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Abstract

Background and Purpose: Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid 

hemorrhage negatively impacts long-term recovery, but is often detected too late to prevent 

damage. We aim to develop hourly risk scores using routinely collected clinical data to detect DCI.

Methods: A DCI classification model was trained using vital sign measurements (heart rate, 

blood pressure, respiratory rate, oxygen saturation) and demographics routinely collected for 

clinical care. Twenty-two time-varying physiologic measures were computed including mean, 

standard-deviation and cross-correlation of heartrate timeseries with each of the other vitals. 

Classification was achieved using an ensemble approach with L2-regularized logistic regression, 

random forest and support vector machines models. Classifier performance was determined by 

area under the receiver operating characteristic curves (AU-ROC) and confusion matrices. Hourly 

DCI risk scores were generated as the posterior probability at time t using the ensemble classifier 

on cohorts recruited at two external institutions (N=38, N=40).

Results: 310 patients were included in the training model (median 54 years old [IQR 45-65], 

80.2% female, 28.4% Hunt Hess 4-5, 38.7% Modified Fisher Scale 3-4), 101 (33%) developed 

DCI with a median onset day 6 [IQR 5-8]. Classification accuracy prior to DCI onset was 0.83 

[IQR 0.76-0.83] AU-ROC. Risk scores applied to external institution datasets correctly predicted 

64% and 91% of DCI events as early as 12 hours before clinical detection, with 2.7 and 1.6 true 

alerts for every false alert.
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Conclusion: An hourly risk score for DCI derived from routine vital signs may have the 

potential to alert clinicians to DCI, which could reduce neurological injury.

Keywords

Delayed Cerebral Ischemia; aneurysmal Subarachnoid Hemorrhage; Machine Learning; 
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Introduction

Delayed cerebral ischemia (DCI) is seen in up to every third patient with aneurysmal 

subarachnoid hemorrhage (SAH) and has a significant impact on functional and cognitive 

outcomes.1–3 Despite the high impact on patient outcomes, there are many barriers to the 

timely detection of DCI. Clinical prediction tools are static and detection is often inadequate 

to identify DCI before permanent damage has occurred. Confirmatory testing such as 

angiography carries risks such as patient transport and radiation exposure. At present, the 

onset of DCI is too often missed,3 obscured by impaired consciousness, and confirmatory 

testing performed is too often negative to confirm the clinical suspicion of DCI. Diagnostic 

approaches to diagnose DCI include ultrasound and electroencephalogram (EEG). 

Transcranial doppler to detect angiographic vasospasm is the only non-invasive surveillance 

tool supported by guidelines, yet it is limited by poor sensitivity, poor inter-rater reliability, 

and technician availability (at most, it is performed once daily). Moreover, adequate 

insonation is not possible for 10-15% of patients.4 Continuous quantitative EEG has shown 

promising results for detecting DCI, however implementation requires 24 hours continuous 

EEG monitoring and clinical expert artifact reconciliation.5, 6 An optimal DCI monitoring 

tool would be continuous and automated, performing without reliance on expert or 

technician availability.

Prediction and detection algorithms for DCI 5, 7, 8 may include sodium levels, glucose 

variability, red blood cell distribution width, white blood cell, neutrophil-lymphocyte ratio, 

hemoglobin, electroencephalogram, and vital signs9–12. Vital signs are compelling targets, as 

they are universally collected continuous markers of cardiopulmonary status that are affected 

by states of inflammation13, 14 and autonomic dysfunction15, 16, both of which have been 

implicated in the development of DCI following SAH. Incorporating featurized physiologic 

signals provides good prediction for DCI (AU-ROC 0.78) that surpassed widely established 

imaging-based prediction scales such as the modified Fisher Scale alone (AU-ROC 

0.54-0.58).10, 11 This approach, however, is of limited clinical applicability as it still only 

provides a static, one-time assessment of DCI risk early after injury. In clinical practice, an 

ongoing monitor providing continuous risk assessment of DCI is needed. In the present 

study, we pivot from prediction to detection, utilizing a cross-correlation method to featurize 

inter-vital-sign relationships (as successfully used by others to predict neonatal sepsis17) and 

apply machine learning methods to develop algorithms that alert when DCI becomes more 

or less likely to occur. Machine learning derived detection tools have been successfully 

developed and implemented in other areas of critical care 18, 19, including but certainly not 

limited to: weaning in mechanically ventilated patients, instability and risk of cardiac arrest 

in children, hemodynamic shock, acute kidney injury and extensively in sepsis. We propose 
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a data-driven DCI detection tool that offers hourly estimations of the patient’s current state, 

incorporating new physiologic information over time. Our hypothesis is that such a model 

could be used to establish DCI onset time for better evaluation of proposed treatments and to 

improve patient care by acting as a trigger for confirmatory testing and subsequent timely 

intervention.

