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Abstract
Normal aging is characterized by structural and functional changes in the brain con-
tributing to cognitive decline. Structural connectivity (SC) describes the anatomical 
backbone linking distinct functional subunits of the brain and disruption of this com-
munication is thought to be one of the potential contributors for the age-related 
deterioration observed in cognition. Several studies already explored brain network's 
reorganization during aging, but most focused on average connectivity of the whole-
brain or in specific networks, such as the resting-state networks. Here, we aimed to 
characterize longitudinal changes of white matter (WM) structural brain networks, 
through the identification of sub-networks with significantly altered connectivity 
along time. Then, we tested associations between longitudinal changes in network 
connectivity and cognition. We also assessed longitudinal changes in topological 
properties of the networks. For this, older adults were evaluated at two timepoints, 
with a mean interval time of 52.8 months (SD = 7.24). WM structural networks were 
derived from diffusion magnetic resonance imaging, and cognitive status from neuro-
cognitive testing. Our results show age-related changes in brain SC, characterized by 
both decreases and increases in connectivity weight. Interestingly, decreases occur 
in intra-hemispheric connections formed mainly by association fibers, while increases 
occur mostly in inter-hemispheric connections and involve association, commissural, 
and projection fibers, supporting the last-in-first-out hypothesis. Regarding topology, 
two hubs were lost, alongside with a decrease in connector-hub inter-modular con-
nectivity, reflecting reduced integration. Simultaneously, there was an increase in the 
number of provincial hubs, suggesting increased segregation. Overall, these results 
confirm that aging triggers a reorganization of the brain structural network.

K E Y W O R D S

aging, cognitive performance, diffusion MRI, network, white matter

www.wileyonlinelibrary.com/journal/jnr
https://orcid.org/0000-0001-8489-5750
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:njcsousa@med.uminho.pt


     |  1355COELHO et al.

1  | INTRODUC TION

Human brain undergoes structural and functional changes dur-
ing aging, even in the absence of disease (Damoiseaux,  2017; 
Grady, 2012; Hakun et al., 2015; Lockhart & DeCarli, 2014; Soares 
et  al.,  2014). According to the “disconnected brain” theory, origi-
nally proposed by Geschwind in 1965 (Geschwind,  1965), these 
alterations are thought to account for the cognitive decline that 
is observed during normal aging (Andrews-Hanna et  al.,  2007; 
Bartzokis,  2004; Fjell, Sneve, Grydeland, et  al.,  2016; Madden 
et al., 2017; O’Sullivan et al., 2001). Since cognitive functions rely 
on the communication between distinct functional subunits that 
are anatomically connected (Bressler & Menon,  2010; Bullmore & 
Sporns, 2009; Craddock et al., 2013; Park & Friston, 2013; van den 
Heuvel & Hulshoff Pol, 2010), the disruption of this communication 
(measured either as changes in structural or functional connectiv-
ity (FC) between different brain regions) in aging could be one of 
the potential sources of cognitive decline (Antonenko & Flöel, 2013; 
Salat, 2011; Zimmermann et al., 2016).

Network analysis has emerged as a tool to characterize brain's 
structural and functional organization (Bullmore & Sporns,  2009). 
In this context, brain is conceptualized as a complex network of in-
ter-connected regions, and thus it can be modeled as a graph, with 
nodes defined as brain regions and edges as the structural/func-
tional connections between regions. Graph theory analysis allows 
the extraction of quantifiable topological properties of networks 
that can clarify the organization and function of the brain network 
(Rubinov & Sporns, 2010). Functional networks can be constructed 
from resting-state functional magnetic resonance imaging, where FC 
reflects the temporal coherence in the blood-oxygen-level-depen-
dent signal across brain regions (Damoiseaux, 2017). On the other 
hand, structural networks can be built from structural magnetic res-
onance imaging (MRI), where the structural connectivity (SC) mea-
sure is the structural covariance of gray matter volumes or cortical 
thickness (Bassett et al., 2008). Another option for determining SC 
is to use diffusion MRI which allows the estimation of white matter 
(WM) pathways, and in this case the SC measure will be the num-
ber of streamlines or the probability of connection between brain 
regions (Damoiseaux, 2017). Previous studies have revealed a num-
ber of non-trivial properties of the human functional and structural 
networks, such as small-worldness, modular architecture, hubs and 
cores, rich club structure, among others (Bullmore & Sporns, 2009; 
van den Heuvel & Sporns, 2011; Wang et al., 2010).

Normal aging induces a reorganization of brain's structural and 
functional networks, characterized as reduced global and local 
efficiency (Gong et  al.,  2009; Wu et  al.,  2012; Zhao et  al.,  2015), 
increased shortest path length and clustering coefficient (Otte 
et al., 2015; Sala-Llonch et al., 2014), reduced rich club organization 
(Zhao et  al.,  2015), modularity architecture reorganization (Betzel 
et al., 2014; Wu et al., 2012), and also a decrease in long-range con-
nections accompanied by simultaneous increase in short-range con-
nections (Andrews-Hanna et al., 2007; Cao et al., 2014; Sala-Llonch 
et al., 2014; Wu et al., 2012). Recent studies have emphasized the 

role of brain network connectivity in cognitive performance in aging. 
Associations between network connectivity changes and multiple 
cognitive domains, such as, visuospatial reasoning, information pro-
cessing speed, crystallized ability, executive function, and memory 
have been reported (Bernard et  al.,  2015; Fjell, Sneve, Grydeland, 
et al., 2016; Fjell, Sneve, Storsve, et al., 2016; Persson et al., 2014; 
Wen et al., 2011; Wiseman et al., 2018). Nevertheless, most of these 
studies focus on graph theory metrics that reflect the topological 
organization of brain networks or in the connectivity weight of the 
whole-brain or of specific networks, such as resting-state networks 
(RSNs). In this study, in addition to explore longitudinal changes of 
topological properties of brain structural networks during normal 
aging, we also inspect the existence of sub-networks that present 
significant age-related alterations in connectivity weight. To our 
knowledge, this is the first study to explore the presence of these 
sub-networks in aging. We hypothesized that aging will induce a 
reorganization of the brain structural network, characterized by 
disrupted connectivity in specific sub-networks, consistent with 
the findings of previous longitudinal diffusion MRI studies which 
demonstrated alterations in diffusion tensor imaging (DTI)-based 
measures as a function of age (Sexton et al., 2014; Vinke et al., 2018). 
Furthermore, we hypothesized that changes in brain SC would affect 
differently distinct WM tracts, consistent with the last-in-first-out 
hypothesis which posits that brain regions that reach full matura-
tion later are more vulnerable to age-related atrophy (Raz, 1999) and 
this was already observed for WM tracts (Bender et al., 2016; Slater 
et al., 2019). Brain network reorganization will also be characterized 
by changes in topological features, as it has already been reported in 
some cross-sectional studies (Betzel et al., 2014; Gong et al., 2009; 
Otte et  al.,  2015; Zhao et  al.,  2015), but to date no longitudinal 
study using diffusion MRI has explored changes in brain structural 

Significance

Normal aging is characterized by structural and functional 
alterations in the brain contributing to cognitive decline, 
with structural connectivity (SC) being the anatomical 
backbone for the communication between different func-
tional subunits. Previous studies have suggested that the 
disruption of this communication contributes to the age-
related deterioration observed in cognition, but most have 
focused on average connectivity of the whole-brain or 
in specific networks, such as the resting-state networks. 
Here, using a longitudinal design, we show that aging in-
duces a reorganization of the brain structural network, that 
is characterized by connectivity decreases in intra-hemi-
spheric connections and increases in inter-hemispheric 
connections, alongside with a reduction in integration and 
an increase in segregation. SC decreases were mainly due 
to loss of association fibers, an observation which is con-
sistent with the last-in-first-out hypothesis.
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network topology. To test this, we construct structural connectomes 
for a group of older adults who were followed longitudinally, with 
a mean time interval of 52.8 months (SD = 7.24). We characterized 
longitudinal topological alterations in SC using advanced structural 
connectomics analysis. Furthermore, we tested associations be-
tween longitudinal changes in network connectivity and cognition.

2  | METHODS

2.1 | Ethics statements

The present study was conducted in accordance with the principles 
expressed in the Declaration of Helsinki and was approved by local 
and national ethics committees. The study goals and tests were ex-
plained to the participants and all gave informed written consent.

