likely not

containing true contamination. Similar results are obtained for

four libraries from gorilla (0.033–0.159%, on average

0.075%) and 43 libraries from orangutan (0.08–0.35%, on

average 0.22%) blood samples (Locke et al. 2011;

Besenbacher et al. 2019). We conclude that traces of putative

human contamination are observed, if at all, only at very small

amounts in sequencing data from great ape blood samples.

These estimates are conservative, since sequencing errors,

mapping reference bias, and variation in these individuals

may contribute to these numbers, especially considering

that error rates of these sequencing technologies were de-

creasing after the publication of some of these studies (Locke

et al. 2011; Prüfer et al. 2012). We also note that results for

data mapped to hg19 and hg38 are almost identical (supple-

mentary table S6, Supplementary Material online).

We then applied the contamination test to noninvasive

samples which usually contain small amounts of host DNA

and may require target hybridization methods to obtain suf-

ficient data (Hernandez-Rodriguez et al. 2017; Fontsere et al.

2020). We applied our method to shotgun and exome cap-

ture sequencing data that were obtained from the same 109

sequencing libraries from chimpanzee fecal samples (White et

al. 2019). We found an average of 0.35% (0–24.6%) human

contamination for the precapture (shotgun) and 0.32%

(0.05–21%) human contamination in the postcapture

(enriched) sequencing data (supplementary table S6,

Supplementary Material online, fig. 1E), with strong correla-

tion for the same samples (r¼ 0.99, P value < 2.2 � 10�16).

We find one sample with an estimate of 24.6% and three

more samples with more than 1% of human contamination

(supplementary table S6, Supplementary Material online). In

the case of fecal samples collected from the field that may

contain other mammalian DNA than the target species

through diet or misidentification, it is advisable to perform a

competitive mapping of sequences when large amounts of

contamination are detected. This will help to determine the

species of origin, for example using BBSplit (https://source-

forge.net/projects/bbmap/, last accessed May 27, 2021) with

a reference panel of great apes, and possibly other primate

species living in the same habitat. We applied this method to

these four samples (N42003_Shotgun1, N31908_Shotgun1,

N33104_Shotgun1, and N41207_Shotgun1), and find that

the main contaminant in one sample is most likely another

primate rather than human (supplementary table S7,

Supplementary Material online). It is known that chimpanzees

hunt other primates (Boesch and Boesch 1989), and DNA

from primate prey can persist in the feces. We conclude

that the design of the contamination test presented here is

able to identify reads carrying mutations that differ from the

target species, even if these are not human-specific. When

applying BBsplit method to in silico-contaminated samples,

we confirm humans as the source of the contamination—

although with less precision regarding the amount of contam-

ination when compared to our method—while the majority

of unambiguously mapped sequences align to the target spe-

cies (supplementary table S7, Supplementary Material online).

Our analysis shows that DNA extracts/libraries from fecal

samples are occasionally contaminated, and may need to be

removed from certain downstream analyses. Hence, it is ad-

visable to perform a contamination test for sequencing data

from this type of sample, comparable to ancient and historical

samples. We assessed the power to detect human contami-

nation with very shallow sequencing, by downsampling the

sequencing reads of the three fecal samples from White et al.

(N31908_Shotgun1, N33104_Shotgun1, and

N41207_Shotgun1) with 1–3.5% human contamination.

We downsampled these in several steps down to �1,000

production reads (supplementary table S8, Supplementary

Material online), and calculated the estimated amount of hu-

man contamination. These results (fig. 1D) confirm that our

method is robust in confidently detecting human contamina-

tion even in the case of very shallow sequencing, as low as

�1,000 reads aligned to the human reference genome, al-

though with a high standard deviation. In the case of fecal

samples with around 5% of estimated host DNA, this could

be as little as �20,000 production reads, making the test

applicable to shallow data from an initial screening procedure

(Fontsere et al. 2020).

We also applied the test to published sequencing data

from eight museum bone samples from gorillas (van der

Valk et al. 2019). Here, we find an estimated contamination

of on average 0.68% (0.55–0.72%), which is slightly lower

than the reported estimates which were based on mitochon-

drial diagnostic loci (0.28–1.67%, on average 1%), and

slightly higher than estimates for blood samples, as expected

for museum specimens that have been handled by humans.

Contamination estimates from mitochondrial and nuclear loci

from the same sample have been found to not be identical in
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hominin samples (Prüfer et al. 2014), and at shallow sequenc-

ing coverage, a small number of reads would overlap with

mitochondrial diagnostic loci. Still, the differences between

these methods are minor, and results on data mapped to

hg19 and hg38 are almost identical (supplementary table

S6, Supplementary Material online), as is the case for blood

samples. Finally, we performed the contamination test on

RNA-sequencing data from great ape tissue samples

(Brawand et al. 2011), mapped using tophat2 (Kim et al.

2013). We find slightly higher amounts of contamination

(supplementary table S6, Supplementary Material online), ei-

ther due to real contamination in the samples or to higher

error rates and mapping bias in transcriptome data compared

to genome sequencing data.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Method Availability

The contamination test script including documentation is pub-

licly available on GitHub: https://github.com/kuhlwilm/

HuConTest (last accessed May 27, 2021). Files with the diag-

nostic positions are publicly available on FigShare (doi:

10.6084/m9.figshare.14237834).

Data Availability

There are no new data associated with this article.
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