Methods

Data availability

All relevant data are presented within the article and its supporting information files. 

Additional information can be obtained upon request to the corresponding author.

Patient Population and clinical data collection

Consecutive patients with aneurysmal SAH admitted to the neurological intensive care unit 

(NICU) were prospectively enrolled in an observational cohort study at New York 

Presbyterian Hospital – Columbia University Irving Medical Center (Columbia)20 from 

2006 to 2014. Clinical management of patients with SAH was aligned with the American 

Heart Association (AHA) guidelines 21. DCI was defined classically, when patients met the 

following criteria: delayed neurological deterioration defined as a ≥ 2 point change in GCS 

or new focal neurological deficit lasting for > 1 hour and not associated with surgical 

treatment, and/or a new cerebral infarct on brain imaging that is not attributable to any other 

causes. 21, 22. TCDs were performed daily on weekdays, hypertension was induced if DCI or 

symptomatic vasospasm were suspected and confirmatory diagnostic studies (computed 

tomography angiography or digital subtraction angiography) were performed. If 

angiographic vasospasm was discovered, intra-arterial verapamil (sometimes angioplasty, as 

clinically determined) was administered. Patients with Glasgow Coma Scale < 9 were 

considered for multimodality neuromonitoring. The study was approved by the Institutional 

Review Board. Patients were excluded from this study for the following exclusion criteria: 

no parametric physiologic data were available, they expired prior to the DCI onset window 

(< Post Bleed Day (PBD) 3), or early angiographic vasospasm was detected on admitting 

angiogram (as DCI development was the signal of interest).

Patients with aneurysmal SAH admitted to the NICU at Rheinisch-Westfälische Technische 

Hochschule Aachen University (Aachen) from August 2018 to May 2020 with 

multimodality neuromonitoring were prospectively enrolled in an observational study. 

Monitors were placed in patients with high clinical grade (Hunt Hess >2) and/or extensive 

visible hemorrhage on CT scan warranting clinical concern for high DCI risk. Physiologic 

data was collected with Moberg Component Neuromonitoring Systems (Moberg Research 

Inc, Ambler, PA USA). The study was approved by the Institutional Review Board. At 

Aachen, clinical management of SAH patients was generally aligned with the European 

Stroke Organization (ESO) guidelines23, which does not happen to veer significantly from 

the AHA guidelines. TCDs are not performed regularly. At Aachen, DCI diagnosis was 

supplemented by “perfusion” DCI,24 defined as territorial or watershed zone hypoperfusion 

in CT perfusion scans triggered by abnormalities in multimodal neuromonitoring (brain 
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tissue oxygen, microdialysis). DCI or “perfusion” DCI triggered clinicians to induce 

hypertension.

Patients with aneurysmal SAH admitted to the NICU at the University of Texas McGovern 

(Houston) from March 2018 to November 2019 were prospectively enrolled in an 

observational study. Physiologic data was collected based on availability of two Moberg 

Systems. The study was approved by the Institutional Review Board. At Houston, clinical 

management of patients with SAH was aligned with the AHA guidelines. Similar to 

Columbia, TCDs were performed daily on weekdays, hypertension was induced if DCI or 

symptomatic vasospasm were suspected and confirmed by computed tomography 

angiography/perfusion or digital subtraction angiography.