2.2 | Participants

The participants included in this study are part of a larger sample 
recruited for the SWITCHBOX Consortium project (www.switc​
hbox-online.eu/), and are representative of the general Portuguese 
population with respect to age, gender, and education (Costa 
et al., 2013; Santos et al., 2013, 2014). Primary exclusion criteria were 
inability to understand the informed consent, participant choice to 
withdraw from the study, incapacity and/or inability to attend MRI 
sessions, dementia and/or diagnosed neuropsychiatric and/or neu-
rodegenerative disorder (from medical records). Mini-Mental State 
Examination (MMSE) scores below the adjusted thresholds for cog-
nitive impairment were also used as exclusion criteria. The adjusted 
thresholds were the following: MMSE score <17 if individual with 
≤4 years of formal school education and/or ≥72 years of age, and 
MMSE score <23 otherwise (follows the MMSE validation study for 
the Portuguese population) (Guerreiro et al., 1994). These exclusion 
criteria were applied at both evaluations. Subjects were evaluated 
at two timepoints, with a mean interval time between first and last 
assessments of 52.8  months (SD  =  7.24). At each evaluation, par-
ticipants underwent an imaging session and a battery of neurocogni-
tive/neuropsychological tests.

In the first assessment, 100 subjects were contacted for MRI 
screening. From these, one subject did not finish the diffusion ac-
quisition and four subjects had brain lesions/pathology. In the last 
assessment, 55 subjects accepted to participate and underwent MRI 
acquisition protocol, but one did not finish the diffusion acquisition. 
A total of 51 individuals with data from both the first and last evalu-
ations met all the inclusion criteria for this study.

2.3 | Neurocognitive assessment

A team of certified psychologists performed an identical battery of 
neurocognitive tests at both timepoints. This included the following 

tests previously validated for the Portuguese population: Stroop 
color and word test, selective reminding test (SRT) and MMSE. A 
previous report from our group examined the longitudinal measure-
ment invariance of this set of cognitive tests (Moreira et al., 2018). 
Using confirmatory factor analysis, we observed that a two-factor 
solution encompassing (a) a general cognition and executive func-
tioning dimension (EXEC) and (b) a memory dimension (MEM) was 
reliable over time. The MEM factor was comprised of long-term 
storage, consistent long-term retrieval, and delayed recall variables 
assessed with SRT. The EXEC factor was composed of the variables 
MMSE and Stroop parameters: words, colors, and words/colors. 
We obtained evidence of partial strong invariance which indicates 
an equivalence of the factorial structure and factor loadings for 
all the items, as well as of the intercepts of most items comprising 
this factorial solution. Thus, we estimated factor scores for each of 
these dimensions, based on the estimates for the model with strict-
est measurement invariance. The analytical pipeline was based on a 
maximum likelihood mean- and variance-adjusted estimator imple-
mented with MPlus. The mean factor scores for the two dimensions 
were extracted for each participant.

2.4 | MRI data acquisition

All imaging sessions were performed at Hospital de Braga (Braga, 
Portugal) on a clinical approved Siemens Magnetom Avanto 1.5T 
MRI scanner (Siemens Medical Solutions, Erlangen, Germany) with 
a 12-channel receive-only head coil. The imaging protocol included 
several different acquisitions. For the present study, only the diffu-
sion-weighted imaging (DWI) acquisition was considered. For this, a 
spin-echo echo-planar imaging sequence was acquired with the fol-
lowing parameters: TR = 8,800 ms, TE = 99 ms, FoV = 240 × 240 
mm, acquisition matrix = 120 × 120, 61 2-mm axial slices with no 
gap, 30 non-collinear gradient direction with b = 1,000 s/mm2, one 
b = 0 s/mm2 and 1 repetition.

All acquisitions were visually inspected by a certified neurora-
diologist, before any pre-processing step, in order to ensure that 
none of the individuals had brain lesions and/or critical head motion 
or artifacts that could affect the quality of data.

2.5 | MRI data pre-processing

Data were pre-processed using FMRIB Diffusion Toolbox (FDT) pro-
vided with the FMRIB Software Library (FSL v5.0; https://fsl.fmrib.
ox.ac.uk/fsl/). First, DWI images were corrected for motion and 
eddy current distortions, followed by rotation of gradient vectors 
according to the affine transformations used to register each vol-
ume. Then, the first b0 volume of each subject was extracted and 
skull stripped, which generated a brain mask that was applied to the 
remaining volumes in order to remove non-brain structures. Finally, 
local modeling of diffusion parameters was performed using bed-
postx algorithm which employs Markov Chain Monte Carlo sampling 
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to build up probability distributions of the diffusion parameters at 
each voxel, thereby allowing modeling of crossing fibers (Behrens 
et al., 2007). In addition, we also extracted the levels of head mo-
tion in a diffusion scan, using FSL tools, for all subjects at both time-
points. We then sought to determine if these values were associated 
with age (Figure S1) or if they were different between timepoints 
(Figure S2). Since there was no significant correlation with age nei-
ther differences in head motion levels between assessments, we 
thus concluded that there was no need to account for this variable in 
subsequent statistical analyses.

2.6 | Network construction

Network nodes were defined as the 90 regions of the Automated 
Anatomical Labeling (AAL) template. These regions were normal-
ized to each subject native diffusion space. This was done by ap-
plying the inverted affine transformation from diffusion space to 
Montreal Neurological Institute (MNI) space. Probabilistic trac-
tography was used to estimate connections between nodes (i.e., 
edges). This was accomplished using probtrackx2 algorithm from 
FDT toolbox. 5,000 streamlines were sampled from each voxel in 
the seed mask. This resulted in a SC matrix, for each subject, rep-
resenting the number of streamlines leaving each seed mask and 
reaching any of the other regions. This matrix was normalized by 
first dividing each line by the waytotal value (i.e., the total number 
of generated tracts not rejected by inclusion/exclusion mask crite-
ria) and then dividing by the maximum SC value of each individual, 
in order to have connectivity values between [0, 1]. Each element 
of this matrix, Pij, represents the connectivity probability between 
region i and region j. Since tractography is dependent on seeding 
location, the connectivity probability from i to j is not necessarily 
equal to that from j to i. Still, these two probabilities are highly cor-
related across the brain for all participants. Thus, we defined the 
undirected connectivity probability as the average of these two 
probabilities, Pij and Pji, which originated an undirected connectiv-
ity matrix. At the end of this process, a 90 × 90 symmetric con-
nectivity matrix for each subject was obtained. A threshold set to 
1% of the strongest connection was then applied to each subject's 
SC matrix, in order to remove spurious connections. An additional 
threshold was applied, based on a consistency-based thresholding 
technique. This method measures the consistency of edge weights 
across subjects and retains the most consistent ones, with the goal 
of reducing the false positives in group-averaged connectivity ma-
trices (for a description of the method see (Roberts et al., 2017)). It 
was proven to preserve more long-distance connections, than the 
traditional weight-based thresholding, which often removes such 
connections since, in general, they represent weak edges. In this 
work, we applied consistency-based thresholding at 30% density 
(the same density used in (Roberts et al., 2017)) and then we per-
formed a validation of the method by analyzing the connections 
that were removed. Specifically, we analyzed the connections that 
were removed in each individual after applying the threshold, both 

the number of connections removed (Figure S3) and the strength 
of these connections (Figure S4). Furthermore, the consistency-
based threshold method generates a group consistency mask 
that is then applied to each subject's SC matrix, in order to re-
tain only the most consistent connections. Thus, we also analyzed 
the connections that were present in this group consistency mask 
but were not present in all subjects SC matrices. Once again, we 
evaluated the number of connections that were not present in all 
subjects (Figure S5) and their strength (Figure S6). We can observe 
that, in each subject, a small percentage of connections is removed 
(Figure S3) and they represent mostly weak connections (Figure 
S4). Also, for each subject, the connections from group consist-
ency mask that are not present in its SC matrix do not represent 
more than 50% of all group consistency links (Figure S5) and once 
again, the majority of these edges are characterized by low con-
nection strength (Figure S6). Together, these results support the 
use of this threshold technique to remove spurious connections.

