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Abstract

Estimating an optimal individualized treatment rule (ITR) based on patients’ information is an 

important problem in precision medicine. An optimal ITR is a decision function that optimizes 

patients’ expected clinical outcomes. Many existing methods in the literature are designed for 

binary treatment settings with the interest of a continuous outcome. Much less work has been done 

on estimating optimal ITRs in multiple treatment settings with good interpretations. In this article, 

we propose angle-based direct learning (AD-learning) to efficiently estimate optimal ITRs with 

multiple treatments. Our proposed method can be applied to various types of outcomes, such as 

continuous, survival, or binary outcomes. Moreover, it has an interesting geometric interpretation 

on the effect of different treatments for each individual patient, which can help doctors and 

patients make better decisions. Finite sample error bounds have been established to provide a 

theoretical guarantee for AD-learning. Finally, we demonstrate the superior performance of our 

method via an extensive simulation study and real data applications. Supplementary materials for 

this article are available online.
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1. Introduction

Precision medicine, which recommends different treatments for individual patients, has been 

a popular research area in the scientific community. Compared with traditional “one-size-

fits-all” medical procedures, precision medicine provides an individualized decision for each 

patient based on their information, such as clinical covariates, genetics, in order to maximize 

the outcome of each patient. There are different types of outcomes such as time to event, 

health index or the disease indicator.

There are a number of existing statistical methods for estimating optimal ITRs in the 

literature. These methods can be roughly characterized into two types. The first type 

includes value-based methods such as Q-learning (Watkins 1989; Watkins and Dayan 1992; 

Murphy 2005; Qian and Murphy 2011) and A-learning (Murphy 2003; Robins 2004). Q-

learning estimates optimal ITRs via modeling the conditional outcome function based on 

covariates while A-learning models the contrast between rewards of two treatments. The 

second type of methods directly targets the decision rules. One major approach of this type 

is to recast the estimating ITRs problem as weighted classification problems and use 

machine learning techniques to estimate optimal ITRs (Zhang et al. 2012a; Zhao et al. 

2012b, 2015a; Tao and Wang 2017; Zhou et al. 2017). In order to enhance interpretability of 

decision rules, tree-based methods were also proposed (Foster et al. 2011; Laber and Zhao 

2015; Zhang et al. 2015). Other direct-search methods include Tian et al. (2014) and Direct 

Learning (D-learning) (Qi and Liu 2018), which directly estimate the decision function that 

leads to optimal ITRs by regression techniques. Recently, a general statistical framework to 

estimate optimal ITRs was proposed by Chen et al. (2017).

Censored data are commonly seen in practice. Thus, it is also important to develop methods 

to estimate optimal ITRs for the survival outcome. Various methods have been proposed in 

the literature to estimate optimal ITRs for survival outcomes, such as Goldberg and Kosorok 

(2012), Zhao et al. (2015b), and Cui et al. (2017). Recently, Bai et al. (2016) and Jiang et al. 

(2017) proposed several methods to estimate the optimal ITR that can maximize the survival 

probability of patients. However, for general ITR problems, most of these existing methods 

are designed for binary treatment settings only. There are many multi-armed ITR problems 

in pratice (Baron et al. 2013). To the best of our knowledge, not much has been done for 

estimating the optimal ITR for the multiarmed treatment settings with various outcomes, 

such binary and survival outcomes. Thus, it is essential to develop methods to take multiple 

treatments into consideration simultaneously and estimate optimal ITRs for various 

outcomes, which can help to improve the estimating efficiency and the classification 

accuracy.

Besides the accurate estimation of ITRs, good interpretations are also important for multi-

armed treatment settings. For binary treatment settings, value-based methods can report a 

single-value difference function between two treatments to illustrate the relative 

effectiveness. For classification based methods such as O-learning (Zhao et al. 2012b), 

interpretation of the decision rule for binary treatment settings may not be as clear. 

Meanwhile for K-armed treatment settings, at least K(K − 1)
2  pairwise value difference 

functions need to be estimated to illustrate the relative performance of treatments for each 
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patient. Although such an extension can be simple to implement, it does not use the data 

simultaneously and consequently may yield suboptimal rules.

To get accurate estimation of optimal ITRs and obtain a good interpretation jointly under the 

multiarmed setting, we consider a K-vertex simplex structure in an Euclidean space, where 

each vertex represents one treatment. The simplex lies in a K − 1 dimensional space with the 

origin as the center and has equal inner products among vertices. Using the expression of the 

optimal ITR, we transform the problem of finding the optimal ITR maximizing the value 

function into maximizing the inner product between the decision function vector and the 

corresponding vertex in the simplex space. Such a transformation allows us to estimate the 

optimal ITR using multiple response regression methods. In particular, for each patient, our 

estimated decision function vector maps the covariates into this K − 1 dimensional space. 