For comparison of clinical characteristics and severity between institutions, we describe core 
and supplemental-highly recommended National Institute of Neurological Disorders and 

Stroke (NINDS) common data elements (CDEs) for SAH subject characteristics. These 

include age, gender, ethnicity, tobacco use, and hypertension history. For comparison (and 

model training), we describe routinely collected grading scales of injury severity and 

outcome prediction which were in the core CDE: World Federation of Neurological 

Surgeons scale (WFNS), and the supplemental CDEs: modified Fisher Score (mFS), Hunt & 

Hess grade (HH) and Glasgow Coma Scale (GCS).25, 26 Hospital events were compared 

between cohorts: cerebral edema, fever (>38.3ºC), pulmonary edema, hydrocephalus, and 

seizure. Outcome variables for comparison were in-hospital mortality, length of stay in the 

NICU, and modified Rankin Scale (mRS) at discharge, 3 months and 12 months post-

discharge, as available. The target classification outcome of the study was DCI21, 22.

Physiologic Data Analysis and Cross-Correlation between Vital Signs

At Columbia, vitals data were collected using a high-resolution acquisition system 

(BedmasterEX; Excel Medical Electronics Inc, Jupiter, FL, USA) at 0.2 Hz (every 5 sec). 

Houston and Aachen used Moberg Systems to collect data at 0.016 Hz (every minute). Six 

vital signs were collected: Heart rate (HR), respiratory rate (RR), oxygen saturation (SPO2), 

mean, systolic, and diastolic arterial blood pressure (ABP, SBP, DBP). We downsampled 

Columbia data to 1 min to standardize the frequency across the three institutions. 

Downsampling was computed as median, to deal with erroneous or missing data19. Missing 

data were imputed using a “carry-forward” system, where the most recent value is carried 

forward to fill subsequent empty time points.27

Data for each vital sign was rescaled to allow for comparison using min-max normalization.
28 Twenty-two time-varying measures were computed in 10-minute windows: mean and 

standard deviation for each of the six vital signs, and cross-correlation (maximum and 

minimum) (lag −60 to +60 seconds) of HR with each remaining five vital signs (RR, SPO2, 

ABP, SBP, DBP). Resulting measures were only retained for segments with at least 50% of 

the data available. Finally, hourly averages were computed, resulting in 336-time points over 

14 days. The analysis was performed in Python (www.python.org).
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Statistical Analysis and Modelling

We applied an ensemble machine learning approach to build classifiers trained on Columbia 

data with the plan to externally validate on Houston and Aachen data. The large window for 

DCI presentation makes direct comparison across patients over time challenging. To address 

this, we used DCI diagnosis as the temporal anchor (see Materials in the Data Supplement 

for expanded Methods) to align the data so that we could identify a physiologic signal as the 

disease develops, despite varied times of onset (Figure 1). Demographics included in the 

model were: age, sex, mFS, WFNS, HH, and GCS at NICU admission 10.

Comparison of Demographics data: Demographics data were compared for the DCI 

positive and DCI negative groups at each of the centers and for SAH patients across three 

centers. Fisher’s exact test was applied to categorical variables, and the Mann-Whitney U 

test for two-group comparisons was applied to continuous variables. All statistical tests were 

two-tailed and p-value < 0.05 was considered statistically significant. The analysis was 

performed in R Studio software (version 1.0.143, http://www.rstudio.com, RStudio Inc., 

Boston, USA).

Columbia DCI Modeling: We computed the range (max-min), mean, SD, median, IQR 

and entropy for each of the 22 vital sign measures and 6 subject characteristic variables (age, 

sex, mFS, WFNS, HH and GCS at NICU admission), resulting in 138 total features. Missing 

values were imputed using the median. We used F-statistics to identify k number of best 

features explaining most variance within the dataset 27. We then built L2-regularized logistic 

regression (LR), linear and kernel support vector machine (SL, SK), random forest (RF), and 

ensemble (EC) classifiers for each day prior to the DCI anchor (see Materials in the Data 

Supplement for expanded Methods) 27. We built classifiers using incrementally larger 

amounts of data going away from the anchor (Figure 2), as we hypothesized that the inherent 

temporal dynamics of the vitals change as they get closer to the anchor (or time of DCI 

onset). For example, our first model (M1) was created with data from the anchor to 12 hours 

before the anchor, the second model (M2) was created with 24 hours’ worth of data going 

back from the anchor, and so on. We used grid searching to tune the hyper-parameters for 

the classifier. We performed nested five-fold cross-validation to tune model parameters and 

to report the accuracy (see Materials in the Data Supplement for expanded Methods). All 

classifiers were evaluated for good discrimination using the area under the receiver operating 

characteristic curve (AU-ROC) and confusion matrix. We externally validated the 

performance of the Columbia classifiers (M1,…, M14) on Houston and Aachen datasets. 