Given that our sample covers a 30-year age range and the rate 
of WM change is known not to be homogeneous across age (Sexton 
et al., 2014; Westlye et al., 2010), we performed an additional anal-
ysis to evaluate the potential impacts of both age and sex on our 
estimations of SC. To perform this, we analyzed the levels of intra- 
and inter-timepoint consistency (TC) in the resulting signatures of in-
dividual SC, that is, how consistent are the patterns of estimated SC 
across all subjects in a timepoint, as well as between timepoints. To 
do this, we used the following two strategies for evaluating TC in SC.

2.6.1 | TC-I

Intra-TC measured as the Pearson's correlation between each sub-
ject's SC and timepoint mean SC (considering upper diagonal matrix 
elements). The resulting r values were z-transformed (Fisher-Z trans-
formation) before averaging and converting (inverse of Fisher-Z) the 
resultant TC back to r scale. This value represents the within-TC, that 
is, for each timepoint, how well all subjects’ SC correlate with the 
timepoint's average SC.

2.6.2 | TC-II

Intra-TC measured as the distribution of Pearson's correlations 
between all possible pairs of subjects in a timepoint. The resulting 
distribution of all pairwise (pairs of subjects) SC comparisons is rep-
resented as a histogram. This indicates how well SCs in a timepoint 
correlate with each other. Inter-TC was also assessed by considering 
all subjects as part of the same timepoint.

2.7 | Graph theoretical analysis

Brain networks can be described in terms of its topological organi-
zation, using graph theory measures. Brain Connectivity Toolbox 
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(https://sites.google.com/site/bctne​t/) was used to extract these 
metrics. The following local and global measures were computed.

2.7.1 | Degree

The degree of a node ki, in a binary undirected network, is the num-
ber of links connecting node i with the other j = 1 … N − 1 nodes:

where A is the adjacency matrix.
The mean degree of an undirected network is the average of all 

node degrees:

2.7.2 | Connection density

The connection density of a network is the proportion of the actual 
number of edges in the network relative to the total possible number 
of connections. For an undirected network with N nodes without 
self-connections, the total number of possible connections is given 
by N(N − 1)/2. Thus, the connection density, κ, of an undirected net-
work can be measured as:

where E is the total number of edges in the adjacency matrix.

2.7.3 | Global efficiency

Global efficiency is a measure of integration that reveals how efficiently 
information can be exchanged between nodes. It is defined by the mean 
of the inverse shortest path length, lij, between each pair of nodes:

2.7.4 | Nodal efficiency

Nodal efficiency measures how well a node is integrated within the 
network via its shortest paths, that is., how well a given node con-
nects to all other nodes in the network. It is defined as the mean of 
the inverse shortest path length, lij, between a given node and all 
other nodes in the network:

2.7.5 | Local efficiency

Local efficiency reflects globally how information is exchanged 
within the neighborhood of a given node. It is defined as the average 
nodal efficiency:

2.7.6 | Characteristic path length

The characteristic path length, L, is the mean shortest path length 
between all possible pairs of nodes in a network. The shortest path 
between nodes i and j is equal to the minimum number of connec-
tions or the minimum cost needed to connect nodes i and j, where 
connection cost is defined as the inverse of connection weight. So, 
the characteristic path length is defined as:

where li is the average shortest path length from node i to all 
other nodes in the network and lij is the shortest path length from 
node j to node i.

2.7.7 | Clustering coefficient

The clustering coefficient is measured as the fraction of closed trian-
gles that are connected to node i, relative to the total number of pos-
sible closed triangles between i's neighbors. It is a measure of local 
interconnectivity in a network and is calculated as follows:

where ki is the degree of node i and ti is the number of closed 
triangles attached to i.

2.7.8 | Small-world index

Networks with high clustering and low average shortest path length 
are considered small-world networks. This is quantified by the index 
σ, that is a ratio of the normalized clustering coefficient and shortest 
path length. The normalization of these measures is done by divid-
ing their empirical value by the average measure of an ensemble of 
randomized networks that preserves the degree distribution of the 
original network. When σ > 1, the network is considered to present 
small-world properties.
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where Clrand is the average clustering coefficient of the random-
ized networks and Lrand is the average shortest path length of the 
randomized networks. In this work, we generated an ensemble of 
100 randomized networks.

In addition, the following topological features were also assessed.

2.7.9 | Modularity

Modularity quantifies the degree to which nodes of a network may 
aggregate into densely connected non-overlapping modules or com-
munities (Fornito et  al.,  2016). Nodes within a community are more 
strongly connected with each other than with nodes outside this com-
munity. Thus, the optimal community structure will be the partition of 
the network that maximizes intra-module connectivity and minimizes 
inter-module connectivity. The index of modularity, Q, is given by the 
difference between the empirical degree of intra-module connectivity 
and the degree expected by chance (Fornito et al., 2016). The optimal 
community structure can be found by searching for the partition that 
maximizes Q. One popular algorithm used to find the optimal partition 
is the Louvain algorithm and, shortly, this is how it works: first, it starts 
with all nodes in a distinct module, then it chooses a node at random 
and merges it with the module that produces the largest gain in Q, these 
steps are repeated until no additional gains in Q are possible (Blondel 
et al., 2008). Given that at each iteration, nodes are chosen randomly, 
running the algorithm multiple times can lead to different solutions. 
Also, another limitation is the so-called degeneracy problem, that can 
cause the existence of large number of different solutions, since there is 
not a clear global maximum of Q (Good et al., 2010). To circumvent this 
problem, we ran the Louvain algorithm 10,000 times and selected the 
partition having the higher number of occurrences in the set of 10,000 
partitions, that is, the partition that was more consistent. To compare 
the optimal community structures found at each timepoint, we defined 
a similarity metric. For each module in a partition, we found the module 
in the other partition that was more similar to this one (by finding the 
maximum of the number of shared regions divided by the total number 
of regions in the two modules). The similarity metric was then calculated 
as the mean of the maximum values for each module. Values close to 1 
indicate higher similarity between the partitions.

Additionally, we characterized the overlap between each module 
of the optimal partition and RSNs. For this, we calculated a matrix 
where each entry represents the percentage of intersection between 
all anatomical regions in a module and a given RSN, normalized by the 
total intersected volume between all regions of the anatomical atlas 
and each of the RSNs. The anatomical atlas used was the AAL as it was 
also used to construct the SC matrices, and the RSN atlas used was the 
parcellation into seven RSNs from (Yeo et al., 2011).

2.7.10 | Hubs

Hubs can be defined as nodes with high regional efficiency (Enodal) 
(Achard & Bullmore,  2007). Specifically, for each node, if the 

normalized Enodal (divided by the mean Enodal of all nodes) is larger 
than the normalized mean Enodal of all nodes of the network plus 
one standard deviation (SD), the node is considered a hub (Lo 
et al., 2010).

Furthermore, we analyzed the topological roles of nodes in the 
communication within and between modules. This allowed the clas-
sification of nodes into provincial and connector hubs. The definition 
of these roles is described below.

Provincial Hubs are nodes with high within-module degree z-score 
(greater than the mean plus SD of all nodes) and low participation co-
efficient (PC ≤ 0.3). Positive values of within-module degree z-score 
indicate high (above the average) intra-module connectivity, and 
thus higher values of this measure suggest that the node plays a cen-
tral role in intra-modular communication. PC compares the number 
of connections of a node with other nodes in different modules, to 
the total number of connections to other nodes in the same module. 
Values close to one indicate that the edges of a node are distributed 
uniformly across modules while a value of zero means that all edges 
of the nodes are limited to its own module. Thus, provincial hubs are 
characterized by comprising most of their connections within their 
own module (Fornito et al., 2016).

Connector Hubs were also defined as nodes with high with-
in-module degree z-score and high (PC > 0.3). This means they have 
many connections with other modules, and thus play a key role in 
inter-modular communication (Fornito et al., 2016).