The angle between each treatment vertex and the estimation function vector can be 

interpreted as a measure of preference to this treatment. We recommend a patient to take the 

corresponding treatment having the least angle with our estimated decision function vector. 

Figure 1 shows an example with our estimated ITR for a given patient. In this case, we 

recommend treatment B as the best option for this patient. In addition, we can see treatment 

C is more preferable than treatment A for this patient based on their angles.

We call our method angle-based direct learning (AD-learning) which can directly estimate 

optimal ITRs under multiarmed treatment settings using multiple response regression 

techniques. Furthermore, our proposed AD-learning can be extended to various types of 

outcome such as binary and survival responses. Compared with existing methods, our 

proposed AD-learning enjoys several advantages. In particular, our method is robust in the 

sense that it is not necessary to model the main effect function of the conditional outcome. 

Due to direct learning scheme, our method does not suffer from the mismatch problem 

between minimizing prediction errors and maximizing value functions in model based 

methods such as l1-PLS (Qian and Murphy 2011) and can perform better in high 

dimensional settings. Moreover, by representing each treatment as a vertex of a standard 

simplex in the Euclidean space, our proposed method provides an attractive geometric 

interpretation of the relative effectiveness of all treatments for a given patient. The resulting 

relative effectiveness of different treatments can be interpreted as the angles between the 

decision function vector for the patient and each vertex corresponding to the treatment. 

These angles can be scaled between [0, π]. In addition, flexible structures such as group and 

low rank sparsity can be also incorporated to further improve the model interpretation and 

simplicity, which can be applied in high-dimensional settings. Finally, our proposed method 

is easy to implement with efficient algorithms.

The remainder of this article is organized as follows. In Section 2, we introduce our AD-

learning to estimate optimal ITRs in multiple treatment settings. In Section 3, we discuss 

how to extend our proposed method to binary and survival outcomes. In Section 4, we 

provide a theoretical guarantee for our AD-learning under some mild assumptions. In 

Section 5, we conduct an extensive simulation study to evaluate the finite sample 

performance of our method with implementation details including algorithms. Furthermore, 

we illustrate our method using the AIDS data in Section 6. We conclude our article with 

some discussions and possible future extensions in Section 7.
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2. Angle-Based Direct Learning

For notation of the article, we use boldface capital and lowercase symbols to denote matrices 

and vectors respectively. For a matrix B, we define a mixed l1 and l2 norm as ‖B‖2,1 = 

Σ‖Bj‖2, where Bj is the jth row vector of B. We use Tr(B) to denote the sum of the diagonal 

value of the matrix B.

We consider a randomized treatment framework for estimating optimal ITRs. For each 

patient, we observe a triplet random vector (x, A, R). In particular, x = 1, X1, …, Xp ∈ X
denotes patients’ p-dimensional covariates with an intercept. The random variable A 
represents the randomized treatment that a patient receives. Here, we consider the K-

treatment-armed setting where A ∈ {1, 2, …, K} with a known prior probability distribution 

π(A, x), which is the conditional probability depending on x. In a general setting other than 

the randomized trial study, π(A, x) denotes the propensity score and can be estimated by the 

generalized linear models such as multinomial logistic regression. The variable R is a 

patient’s outcome after receiving the treatment A. Without loss of generality, we assume that 

the outcome R is bounded and the larger R is, the better the treatment works for this patient.

One of the most important goals of our problem is to estimate the optimal ITR that can 

maximize the expected clinical outcome of each patient under this ITR. Mathematically 

speaking, an ITR is a decision function d(x):X A, mapping from the covariate space into 

the treatment space. According to Qian and Murphy (2011) and Zhao et al. (2012b), the 

value function under the ITR d can be expressed as

V (d) =: E[R |d(x) = A] = E RI(A = d(x)
π(A, x) , (1)

where I( • ) is the indicator function. Then the optimal ITR is defined as

d0(x) = argmaxd ∈ DV (d) (2)

within a prespecified class of treatment rules D. Before introducing our proposed AD-

learning, we first discuss the direct learning framework.