(Figure 3 & 4)

Hourly Risk Scores

Choosing the Columbia classifier that best performed for the institution’s dataset, we 

generated hourly risk scores indicating the current likelihood of DCI using the ensemble 

classifier. Given a patient i the risk score at time t with features xit is computed as a posterior 

probability given by:

p yi xit = f w, xit
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Where f is the classifier (EC), w is the weight of the classifier. Machine learning models and 

risk scores were developed using the Python scikit-learn library.29 The optimal cut off point 

was selected using Youden index30, which maximizes the difference between true positive 

rate and and false-positive rate over all possible cut-point values. Risk scores above the 

optimal cut off point (threshold) indicate a higher probability of the patient developing DCI.

Results

Patient Cohorts

Inclusion criteria were met for 310 SAH patients admitted to the NICU at Columbia 

University from May 2006 to December 2014. Exclusion criteria were vasospasm on 

admission vessel imaging, non-aneurysmal SAH, death before entering the DCI window 

(before PBD 3), and angiographic vasospasm without DCI development. These patients 

were excluded from model creation to enhance the clarity of the signal of interest, leaving 

just two groups, patients with or without DCI. (Figure 2). Of the 310 patients included in 

model creation, 101 (33%) developed DCI while 209 (67%) did not. 88 (28%) were enrolled 

with a Hunt Hess grade of 4-5 and 121 (39%) with a modified Fisher score of 3-4. For 

patients with DCI, the median number of days from bleed to DCI was 6 (IQR 5,8). This 

range was consistent with the clinically-accepted peak time of DCI risk and when 

surveillance scans typically confirm the absence of angiographic vasospasm triggering de-

escalation. Post-bleed day 7 was used as the anchor for patients without DCI, making the 

average window used for analysis for all patients the first 14 days post-bleed.

Clinical and vital sign data were available and inclusion criteria were met for 38 SAH 

patients admitted to the NICU at Houston from March 2018 to November 2019. 19 (50%) 

were enrolled with a Hunt Hess grade of 4-5 and 38 (100%) with a modified Fisher score of 

3-4. 12 patients (32%) developed DCI during their visit, a median of 7 (IQR 6,8) days post-

bleed.

Clinical and vital sign data were available and inclusion criteria were met for 40 SAH 

patients admitted to the NICU at Aachen from August 2018 to May 2020. 15 (37.5 %) were 

enrolled with a Hunt Hess grade of 4-5 and 20 (50 %) with a modified Fisher score of 3-4. 

15 patients (37.5 %) developed “perfusion” DCI and of those, 11 patients (27.5%) developed 

DCI during their visit, and the earliest of either occurred a median of 7 (IQR 5,10) days 

post-bleed. “Perfusion” DCI was always identified on or before DCI with a mean difference 

of 1.5 days. In a post-hoc retrospective evaluation of Aachen data for only DCI, the onset 

occurred a median of 11 (IQR 8,13) days post-bleed.

Demographic statistical differences between groups are reported in Table 1.

Selecting Predictive Models for Risk Score Tool

All classifiers trained with vital sign features performed better than with demographic 

features alone (Table 2, Figure 5A, Figure I in the Data supplement), producing AU-ROCs: 

L2-regularized Logistic Regression = 0.7 [0.69-0.71], SVM-Linear = 0.74 [0.68-0.74], 

SVM-Kernel = 0.73 [0.72-0.74], Random Forrest = 0.89 [0.85-0.89], and Ensemble 

Classifier = 0.83 [0.76-0.83]. We selected Ensemble Classifier, as Random Forrest models 
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were prone to overfitting. The Ensemble Classifier created with the most vital sign data (the 

7 days prior to anchor) performed the best on the Houston dataset, while the classifier with 

the least amount of vital sign data (12 hours prior to anchor) performed best on the Aachen 

dataset. (Figures 3 & 4).

Risk Scores

We computed hourly risk scores using the Ensemble Classifiers. We selected the classifier 

that showed maximal separation in terms of AU-ROC, which was M1 for Aachen and M14 

for Houston. The optimal threshold based on Youdens index was 0.41 (M1) and 0.35 (M14). 