2.8 | Statistical analysis

Statistical comparison of the SC matrices between first and last as-
sessments, at the edge level, was performed by applying a paired 
sample t-test with SC as the dependent variable and time of evalu-
ation as independent variable. The obtained SC networks are com-
prised of 90 nodes, yielding a total number of possible edges of 4,005 
(90*89/2). Testing the hypothesis of interest at the edge level, there-
fore poses a multiple comparisons problem. In order to increase the 
statistical power of the analysis, we used the network-based statis-
tics (NBS) procedure implemented in the NBS toolbox (https://sites.
google.com/site/bctne​t/compa​rison/​nbs). This is a non-parametric 
statistical method that allows the identification of significantly dif-
ferent sub-networks, while controlling for the family-wise error rate 
(FWER) (Zalesky et al., 2010). First, it independently tests the hy-
potheses at every connection in the network and threshold the ones 
exceeding a user defined primary threshold, then it identifies sub-
networks constituted by interconnected edges that survived the 
primary threshold. The significance of these sub-networks is then 
calculated by comparing their sizes to the distribution of the size of 
sub-networks obtained through random permutations of the original 
hypothesis. It is important to note that the primary threshold only 
affects the sensitivity of the method and thus, FWER is assured in-
dependently of this threshold. In this study, the primary threshold 
was set to F = 17.0, which was the maximum threshold that detected 
a unique significant connected component having more than two 

https://sites.google.com/site/bctnet/comparison/nbs
https://sites.google.com/site/bctnet/comparison/nbs


1360  |     COELHO et al.

connections (Figure S8). Longitudinal changes in SC detected with 
NBS are represented by significantly connected components at a 
corrected level of p < 0.05 FWER corrected.

Additionally, we extracted, for each subject, the mean connec-
tivity values of the significant component resulting from the NBS 
approach. We analyzed these values separately for the connections 
with increases in connectivity between timepoints, the connections 
with decreases and both types of connections. We then examined, 
for these three types, the values of mean connectivity of all con-
nections, intra-left, intra-right, and inter-hemispheric connections. 
Moreover, we tested potential associations between the connec-
tivity values of these networks and cognitive scores of MEM and 
EXEC. The rmcorr R package (https://cran. r-project.org/web/pack-
ages/rmcorr/) was used to compute a repeated measures correlation 
coefficient between each sub-network and cognitive score. This co-
efficient, unlike simple correlation, does not violate independence 
assumptions nor requires averaging the data and thus is suitable to 
use with repeated measures data (Bakdash & Marusich, 2017). The 
p values of all correlations were corrected for multiple comparisons, 
using the false discovery rate (FDR) method.

The comparison of graph measures between timepoints was per-
formed using paired sample t-tests and p values were corrected for 
multiple comparisons, using the FDR method. In addition, we ana-
lyzed, for each timepoint, the network fingerprints of inter-modular 
(global and connector-hub driven) and intra-modular connectivity. 
The same method of analysis as described in (Fernandes et al., 2019), 
was applied in this work. In summary, modular connectivity strength 
was defined as the degree (total number of connections) of all nodes 
constituting a module. To quantify this connectivity at both time-
points, a reference scheme of community structure was chosen 
based on the mean score of community-structure goodness-of-fit. 
Then, matrices of inter-modular and intra-modular connectivity 
were created for both timepoints.

2.9 | WM tracts analysis

After identifying sub-networks with significant longitudinal changes, 
using the NBS approach described before, we performed an addi-
tional analysis designed to identify the WM tracts that are respon-
sible for connecting the brain regions comprising the identified 
sub-networks. For this, we used streamline density maps obtained 
with probabilistic tractography. These maps represent the num-
ber of streamlines reaching each voxel and one map is generated 
for each seed region. So, we first normalized the streamline density 
maps of each subject to the MNI space using the affine transfor-
mation computed previously, and then applied a threshold of 1% of 
the maximum number of streamlines to remove spurious connec-
tions (same threshold as applied to construct the SC matrices). Next, 
we extracted WM tract masks from the JHU WM tractography atlas 
(Hua et al., 2008; Wakana et al., 2007) and computed the mean in-
tensity (i.e., mean number of streamlines) of the overlapping region 
between each of these WM tracts and the streamline density map 

of each region. We repeated the process for each subject and each 
timepoint, then we grouped all this information in two matrices (one 
for each timepoint) that represent the mean intensity values of the 
overlap between each seed region and each WM tract averaged 
across subjects. Then, we applied a threshold of 5% of the maxi-
mum value to each matrix. Finally, we calculated the proportion of 
change between timepoints by computing the difference between 
the matrices of the last and first timepoints and then dividing by the 
matrix of the first timepoint. To identify WM tracts connecting a 
pair of regions, we inspected the proportion of change matrix and 
we selected WM tracts that had, for both brain regions, negative or 
positive values if that connection represented an SC decrease or an 
SC increase, respectively. In case regions shared multiple WM tracts, 
we chose the tract with the highest mean intensity value at both 
timepoints. When there was not any common tract, we also chose 
based on the mean intensity values at both timepoints instead of the 
proportion of change.

3  | RESULTS

3.1 | Sample characterization

Table  1 shows the demographic characterization of the partici-
pants included in this study. In summary, mean age at baseline was 
63.5 years (range, 51–82 years) and mean interval between evalua-
tions was 52.8 months (range, 45–73 months). Interval time was not 
significantly associated with age at baseline (r = −0.12, p = 0.41). The 
sample was balanced for sex (51% females, 49% males) and they did 
not differ with respect to interval time (t(30) = 0.14, p = 0.89). Mean 
education level was 5.98 years (range, 0–17 years). Regarding mem-
ory, at baseline, the mean factor score was 0.24 (range, −1.51–2.23) 
and at follow-up it was lower, with a mean value of 0.063 (range, 
−1.64–2.67). EXEC scores also decreased between assessments, 
with a mean value of 0.20 (range, −2.46–1.72) at baseline and 0.098 
(range, −1.90–2.05) at follow-up.

TA B L E  1   Basic demographic characterization of the study's 
cohort

Mean ± SD (range)

N (females/males) 51 (26/25)

Age at baseline (years) 63.5 ± 7.41 (51–82)

Age at follow-up (years) 68.0 ± 7.25 (55–86)

Interval (months) 52.8 ± 7.24 (45–73)

Education (years) 5.98 ± 3.97 (0–17)

F-MEM at baseline 0.24 ± 0.98 (−1.51–2.23)

F-EXEC at baseline 0.20 ± 1.01 (−2.46–1.72)

F-MEM at follow-up 0.063 ± 1.00 (−1.64–2.67)

F-EXEC at follow-up 0.098 ± 0.99 (−1.90–2.05)

Abbreviations: F- EXEC, mean factor scores for the general cognition 
and executive function composite dimension; F-MEM, mean factor 
scores for the memory composite dimension.

https://cran


     |  1361COELHO et al.

3.2 | Timepoint consistency

High levels of intra- and inter-TC were found for both timepoints in 
the estimation of whole-brain SC (Figure S7). We thus concluded that 
potential bias due to age and/or sex did not have a significant impact on 
the estimation of SC so that the inclusion of additional confounds for 
these variables in the statistical analysis was not necessary.

3.3 | SC longitudinal changes

From first to last timepoint there were significant changes in SC in 
a brain sub-network (p < 0.001), comprising 16 connections, where 
9 correspond to decreases and 7 to increases in SC between time-
points (Figure 1). Analyzing the individual connections of this net-
work, we observe that the connections with longitudinal decreases 
in connectivity are composed by three intra-left, five intra-right, and 
one inter-hemispheric connections. On the other hand, the connec-
tions with increasing connectivity are constituted by two intra-left 
and five inter-hemispheric connections. The summary of the con-
nections is present in Table 2.

Next, we examined the mean connectivity values of the significant 
sub-network (Figure 2). In the network with all connections, we ob-
serve an overall decrease in connectivity. When examining the three 
types of connections (intra-left, intra-right, and inter-hemispheric) we 
see that connections within the same hemisphere exhibit a decrease 
between the two timepoints, with a more pronounced decrease for 
the right hemisphere, while inter-hemispheric connections show an 
increase along time. In the network of increases, inter-hemispheric 
connections are the major contributors for this increase, while in-
tra-hemispheric connections have lower connectivity values. In the 
network of decreases, most of the decrease in connectivity is due 
to connections within the right hemisphere, while intra-left and in-
ter-hemispheric connections present lower connectivity values. Rates 
of change for the different sub-networks are reported in Table 3.