2.1. The Direct Learning Framework

Consider a binary problem with K = 2. We encode treatment A to be 1 or −1. Then from the 

value function and optimal ITRs defined in (1) and (2) respectively, we can further represent 

the optimal ITR as

d0(x) = sign(E[R |x, A = 1] − E[R |x, A = − 1])
= sign(E RA

π(A |x) |x ) := sign f0(x) . (3)

Using Equation (3), similarly in Tian et al. (2014), the ITR problem becomes to estimate the 

optimal decision function f0(x) = E[ RA
π(A |x) |x] via various regression methods such as l1 

penalized regression (LASSO). The final decision rule is determined by the sign of the 

estimator.
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Binary D-learning directly estimates the decision rule. It is very different from the outcome 

weighted learning (OWL) proposed by Zhao et al. (2012b) because binary D-learning uses 

regression methods to estimate the optimal ITR directly. Note that binary D-learning can be 

simply extended to the K-treatment-arm setting by rewriting the optimal ITR as

d0(x) = argmax
k ∈ 1, …, K

E[R |x, A = k]

= argmax
k ∈ 1, …, K

KE[R |x, A = k] − ∑
i = 1

K
E[R |x, A = i]

= argmax
k ∈ 1, …, K

∑
i ≠ k

K
E[R |x, A = k] − E[R |xA = i]

= argmax
k ∈ 1, …, K

∑
i ≠ k

K
E[ RAki

πki Aki, x |x, A = k or i]

:= argmax
k ∈ 1, …, K

∑
i ≠ k

K
fki(x) := argmax

k ∈ 1, …, K
fk(x),

(4)

where Aki ∈ {−1, 1} represents treatments k and i, and fki(x) is defined as the optimal 

decision function between treatment k and i. Each pairwise decision function can be 

estimated by a binary D-learning method. The final treatment decision rule is to compare the 

cumulative sum of pairwise decision functions fk(x) for k = 1, …, K, and select the largest 

one. We refer this pairwise method as pairwise D-learning.

Binary D-learning gives us a directed way to estimate optimal ITRs. However, pairwise D-

learning, which is based on binary D-learning, focuses only on pairwise comparisons 

between treatments without considering all treatments simultaneously. Although the 

proposed effect measure fk(x) can capture the relative strength of a treatment for a given 

patient, it may be suboptimal.

To handle multiarmed ITR problems with various outcomes, we propose AD-learning that 

considers all treatments together to estimate the optimal ITR. Moreover, the AD-learning 

can provide a more effective measure of treatments for patients with a good interpretation.

2.2. Angle-Based D-learning for Continuous Outcomes

For a K-armed ITR problem, one natural approach is to estimate K functions for all 

treatments. Since only one function is needed for the binary ITR problem, one indeed only 

needs K − 1 functions for a K-armed problem. Instead of using K functions with a constraint 

on these functions, we aim to directly estimate K − 1 functions. To that end, we project the 

treatment A into K simplex vertices defined ℛK − 1. Specifically, we encode the jth 

treatment as a vector wj ∈ ℛK − 1 with

Qi et al. Page 5

J Am Stat Assoc. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wj =

K − 1 −1/21K − 1
if A = 1,

−(1 + K)/(K − 1)3/21K − 1 + ( K
K − 1)1/2eA − 1

if 2 ≤ A ≤ K,

(5)

where ei is a K −1 dimensional vector with every element being 0, except the i-th location 

being 1. Define w as a random vector with P[w = wj|x] = P[A = j|x]. This simplex encoding 

scheme has several properties. In particular, the center of these vertices is the origin of the 

space, that is ∑j = 1
K wj = 0 with ‖wj‖2 = 1 for j = 1, …, K. The angle between each pair of 

vertices is equal, that is wiTwj = C(K) < 1 for i ≠ j, where the constant C only depends on K. 

Interestingly, we can then express the optimal ITR as

d0(x) = argmax
k ∈ {1, …, K}

E[R |x, A = k]
= argmax

k ∈ {1, …, K}
(1 − c(K))E[R |x, A = k]

= argmax
k ∈ {1, …, K}

{(1 − c(K))E[R |x, A = k]

+c(K) ∑
j = 1

K
E[R |x, A = j]}

= argmax
k ∈ {1, …, K}

{E[R |x, A = k] + c(K) ∑
j ≠ k

K
E[R |x, A = j]}

= argmax
k ∈ {1, …, K}

{wk
TE[Rw |x, A = k] + wk

T ∑
j ≠ k

K
E[Rw |x, A = j]}

= argmax
k ∈ 1, …, K

wk
TE Rw

π(A, x) |x := argmax
k ∈ 1, …, K

wk
Tf0(x),

(6)

where f0(x) is a function vector from ℛp + 1 to ℛK − 1 with some abuse of notation. Then, 

the optimal ITR is given by comparing the inner product between wk and f0(x) for each 

treatment k. We define the angle between each pair of vertices in [0, π]. Then, wk
Tf0(x) is the 

largest if and only if the angle between wk and f0(x) is the least, for k = 1, …, K. Thus, we 

call our proposed method as angle-based D-learning (AD-learning). Note that the simplex 

coding is unique up to the orthogonal rotation.