All patients start with similar (high) risk scores. Over time, Houston patients without DCI 

show decreasing scores that drop below the threshold, while patients who develop DCI 

generate scores above the threshold (Figure 5C). With model M14 and a threshold risk score 

of 0.35, we correctly predicted 63.6% of patients with DCI at least 12 hours before clinical 

detection for Houston SAH patients. This would be akin to 2.7 true alerts for every false 

alert. At Aachen, risk scores increased for patients developing DCI until “perfusion” DCI 

was diagnosed, at which point the risk scores for all SAH patients become more similar. We 

hypothesize that the use of a “perfusion” DCI threshold for intervention at Aachen alters the 

temporal dynamics of vital signs thereby stabilizing the risk scores. With model M1 and an 

optimal threshold of 0.41, our model predicted 90.9% of DCI events 12 hours before 

“perfusion” DCI, i.e., 1.6 true alerts for every false alert.

Performance on Angiographic Vasospasm

We further studied the performance of the classifiers on 71 patients with angiographic 

vasospasm without DCI, which were excluded while creating the models. Ensemble 

classifier trained with data 2.5 days prior to DCI anchor (Model M5) correctly classified 

82% of these patients as non-DCI one day before the anchor. (Figure II in the Data 

Supplement)

Discussion

The current practice for DCI diagnosis is reliant on the availability of a useful exam in 

already neurologically injured patients (20% of SAH patients are comatose)31 as well as 

intermittent transcranial dopplers and the attention of expert caregivers in the busy and 

diurnal hospital setting.32 An automated, continuous monitoring tool has the potential to 

provide a continuous real-time risk assessment for DCI that is implementable in any ICU 

and thereby scalable.

Initial efforts towards automated DCI classification using simple summary statistics of vital 

signs significantly out-performed classifiers trained on resource-intensive information such 

as TCDs and nursing exams.9 Later work combined time series analysis of vitals and more 

sophisticated machine learning methods 10, 11 to discover hidden signals of a patient state 

within continuous cardiopulmonary physiologic data. Each of these studies incorporated 

information from just the first few days post- bleed and boosted prediction to 0.77-0.78 AU-

ROC, surpassing the modified Fisher scale, a radiological tool to predict DCI. The early 

promise of these machine learning models supports the notion of a useful physiologic signal 
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for the classification of patients with DCI, however, these are still prediction models that do 

not provide an estimation of disease onset time.

In the current study, a prospectively collected observational dataset of demographics and 

vital signs from a cohort of 310 SAH patients was used to explore optimal machine learning 

models for DCI classification. Hourly risk scores were generated and externally validated on 

2 institutional SAH cohorts.

DCI positive patients had persistent high risk scores at 12 hours before diagnosis, and DCI 

negative patients’ risk scores dropped below critical threshold. A concern with machine 

learning models used for prediction is overfitting and generalizability. Testing on external 

datasets supports the wider applicability of this model.

The patient characteristics of the external datasets were different from that of the model 

derivation dataset. The Columbia dataset was a consecutive cohort of all SAH, inclusive of 

mild to severe SAH. The Aachen dataset was more similar to the Columbia dataset in this 

regard. The Houston dataset consisted solely of modified Fisher 3 and 4 patients, with 

concomitantly higher Hunt Hess, and lower GCS. Optimal model selection for generating 

hourly risk scores differed for the 2 external institutions, with one performing best when 

inclusive of all data preceding DCI (Houston), and the other performing best when limited to 

data more immediately preceding DCI (Aachen). This difference will need to be explored. A 

compelling hypothesis is that vital signs throughout the ICU stay are influenced by clinical 

care and there may be more similarities in practices between the US institutions of Houston 

and Columbia.

Risk scores validated on the Aachen cohort resulted in higher sensitivity but lower 

specificity. Risk scores validated on the Houston cohort resulted in lower sensitivity but 

higher specificity. It is encouraging that the model would perform as well as it did in both of 

these cohorts, even in one with a selected high severity SAH population, as the biggest 

concern for missing DCI diagnoses is in those with limited consciousness and exam.