Regarding associations between mean connectivity values and 
cognition, only the correlation between the network with increases 
and EXEC was significant, although it did not survive the multiple com-
parisons correction (Table S1). In order to verify if the multiple com-
parisons correction was too conservative, we calculated the bootstrap 
confidence interval of the correlation coefficient using 10,000 draws. 
We obtained the following result: r = 0.31, 95% CI [−0.40, −0.18]. Thus, 
we estimate with 95% confidence that the true correlation coefficient 
between the network with increases and EXEC is between −0.40 and 
−0.18. Analyzing this association, we see that higher values of SC in 
this network are related to lower values of EXEC (Figure S9).

3.4 | WM tracts analysis

Figures 3 and 4 present the proportion of change between timepoints 
in the mean number of streamlines encompassed by the volume of 
overlap between each WM tract and seed region of the sub-net-
work with decreases (Figure  3) and the sub-network with increases 
(Figure 4). The values of the mean number of streamlines for each time-
point are displayed in Figures S10 and S11. For the regions of the sub-
network with decreases, connections were composed of association 
(anterior thalamic radiation, uncinate fasciculus, superior longitudinal 
fasciculus, cingulate gyrus part of cingulum bundle) and commissural 
fibers (forceps minor). While for the sub-network of increases, connec-
tions were attributed to all types of fibers, namely, association (inferior 
fronto-occipital fasciculus, cingulate gyrus part of cingulum bundle), 
commissural (forceps minor), and projection fibers (corticospinal tract). 
There was one special case in the network of increases that were the 
connections involving the left middle cingulate cortex. This region had 
only decreases in the mean number of streamlines, so we chose the 
WM tract with the highest value in both timepoints that was the left 
cingulate gyrus part of the cingulum. Information of which WM tract 
connects each pair of regions along with mean number of streamlines 
values is summarized in Table 4.

F I G U R E  1   Significant changes in structural connectivity between timepoints. (a) Binarized version of the connected component of 
significantly altered structural connectivity. (b) Weighted version of (a), with edge thickness representing the amplitude of differences. Blue 
represents decreases in connectivity strength between timepoints and red represents increases. Connections with decreases are mostly 
intra-hemispheric, while most of the increases are composed of inter-hemispheric connections. Both increases and decreases are mainly 
composed by links between subcortical and frontal regions [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


1362  |     COELHO et al.

3.5 | Topological organization longitudinal changes

3.5.1 | Graph theory metrics

Characteristic path length decreased significantly from the first to 
the second timepoint (t(50) = 3.45, p = 0.009, d = 0.29). Regarding 
the other graph measures (node degree, connection density, global 
efficiency, local efficiency, clustering coefficient, and small-world 
index) no statistically significant differences were found (see Table 
S2).

3.5.2 | Hubs

Network hubs were defined as regions with high normalized nodal 
efficiency. In the first assessment, 13 regions were identified as 
hubs (Figures 5 and 6, Table 5). In timepoint 2, two hubs were lost 
in comparison to timepoint 1, that were left inferior parietal and left 
fusiform gyrus.

In the case of the provincial hubs, which play a central role in in-
tra-modular communication, eight hubs were detected at timepoint 

TA B L E  2   Description of the connections comprising the connected component of significant structural connectivity differences between 
timepoints (p < 0.001)

Area 1 Area 2

Difference Intra-left Intra-right
Inter-
hemisphericN Name N Name

Increases

77 Thalamus L 74 Putamen R 0.008 0 0 1

78 Thalamus R 73 Putamen L 0.009 0 0 1

76 Pallidum R 73 Putamen L 0.009 0 0 1

77 Thalamus L 33 Cingulum Mid L 0.013 1 0 0

73 Putamen L 31 Cingulum Ant L 0.013 1 0 0

78 Thalamus R 77 Thalamus L 0.019 0 0 1

34 Cingulum Mid R 33 Cingulum Mid L 0.044 0 0 1

Decreases

78 Thalamus R 72 Caudate R −0.088 0 1 0

34 Cingulum Mid R 20 Supp Motor Area R −0.040 0 1 0

72 Caudate R 4 Frontal Sup R −0.028 0 1 0

34 Cingulum Mid R 32 Cingulum Ant R −0.026 0 1 0

72 Caudate R 24 Frontal Sup Medial R −0.022 0 1 0

71 Caudate L 3 Frontal Sup L −0.016 1 0 0

73 Putamen L 7 Frontal Mid L −0.014 1 0 0

24 Frontal Sup Medial R 3 Frontal Sup L −0.011 0 0 1

77 Thalamus L 7 Frontal Mid L −0.010 1 0 0

F I G U R E  2   Mean connectivity values of the significant connected component. (a) All the connections; (b) connections with increases in 
connectivity along time; (c) connections with decreases in connectivity. For each plot, we present the connectivity values for all connections 
(black), intra-left (red), intra-right (green), and inter-hemispheric (purple) connections. Intra-hemispheric connections exhibit a decrease along 
time, while inter-hemispheric links show an increase. Most of the decreases in SC are due to connections within the right hemisphere [Color 
figure can be viewed at wileyonlinelibrary.com]
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1 and 10 at timepoint 2. Only the right parahippocampal and bilat-
eral fusiform gyrus were detected at both timepoints (Table 5).

Connector hubs represent a central role in inter-modular com-
munication. At timepoint 1, five regions were identified as connector 
hubs, while at timepoint 2 only four regions were detected (Table 5). 
Left and right putamen were common to both timepoints.

3.5.3 | Modularity

The optimal modularity structure had six modules at both time-
points, and the two arrangements had a similarity of 0.80. Modules 
4, 5, and 6 were common to both partitions. Module 3 changed from 
a leftward lateralization at timepoint 1 to a rightward lateralization 
at timepoint 2, which caused slight differences in the arrangement 
of the frontal regions of modules 1 and 2 (Figure 7a). Details of the 

regions belonging to each module are given in Table S3. Furthermore, 
analyzing the connectivity profile of the connector hubs (Figure 7b), 
we observe distinct patterns at the two timepoints. Even regions 
that were classified as connector hubs at both timepoints (left and 
right putamen), have different profiles of connectivity.

Regarding the overlap between modules and RSNs, despite 
their differences in the arrangement, the percentage of overlap has 
only very subtle differences in the first three modules. Module 1 
has the highest overlap with both frontoparietal and somatomotor 
networks, with slightly higher overlap with frontoparietal network 
at timepoint 1. Module 2 again overlaps with frontoparietal (higher 
value at timepoint 2) and somatomotor, but also with the ventral 
attention network, and module 3 overlaps with limbic and default 
mode networks (DMNs) with higher value for the limbic network 
at both timepoints. In relation to the last three modules, module 4 
overlaps with limbic and somatomotor networks, and modules 5 and 
6 with visual and limbic networks. The matrices with the values of 
overlap at both timepoints are represented in Figure 7c.

3.5.4 | Fingerprints of modular connectivity

The reference scheme chosen to analyze fingerprints of modular 
connectivity was the community structure of timepoint 2. Significant 
alterations in connector-hub driven inter-modular connectivity were 
found (Figure  8). From timepoint 1 to timepoint 2, a decrease of 
around 19% of overall connectivity is found. Focusing on the specific 

TA B L E  3   Percentage of longitudinal changes in the mean 
connectivity of the significant connected component. Percentages 
are given for all the connections comprising the connected 
component, only the connections with increases in connectivity 
and connections with decreases

Network
All 
connections

Intra-
left

Intra-
right

Inter-
hemispheric

All connections −6.53 −8.70 −15.07 13.04

Increases 20.35 76.54 0 16.86

Decreases −16.40 −30.10 −15.07 −15.9

F I G U R E  3   Proportion of change between timepoints in the mean number of streamlines of the overlap between each seed region of the 
sub-network with decreases in structural connectivity and white matter (WM) tract. Seed regions are presented in rows and WM tracts in 
columns. For most of the connections, we found a common WM tract and the majority were association fibers [Color figure can be viewed at 
wileyonlinelibrary.com]
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connections that contribute to this decrease, at timepoint 1, we ob-
serve increased connectivity from module 2 (left hemisphere; frontal 
and parietal regions, insula, supramarginal, angular, putamen, palli-
dum, thalamus and superior temporal gyrus) to module 4 (bilateral 
supplementary motor area, middle and posterior cingulate cortex, 
precuneus and paracentral lobule) as well as from module 3 (fron-
tal regions most on the right hemisphere, bilateral anterior cingulate 
cortex, caudate, right putamen, right pallidum, and right thalamus) 
to modules 2, 4, and 6 (left hemisphere; occipital and temporal re-
gions, hippocampus, parahippocampal, amygdala, calcarine, cuneus, 
lingual and fusiform gyrus). Of notice, at timepoint 1 there are two 
connector hubs that belong to module 2 (left postcentral gyrus and 
left putamen) and also two connector hubs in module 3 (left caudate 
and right putamen), while at timepoint 2 there is only one connector 
hub in each of these modules (left putamen in module 2 and right 
putamen in module 3). Furthermore, modules 1 and 6, at timepoint 1, 
have no connectivity with any other modules, and the same happens 
with module 4 in timepoint 2 and module 5 at both timepoints. This 
is because there is a lack of connector hubs belonging to any of these 
modules, at the referred timepoints. No differences were found for 
intra-modular and inter-modular connectivity.