There are several limitations to this study. First, since the range of time to DCI onset after 

SAH is large, when we align patients by individual diagnosis, the amount of data before and 

after the anchor is inconsistent across patients. We tolerate this variation because alignment 

by the outcome event should maximize the information in the physiologic signal leading up 

to it, and our priority is to create models that can best capture this signal. Second, the 

challenge of causality leakage33 exists when building a classifier using data that may be 

influenced by the target outcome (e.g. detecting sepsis based on blood cultures that would 

have been sent only in response to clinical suspicion of sepsis). This is a challenge that must 

be addressed with prospective application of the model.

There is an abundance of routinely collected physiologic data generated in the NICU. To our 

knowledge, this is the first study in humans to apply a data-driven automated approach using 

vital sign time series data to produce hourly classifications of DCI after SAH. In order to be 

accepted as a clinical tool, this method must be implemented and compared to existing 

diagnostic methods, which at the moment is limited to intermittent transcranial dopplers and 

astute clinical acumen. Such a trial is being planned.
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Conclusion

This is the first study to show that real-time hourly risk scores can classify DCI with good 

accuracy following aneurysmal SAH. These scores were developed applying data-driven 

machine learning approaches to widely available vital sign data collected in the critical care 

setting. These models may be generalizable as validation on two independent cohorts 

demonstrated good reproducibility. Future efforts will focus on affirming that the model is 

not impaired by causality leakage, comparing it against the clinical approach that exists for 

detecting DCI, and showing it improves outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation

DCI Delayed Cerebral Ischemia

aSAH aneurysmal Subarachnoid Hemorrhage

EEG Electroencephalogram

NICU Neurological Intensive Care Unit

TCD Transcranial Doppler

PBD Post Bleed Day

CT Computed Tomography

mRS modified Rankin Scale

WFNS World Federation of Neurological Surgeons scale

mFS modified Fisher Score

HH Hunt and Hess grade

GCS Glasgow Coma Scale
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HR Heart rate

RR Respiratory Rate

SPO2 Oxygen Saturation

ABP Mean Arterial Blood Pressure

SBP Systolic Arterial Blood Pressure

DBP Diastolic Arterial Blood Pressure

LR L2-regularized logistic regression

SL Support Vector Machine Linear

SK Support Vector Machine Kernel

RF Random Forest

EC Ensemble Classifier

AU-ROC Area Under Receiver Operating Curve
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Figure 1: 
Illustrating the concept of anchoring patients’ data to the DCI onset to capture the temporal 

dynamics leading to DCI onset. The vertical black line indicates the onset of DCI.

Megjhani et al. Page 13

Stroke. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Overview of the approach.
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Figure 3: 
Performance of models (M1,…,M14) on Houston dataset over time leading to DCI anchor.

Megjhani et al. Page 15

Stroke. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Performance of models (M1,…,M14) on Aachen dataset over time leading to DCI anchor.
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Figure 5: 
Classifier performance and risk scores. (A) AU-ROCs for five classifiers (L2-Regularized 

Logistic Regression, Support Vector Machine – Linear and Kernel, Random Forrest, and 

Ensemble Classifier) trained on initial demographic and vital sign features. White dotted 

lines are the median AU-ROCs and the blue box indicates the IQR. Best performing models 

are highlighted in red and the risk scores were generated using these models. Risk scores 

generated every 12 hours for Columbia, Houston (using model M14) and Aachen (using 

model M1). Risk scores generated every 1 hour for Columbia and Houston before Classical 

DCI and for Aachen before “Perfusion” DCI.
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Table 1.

Characteristics of SAH patients with and without DCI

Columbia Houston Aachen

Total Patients 310 - Total Patients 38 - Total Patients 40 -

DCI+ DCI−
p value

DCI+ DCI−
p value

DCI+ DCI−
p value

n=101 n=209 n=12 n=26 n=11 n=29

Age, y, median (IQR) 54 (45-65) 57 (46-65) 0.765 59 (49-65.5) 0.137

50 (44-62) 56 (47-66) 0.033* 53 
(49-60) 59 (45-70) 0.285 52 (48-60) 60 (53-66) 0.055

Female Gender, n (%) 218 (70.3) 28 (73.7) 0.85 27 (67.5) 0.716

81 (80.2) 137 (65.6) 0.008* 12 
(100.0) 16 (61.5) 0.016* 9 (81.8) 18 (62.1) 0.286

Hispanic Ethnicity, n 
(%)

99 (31.9) 12 (31.6) 1 0 (0.0) N/A

30 (29.7) 69 (33.0) 0.604 3 (25.0) 9 (34.6) 0.714 0 (0.0) 0 (0.0) 1

Tobacco Use, n (%) 166 (53.6) 20 (52.6) 1 15 (37.5) 0.065

55 (54.5) 111 (53.1) 0.713 9 (75.0) 11 (42.3) 0.086 5 (45.5) 10 (34.5) 0.716

Hypertension History 146 (47.1) 27 (71.0) 0.006* 16 (40.0) 0.5

39 (38.6) 107 (51.2) 0.04* 11 (91.7) 16 (61.5) 0.121 7 (63.6) 9 (31.0) 0.08

HH, 4 - 5, n (%) 88 (28.4) 19 (50.0) 0.008* 15 (37.5) 0.269

40 (39.6) 48 (23.0) 0.003* 5 (41.7) 14 (53.8) 0.728 7 (63.6) 8 (27.6) 0.065

WFNS, 4 - 5, n (%) 121 (39.0) 22 (57.9) 0.035* 17 (42.5) 0.732

50 (49.5) 71 (34.0) 0.009* 7 (58.3) 15 (57.7) 1 7 (63.6) 10 (34.5) 0.153

GCS, median (IQR) 14 (8-15) 8 (5-14) <0.001* 13 (7-15) 0.101

13 (6-15) 15 (9-15) <0.001* 9 (6-13) 8 (5-14) 0.95 7 (6-13) 13 (8-15) 0.053

mFS, 3 - 4, n (%) 120 (38.7) 38 (100.0) <0.001* 20 (50.0) 0.175

38 (37.6) 82 (39.2) 0.805 12 
(100.0) 26 (100.0) 1 9 (81.8) 11 (37.9) 0.031*

mFS 0, n (%) 0 (0.0) 15 (7.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

mFS 1, n (%) 15 (14.9) 41 (19.6) 0 (0.0) 0 (0.0) 2 (18.2) 12 (41.4)

mFS 2, n (%) 48 (47.5) 71 (34.0) 0 (0.0) 0 (0.0) 0 (0.0) 6 (20.7)

mFS 3, n (%) 32 (31.7) 73 (34.9) 6 (50.0) 19 (73.1) 4 (36.4) 3 (10.34)

mFS 4, n (%) 6 (5.9) 9 (4.3) 6 (50.0) 7 (26.9) 5 (45.5) 8 (27.6)
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Columbia Houston Aachen

Total Patients 310 - Total Patients 38 - Total Patients 40 -

DCI+ DCI−
p value

DCI+ DCI−
p value

DCI+ DCI−
p value

n=101 n=209 n=12 n=26 n=11 n=29

Vasopressor Use, n (%) 66/242 (27.3) 20 (52.6) 0.002* 37 (92.5) <0.001*

47/78 (60.3) 19/164 
(11.6) <0.001* 10 (83.3) 10 (38.5) 0.015* 11 (100) 26 (89.7) 0.548

Cerebral Edema, n (%) 176 (56.77) 10 (26.32) <0.001 8 (20) <0.0001

76 (75.2) 100 (47.8) <0.0001* 4 (33.3) 6 (23.1) 0.694 4 (36.4) 4 (13.8) 0.182

Fever >38.6°C, n (%) 126 (40.65) 26 (68.42) 0.002* 34 (85) <0.0001*

54 (53.5) 72 (34.4) 0.002* 8 (66.7) 18 (69.2) 1 11 (100) 23 (79.3) 0.162

Hydrocephalus, n (%) 143 (46.1) 26 (68.4) 0.010* 34 (85.0) <0.0001*

61 (60.4) 82 (39.2) <0.001* 9 (75.0) 17 (65.4) 0.714 11 (100) 23 (79.3) 0.162

Pulmonary Edema, n 
(%)

51 (16.5) 9 (23.7) 0.260 10 (25.0) 0.186

27 (26.7) 24 (11.5) 0.001* 4 (33.3) 5 (19.2) 0.423 3 (27.3) 7 (24.1) 1

Seizures, n (%) 32 (10.3) 3 (7.9) 0.782 11 (27.5) 0.004*

12 (11.9) 20 (9.6) 0.553 1 (8.3) 2 (7.6) 1 3 (27.3) 8 (27.6) 1

In-Hospital Mortality, n 
(%)