4  | DISCUSSION

In this study, we explored the longitudinal changes in the topologi-
cal organization of brain structural networks in normal aging, using 

diffusion MRI. Our results revealed both decreases and increases 
in WM SC along time. Interestingly, the sub-network with decreas-
ing connectivity is composed mainly of intra-hemispheric connec-
tions, while inter-hemispheric connections are in majority in the 
sub-network of increases. Both networks are mainly comprised 
by connections between subcortical and frontal regions. This dif-
ferential pattern of changes in different types of connections could 
be explained by the last-in-first-out hypothesis, which claims that 
regions developing later are more prone to age-related decline 
(Raz, 1999). In terms of WM tracts, association fibers, that connect 
different regions within a hemisphere, have a later peak of matu-
ration when compared to commissural fibers that connect regions 
between the two hemispheres (Hermoye et  al.,  2006). According 
to this hypothesis it is expected that association fibers will undergo 
a steeper decline in comparison to commissural fibers, which was 
already demonstrated in studies of WM microstructural properties 
indirectly estimated from DTI-based metrics (Bender et  al.,  2016; 
Brickman et  al.,  2012; Davis et  al.,  2009; Slater et  al.,  2019). Our 
results are in line with these findings, since intra-hemispheric links 
decline along aging, while inter-hemispheric links appear to be main-
tained and even enhanced. This enhance in connectivity between 
hemispheres along aging, has been reported in recent functional 
studies. One such study found stronger FC between bilateral fron-
toparietal control network that was associated with better cogni-
tion in the visuospatial domain (Jiang et al., 2020). Moreover, there 
are also reports of increased bilateral frontal activation in episodic 
memory retrieval tasks, for high-performing older adults (Cabeza 

F I G U R E  4   Proportion of change between timepoints in the mean number of streamlines of the overlap between each seed region of the 
sub-network with increases in structural connectivity and white matter (WM) tract. Seed regions are presented in rows and WM tracts in 
columns. There was more than a single WM tract connecting the regions, probably due to the fact that almost all the connections were inter-
hemispheric [Color figure can be viewed at wileyonlinelibrary.com]
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et  al.,  2002). Another study found that higher cognitive status in 
healthy older adults was associated with higher between-network 
and inter-hemispheric FC (Sullivan et al., 2019). Our findings add to 
this evidence by demonstrating that this increase in bilateral con-
nectivity also occurs in SC. In terms of WM SC, there are few re-
ports showing age-related increases. Of those, Lee and colleagues 
(Lee et al., 2015) found age-related increases between the prefrontal 
cortex and temporal regions, and between occipital and posterior 
brain regions. In our study, we found age-related increases between 
frontal and subcortical regions.

Our analysis of the WM tracts involved in the connections of 
each sub-network further supports the last-in-first-out hypothesis. 
The sub-network with decreases in SC was mainly composed of as-
sociation fibers, with only one commissural fiber (forceps minor). 
While the sub-network with increases in SC, although it also in-
cluded association fibers, was comprised by many commissural and 
projection fibers. It should be noted that connections with increas-
ing connectivity are mainly inter-hemispheric, so it is very proba-
ble that the corpus callosum is involved in all these connections. 
Association fibers are the latest to develop in comparison to com-
missural and projection fibers and previous studies have reported 

more pronounced decline of DTI-based metrics for association fi-
bers, which may possibly indicate a steepest decline in WM integrity 
(Bender et al., 2016; Benitez et al., 2018; Bennett & Madden, 2014; 
Cox et  al.,  2016; de Groot et  al.,  2015). Our results conform with 
these findings by demonstrating that disruption in WM SC occurs 
primarily in association fibers.

Furthermore, we analyzed the association between the mean 
connectivity of these sub-networks and cognitive scores of mem-
ory (MEM) and global cognition and executive function (EXEC). 
We found a trend in the correlation between the sub-network of 
increases and EXEC. Specifically, higher SC values were associated 
with lower EXEC scores. Previous studies reported that age-related 
FC increase was associated with poorer cognitive performance 
(Chen et al., 2019; Nashiro et al., 2017). Our finding is in line with the 
dedifferentiation hypothesis of the aging brain, which suggests that 
age is accompanied by a loss of specificity in the neural response to 
cognitive tasks (Chan et al., 2014; Dennis & Cabeza, 2011; Geerligs 
et al., 2014, 2015; Goh, 2011; Park et al., 2004). Our result on SC 
might suggest that the increase in SC is necessary to recruit addi-
tional areas in order to try to compensate for the cognitive decline 
these older adults are experiencing. Although we still see a decline in 
cognitive performance, this increase in SC is probably critical for the 
older adults to be able to perform cognitive tasks. Further research 
will be needed to confirm that this association reflects a compensa-
tory mechanism.

Analysis of the topological features of brain WM structural net-
works revealed some, although few, longitudinal alterations. No 
significant differences were found in most of the analyzed graph 
metrics, namely, node degree, connection density, global and local 
efficiency. Although some studies report age-related declines in 
some of these metrics, others present null results. Regarding global 
efficiency, (Wen et al., 2011; Zhao et al., 2015) report reduced global 
efficiency in advanced ages, whereas (Gong et al., 2009) found no 
significant age effect on this metric. Thus, the existence of con-
troversial results might explain the lack of significant results in our 
study. Moreover, the limited sample size used in this study is a limita-
tion which may have contributed to the lack of significant alterations 
in these measures. Characteristic path length was the only metric 
found to be significantly different between timepoints, having lower 
values in the last timepoint. This finding means that the average 
shortest path length between all possible pairs of nodes in the net-
work was lower in the last assessment and thus, globally, the com-
munication between different regions was more efficient. This result 
is not in accordance with earlier studies which reported increases 
in characteristic path length (Fischer et al., 2014; Zhu et al., 2012), 
but it should be noted that the effect size for this significant differ-
ence was rather small (d = 0.29) and this metric is inversely related 
to global efficiency, in which we found no significant differences.

In nodal efficiency, differences were found between assess-
ments, with the loss of two hubs (left inferior parietal and left 
fusiform gyrus) from the first to last timepoint. Left inferior pari-
etal cortex (IPC) is known to be associated with language process-
ing, namely reading, phonology, and semantic processing (Amici 

TA B L E  4   WM tracts connecting each pair of regions of the 
significant sub-networks with structural connectivity differences 
between timepoints

Area 1 Area 2 WM Tract

N Name N Name

Increases

77 Thalamus L 74 Putamen R CST L; IFOF R

78 Thalamus R 73 Putamen L IFOF R; IFOF L

76 Pallidum R 73 Putamen L IFOF R; IFOF L

77 Thalamus L 33 Cingulum Mid L CST L; CGC L

73 Putamen L 31 Cingulum Ant L IFOF L; FMI

78 Thalamus R 77 Thalamus L IFOF R; CST L

34 Cingulum Mid R 33 Cingulum Mid L CST R; CST L

Decreases

78 Thalamus R 72 Caudate R ATR R

34 Cingulum Mid R 20 Supp Motor 
Area R

CGC R

72 Caudate R 4 Frontal Sup R FMI

34 Cingulum Mid R 32 Cingulum Ant R CGC R

72 Caudate R 24 Frontal Sup 
Medial R

CGC R

71 Caudate L 3 Frontal Sup L UF L

73 Putamen L 7 Frontal Mid L SLF L

24 Frontal Sup 
Medial R

3 Frontal Sup L CGC R; CGC L

77 Thalamus L 7 Frontal Mid L ATR L; SLF L

Abbreviations: ATR, anterior thalamic radiation; CGC, cingulate gyrus 
part of cingulum; CST, corticospinal tract; FMI, forceps minor; IFOF, 
inferior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; 
UF, uncinate fasciculus.
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et al., 2006; Gorno-Tempini et al., 2004; Graves et al., 2010; Price 
& Mechelli,  2005; Turkeltaub & Branch Coslett,  2010; Vigneau 
et al., 2006). Additionally, it also plays a significant role in episodic 
memory (Wagner et al., 2005), attention (Corbetta & Shulman, 2002; 
Fan et  al.,  2005), action and salience processing (Behrmann 
et al., 2004; Caspers et al., 2010; Iacoboni, 2005), and social cog-
nition (Bzdok et al., 2016). It is also an important node of the DMN 
(Greicius et al., 2003). Previous aging studies have found age-related 
changes in the FC of this region and an association between these 
changes and cognitive decline in different domains, specifically, ex-
ecutive function (Lou et al., 2019; Zhao et al., 2020), semantic knowl-
edge (Hoffman & Morcom, 2018), inhibitory control (Hu et al., 2018), 

and memory (Huo et al., 2018; Lamichhane et al., 2018). In line with 
our results, there is evidence of the loss of hub role for left IPC in 
aging, which was demonstrated using cortical thickness covariance 
networks (Carey et al., 2019). Regarding fusiform gyrus, this region 
is involved in object recognition (Grill-Spector et al., 2001), face per-
ception (Kanwisher et al., 1997), including haptic and visual identi-
fication of faces (Kitada et al., 2009), reading (Cohen et al., 2000; 
Wandell et al., 2007) and memory (Wagner et al., 1999). Functional 
studies of aging using face recognition tasks have demonstrated a 
relationship between patterns of activation in the fusiform gyrus 
and age-related declines in face recognition or perception (Dennis 
et  al.,  2008; Lee et  al.,  2011; Wright et  al.,  2008). There is also 

F I G U R E  5   Global hubs identified in the two timepoints as measured by the normalized nodal efficiency. Here, we observe the plot of the 
normalized nodal efficiency for all the 90 automated anatomical labeling (AAL) regions, sorted in descending order of efficiency values, for 
timepoint 1 (left) and timepoint 2 (right). We observe a reorganization of brain structural networks in aging, characterized by the loss of two 
hubs (left inferior parietal cortex and left fusiform gyrus) [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


     |  1367COELHO et al.

evidence of age-related atrophy of the fusiform gyrus (Hogstrom 
et  al.,  2013; Shah et  al.,  2020). Supporting our results, previous 
studies found the loss of hub role for the left fusiform characterized 
by reduced betweenness centrality in cortical networks of regional 
gray matter volumes (Li et al., 2018).

Concerning modularity structure, we found very similar modu-
lar arrangements at both timepoints, with only some differences in 
frontal regions. Regarding fingerprints of modular connectivity, lon-
gitudinal differences were found in connector-hub driven inter-mod-
ular connectivity. Overall, there was a decrease of around 19% in 
this connectivity from timepoint 1 to timepoint 2, which could be 
the result of the loss of one connector hub. This decrease suggests 
a reduction of integration of brain structural networks during aging, 
since connector hubs play an important role in inter-modular com-
munication (characterized by high participation coefficient) and 
thus, there is less communication between different functional mod-
ules of the brain. There is already evidence suggesting a decrease in 

integration and increase in segregation of brain functional networks 
during the aging process (Sala-Llonch et al., 2014).

Between assessments, two regions lost their connector hub 
role, namely left caudate and right midcingulate cortex, while left 
middle occipital gyrus was identified as a connector hub only at the 
last timepoint. Both left caudate and right midcingulate cortex were 
part of the identified sub-network with decreases in connectivity 
between timepoints. Thus, this decrease in the anatomical connec-
tions between either left caudate or right midcingulate cortex and 
other regions of the brain would be expected to isolate these two 
regions and could explain the loss of these two nodes as connec-
tor hubs. Caudate is associated with different aspects of cognition, 
including motor and action planning, decision-making (particularly, 
goal-directed behavior), motivation and reward processing (Bick 
et  al.,  2019; Cera et al.,  2019; Grahn et  al.,  2008; Wilson,  2018). 
Previous studies exploring age-related changes in the caudate 
have shown associations with different cognitive domains, such 

F I G U R E  6   Global hubs identified in the two timepoints as measured by the normalized nodal efficiency. Here, we represent in 
the brain the identified hubs for timepoint 1 (top row) and timepoint 2 (bottom row). We observe a reorganization of brain structural 
networks in aging, characterized by the loss of two hubs (left inferior parietal cortex and left fusiform gyrus) [Color figure can be viewed at 
wileyonlinelibrary.com]
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as episodic memory (Fjell, Sneve, Storsve, et al., 2016; Rieckmann 
et  al.,  2018), instrumental learning (Perosa et  al.,  2020), cognitive 
flexibility (Verstynen et  al.,  2012), and reward processing (Bowen 
et al., 2020; Dhingra et al., 2020). Interestingly, (Esteves et al., 2018) 
reported that older adults had overall longitudinal rightward lateral-
ization of the caudate volume and subjects with extreme increase in 
this rightward asymmetry had increased Stroop interference scores 
(i.e., a measure of cognitive flexibility) but decreased scores of gen-
eral cognition. Our results provide additional support to this, by 
showing that the left caudate also loses its role of integrating differ-
ent regions of the brain. Midcingulate cortex is associated with motor 
control (from self-initiated movements to reflexive motor activity), 
and also with the response to acute nociceptive stimuli, fear, and 
pain (Hoffstaedter et al., 2015; Vogt, 2016). A previous study found 
age-related reductions in FC between dorsal anterior insula and 
midcingulate cortex, which are part of the dorsal salience sub-net-
work and these changes were found to be a mediator of age-related 
declines in executive function (Touroutoglou et al., 2018). Another 
study elucidated the role of midcingulate cortex in motor functions. 
Specifically, this region is involved in a network associated with in-
tentional movement initiation and it was found to present decreased 
FC with anterior cingulate motor area in aging, and there was also a 
decrease in gray matter volume with age (Hoffstaedter et al., 2015). 
These previous studies suggesting decreased connectivity and atro-
phy of this region with aging could explain the loss of connector hub 
status of the midcingulate cortex in our results.

At the last timepoint, left middle occipital gyrus emerged as a 
connector hub. This region is associated with visual information pro-
cessing and communication (Anurova et al., 2015; Teng et al., 2018; 

Wandell et al., 2007), and also plays a role in the perception of fa-
cial emotion as well as in category-selective attention modulating 
unconscious face/tool processing (Tu et al., 2013). Previous studies 
found age-related differences in the patterns of activation of the 
middle occipital gyrus during visual tasks (Berghuis et  al.,  2019; 
Piefke et al., 2012). Additionally, in a study of autobiographical mem-
ory retrieval, increases in activation of middle occipital gyrus in older 
adults were found during episodic memory retrieval, which could re-
flect a compensatory mechanism due to impairment of vivid visual 
imagery, or higher use of visuospatial processing during episodic 
memory retrieval (Donix et al., 2010). This compensatory increase in 
activation of middle occipital gyrus might explain its appearance as a 
connector hub at the last timepoint.