34 (11.0) 3 (7.9) 0.781 9 (22.5) 0.068

8 (7.9) 26 (12.4) 0.253 0 (0.0) 3 (11.54) 0.538 5 (45.5) 4 (13.8) 0.083

LOS, d, median (IQR) 14.9 (11-22) 13 (10-17) 0.103 14.5 (11-20) 0.474

22 (17-30) 12 (10-16) <0.0001* 18 
(16-21) 12 (9-14) 0.004* 18 (15-25) 14 (9-18) 0.022*

mRS at Discharge, 3 - 
6, n (%)

195 (62.9) 35 (92.1) <0.001* 24 (60.0) 0.730

89 (88.1) 106 (50.7) <0.0001* 10 (83.3) 25 (96.2) 0.229 9 (81.8) 15 (51.7) 0.148

mRS at 3 Months, 3 - 6, 
n (%)

92/238 (38.7) 16/29 (55.2) 0.108 15/27 (55.6) 0.101

40/74 (54.1) 52/164 
(31.7) 0.001* 4/11 

(36.4)
12/18 
(66.7) 0.143 6/9 (22.2) 9/18 

(50.0) 0.683

mRS at 12 Months, 3 - 
6, n (%)

93/229 (40.6) 8/14 (57.1) 0.268 11/19 (57.9) 0.154

36/70 (51.4) 57/159 
(35.8) 0.029* 2/4 

(50.0)
6/10 

(60.0) 1 6/7 (85.7) 5/12 
(41.7) 0.147

*
statistically significant
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Table 2.

AU-ROCs for 5 classifiers at all time-points

Time from Anchor LR SL SK RF EC

−0.5 0.64 [0.64 0.65] 0.63 [0.62 0.63] 0.67 [0.63 0.68] 0.64 [0.63 0.74] 0.66 [0.65 0.67]

−1.0 0.62 [0.61 0.68] 0.65 [0.59 0.70] 0.64 [0.60 0.72] 0.65 [0.64 0.70] 0.67 [0.62 0.69]

−1.5 0.63 [0.59 0.64] 0.61 [0.61 0.61] 0.64 [0.61 0.64] 0.66 [0.62 0.70] 0.64 [0.60 0.64]

−2.0 0.61 [0.60 0.66] 0.63 [0.61 0.63] 0.64 [0.60 0.65] 0.62 [0.61 0.68] 0.62 [0.61 0.63]

−2.5 0.61 [0.59 0.64] 0.66 [0.60 0.72] 0.63 [0.63 0.64] 0.60 [0.57 0.62] 0.64 [0.62 0.65]

−3.0 0.65 [0.64 0.66] 0.67 [0.60 0.69] 0.67 [0.65 0.69] 0.67 [0.65 0.68] 0.67 [0.63 0.69]

−3.5 0.64 [0.62 0.67] 0.60 [0.59 0.61] 0.67 [0.63 0.68] 0.66 [0.66 0.67] 0.65 [0.64 0.66]

−4.0 0.67 [0.64 0.68] 0.64 [0.57 0.64] 0.68 [0.65 0.68] 0.69 [0.69 0.70] 0.68 [0.67 0.68]

−4.5 0.66 [0.64 0.73] 0.69 [0.65 0.71] 0.67 [0.64 0.72] 0.68 [0.66 0.71] 0.70 [0.66 0.73]

−5.0 0.68 [0.64 0.69] 0.68 [0.63 0.68] 0.69 [0.67 0.73] 0.70 [0.66 0.71] 0.70 [0.70 0.72]

−5.5 0.70 [0.66 0.70] 0.69 [0.69 0.72] 0.70 [0.69 0.73] 0.72 [0.72 0.75] 0.73 [0.72 0.73]

−6.0 0.68 [0.66 0.70] 0.73 [0.64 0.74] 0.72 [0.69 0.74] 0.74 [0.72 0.76] 0.71 [0.71 0.75]

−6.5 0.70 [0.69 0.71] 0.74 [0.68 0.74] 0.73 [0.72 0.74] 0.75 [0.73 0.76] 0.73 [0.73 0.76]

−7.0 0.68 [0.68 0.72] 0.74 [0.66 0.77] 0.72 [0.70 0.72] 0.89 [0.85 0.90] 0.83[0.76-0.83]
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