Lastly, there was an increase in detected provincial hubs along 
time, which may reflect higher segregation/specialization of struc-
tural networks. These hubs are characterized by having most of 
their connections within their own module and thus play a key role 
in intra-modular communication. The additional regions detected at 
timepoint 2 were right caudate and left inferior temporal gyrus. As 
described before, caudate was found to have a rightward asymmetry 
in aging, what may explain the gain of provincial hub status along 
time. Inferior temporal gyrus is associated with semantic process-
ing, particularly the selection and controlled retrieval of information 
from memory (Thompson-Schill, 2003), and it has also been involved 
in intelligence and executive function (Jung & Haier,  2007). Some 
studies report relative preservation of cortical thickness of this re-
gion until later in life (Fjell et al., 2009; Lee et al., 2018), and this can 
be related to the preservation of semantic memory also observed in 
aging (Gold et al., 2009). Our results also support the maintenance of 

TA B L E  5   Hubs of the brain for the two timepoints, according to three classification methods used. Global hubs are sorted by nodal 
efficiency, and provincial and connector hubs are sorted by modularity degree z-score

Global hubs Provincial hubs Connector hubs

M1 M2 M1 M2 M1 M2

Heschl R Heschl R Frontal Sup Orb L Rolandic Operculum 
R

Cingulum Mid R Occipital 
Mid L

SupraMarginal L Occipital Inf L ParaHippocampal R ParaHippocampal R Postcentral Gyrus 
L

Putamen R

Parietal Inf R Parietal Inf R Insula R Temporal Inf L Caudate L Postcentral 
Gyrus R

Occipital Inf R SupraMarginal L Parietal Inf L Rectus R Putamen L Putamen L

Rolandic Operculum L Occipital Inf R Rolandic Operculum L Parietal Inf R Putamen R

Occipital Inf L Heschl L Rectus L Frontal Med Orb R

Rolandic Operculum R Angular R Fusiform L Caudate R

Angular R Rolandic Operculum R Fusiform R Fusiform L

Heschl L Rolandic Operculum L Fusiform R

Angular L Angular L Insula L

SupraMarginal R SupraMarginal R

Parietal Inf L

Fusiform L

Abbreviations: M1, timepoint 1; M2, timepoint 2.
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this region along aging as it was characterized as an important hub of 
the brain network in the last timepoint.

This study has some limitations, particularly the low sample size 
and the period between evaluations. This could explain why there 
were almost no differences in graph theory metrics, and thus an ex-
tended period of evaluation and a larger sample could allow to ob-
serve differences in these measures. Another limitation is the use of 
a 1.5T MRI scanner which has lower signal to noise ratio when com-
pared to 3T MRI scanners (Lee & Shannon, 2007). Future studies will 
benefit from using a 3T scanner, which will allow to obtain high-qual-
ity images. While these limitations may have had some influence on 
the obtained results (changes in network connectivity, hubs, and 
modularity structure), we believe these effects were minimal since 
the same protocol (same scanner, acquisition parameters, and data 
processing pipeline) was used at both evaluations.

In summary, our findings bring further support of the exist-
ing evidence of the reorganization of brain structural networks 
during aging. Specifically, we found decreases in intra-hemispheric 

connectivity and increases in inter-hemispheric connectivity. 
Association fibers were primarily responsible for the decreases 
in WM SC and their functional loss is consistent with the last-
in-first-out hypothesis. Additionally, we found a trend for an as-
sociation between cognition and a sub-network with increasing 
connectivity, exhibiting lower general cognition and executive 
functioning scores for higher SC values, possibly suggesting some 
form of a compensatory mechanism. Regarding topological fea-
tures of brain networks, we found evidence suggesting reduced 
integration, characterized by a decrease in connector-hub driven 
inter-modular connectivity, and increased segregation, portrayed 
as an increase in the number of detected provincial hubs, of brain 
structural networks in aging. Taken together, these findings eluci-
date the changes occurring in the brain during aging, in terms of 
communication between the hemispheres and between special-
ized modules. This can help identify brain regions responsible for 
this disruption, that could be targeted as biomarkers to prevent 
cognitive decline in aging.

F I G U R E  7   Modularity structure (a), connector-hub connectivity (b) and matrices of resting-state networks (RSNs) overlap (c) at timepoint 
1 (top row) and timepoint 2 (bottom row). Filled circles represent connector hubs and unfilled circles represent provincial hubs. Although 
very similar modular arrangements were found at both timepoints (a,b), the undirected structural connectivity profile for the connector 
hubs was different (c). These differences are probably due to the loss of two connector hubs from first to last timepoint, namely left caudate 
and right midcingulate cortex, while left middle occipital gyrus was identified as a connector hub only in the last timepoint. Giving the role 
of connector hubs in inter-modular communication, the reduction in their number between timepoints reflects a decrease in integration of 
brain structural networks in aging [Color figure can be viewed at wileyonlinelibrary.com]
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5  | COMPLIANCE WITH ETHIC AL 
STANDARDS

All procedures followed were in accordance with the ethical stand-
ards of the responsible committee on human experimentation (insti-
tutional and national) and with the Helsinki Declaration of 1975, and 
the applicable revisions at the time of the investigation. Informed 
consent was obtained from all patients for being included in the 
study.
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FIGURE S1 Correlation between head-motion relative displacement 
values and age for all subjects and both timepoints. Head-motion dis-
placement values were extracted using FSL tools and averaged across 
all volumes acquired for one subject. Correlation is not significant 
(r = 0.019, p = 0.85) meaning that age is not associated with head-motion
FIGURE S2 Comparison of head-motion relative displacement val-
ues between timepoints. A paired t-test was performed, and it was 

not significant (p = 0.95) meaning that head-motion values did not 
differ between timepoints
FIGURE S3 Percentage of connections lost in each subject when 
applying consistency-based thresholding. Percentage is calculated 
as the proportion of connections removed in the subject SC matrix 
relative to the total number of connections removed in the group 
consistency mask. Plot on the left illustrates results for timepoint 1 
and on the right, results for timepoint 2
FIGURE S4 Frequency distribution for the connection strength of 
the links removed when applying consistency-based thresholding. 
Plot on the left illustrates results for timepoint 1 and on the right, 
results for timepoint 3
FIGURE S5 Percentage of connections that were present in the 
group consistency mask but were not present in all subjects’ SC ma-
trices. Percentage is calculated as the proportion of connections not 
present in the subject SC matrix relative to the total number of con-
nections in the group consistency mask. Plot on the left illustrates 
results for timepoint 1 and on the right, results for timepoint 2
FIGURE S6 Frequency distribution for the connection strength of 
the links from the group consistency mask not present in all subjects, 
when applying consistency-based thresholding. Plot on the left illus-
trates results for timepoint 1 and on the right, results for timepoint 3
FIGURE S7 Consistent signatures of SC for M1 and M2 timepoints. 
Left panel shows intra-timepoint consistency measured as the associ-
ation between individual SC signatures and timepoint average SC and 
we can observe that the two timepoints reveal a very high level of in-
tra-timepoint consistency (M1: 97.6%; M2: 97.5%). Right panel shows 
the degree of association between the signatures of SC for all pairs of 
subjects in the same timepoint. Once again, we notice a high level of 
timepoint consistency in SC (100% and 99.8% of all pairwise combina-
tions in M1 and M2 timepoints respectively have a correlation higher 
than r = 0.9137, with number of occurrences peaking at approximately 
r = 0.96 for both timepoints). The overlap between the distributions 
of intra-timepoint consistency of both timepoints is additionally con-
firmed by the inter-timepoint consistency distribution (M1-M2: peak 
at approximately r = 0.95). Taken together, these results suggest that, 
at a global level, the patterns of SC are highly consistent within and 
between timepoints, and thus potential differences due to age and 
sex do not have a significant impact on the estimation of SC patterns
FIGURE S8 Relationship between F-threshold and number of connec-
tions/nodes, that detected a significant component. The F-threshold 
used in this study (17.0) was selected based on the maximal F-threshold 
that detected a single component with more than two connections. 
This generated an NBS component with 19% nodes of the network 
and 16 links
FIGURE S9 Repeated measures correlation between mean SC val-
ues of the network with increases and mean factor scores of general 
cognition and executive function
FIGURE S10 Values of the mean number of streamlines for seed re-
gions of the sub-network with decreases in structural connectivity. 
Top row shows values for timepoint M1 and bottom row shows val-
ues for timepoint M2. Seed regions are presented in rows and white 
matter tracts in columns
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FIGURE S11 Values of the mean number of streamlines for seed re-
gions of the sub-network with increases in structural connectivity. 
Top row shows values for timepoint M1 and bottom row shows val-
ues for timepoint M2. Seed regions are presented in rows and white 
matter tracts in columns
TABLE S1 Correlations between mean SC values of sub-networks 
and cognitive composite dimensions (MEM and EXEC)
TABLE S2 Timepoint differences in graph theory metrics (results 
FDR corrected at p < 0.05)

TABLE S3 Brain regions belonging to the different modules of each 
timepoint’s modularity community structure
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