Our proposed AD-learning has an attractive geometric interpretation. In particular, this least 

angle decision rule can be understood through newly defined treatment regions for each 

patient. For example, when K = 3, as shown in Figure 2 (b), vectors wk; k = 1, …, K form an 

equilateral triangle in the ℛ2 space, where each divided region represents a treatment region. 

The decision function vector f0(x) maps from the covariate space into the treatment region. 

One can observe that the angles between vertices are the same, and consequently each 

treatment is treated equally. Such a simplex coding scheme does not require a balanced 

group size for each treatment since treatment proportions are taken into account by the term 

π(A, x) in Equation (6). We name the angle between each wk and f0(x) as the treatment 
score which lies in a bounded interval [0, π]. If a patient has the angle of 0 with the ith 
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treatment, then the i-th treatment is a perfect fit for this patient compared with other 

treatments. Figure 2 gives a geometric explanation of our AD-learning.

To further illustrate our AD-learning, we propose the following alternative interpretation. 

Suppose the clinical outcome R can be modeled as follows:

R = μ(x) + ∑
i = 1

K
δi(x)I(A = i) + ϵ, (7)

where μ(x) is main effect function, δi(x) is the interaction effect between covariates and the 

ith treatment, and ϵ is mean zero random error. Then we can get

E Rw
π(A, x) |x = μ(x)E w

π(A, x) |x

+ ∑
i = 1

K
δi x iE

wI(A = i)
π(A, x) |x

+ E w
π(A, x) |x]E[ϵ |x

= ∑
i = 1

K
δi(x)wi .

(8)

Furthermore, the optimal ITR is

d0(x) = argmaxk ∈ 1, …, K]wk
TE Rw

π(A |x) |x

= argmaxk ∈ 1, …, K wk
T ∑

i = 1

K
δi(x)wi

= argmaxk ∈ 1, …, K C(K) ∑
i = 1

K
δi(x) + (1 − C(K))δk(x)

= argmaxk ∈ 1, …, K δk(x),

(9)

which is exactly to compare each treatment interaction effect with the covariates.

As a remark, we note that extensions of methods for binary treatment settings to multiple 

treatment settings using all treatments jointly can be nontrivial since we need to account for 

multiple treatment effect comparisons without sacrificing too much efficiency. Our proposed 

AD-learning achieves this by first projecting treatments into a K − 1 dimensional space. A 

simplex with K vertices is used to represent the K treatments. Then, Equation (6) provides 

an innovative but direct way to efficiently estimate the decision function vector and 

considers all the data simultaneously. Inherited from the simplex structure, our proposed 

method has an attractive geometric interpretation to show the relative effectiveness of 

different treatments for a patient. Thus, it provides an informative comparison of all 

treatments for patients and doctors to make decisions.

Note that the simplex coding scheme was previously used by Wu and Lange (2010) and 

Zhang and Liu (2014) for classification problems. However, our proposed AD-learning is 

very different because it is not a classification method. Consequently, our method is not an 
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extension of O-learning proposed by Zhao et al. (2012b). Instead, by transforming the 

problem (2) into (6), our goal is to estimate the decision function f0(x) directly, using 

multiple response regression introduced in Section 2.3.

2.3. Estimation Proceduresof AD-learning

In order to estimate the optimal ITR, it is equivalent to estimating f0(x) from Section 2.2. 

The next lemma provides us a way for estimation of f0(x).

Lemma 1—Under the exchange of differential and expectation condition, f0(x) is an 

optimal solution to

argmin
f ∈ ℛK − 1

E 1
π(A, x) (KRw − f(x))TΣ(KRw − f(x)) , (10)

where Σ can be any positive definite matrix that characterizes the dependency among 

responses. Without knowing any prior knowledge, one could simply let Σ = IK−1.

Assume we observe independent identically distributed data {(xi, Ai, Ri), i = 1, …, n}. Then, 

we can estimate f0(x) via empirical average approximation

argmin
f ∈ ℱ

1
n(K − 1) ∑

i = 1

n 1
π Ai, xi

× KRiwi − f xi
T KRiwi − f xi ,

(11)

where ℱ is a prespecified class of decision functions. For simplicity, we first consider the 

class of linear decision rules, that is, ℱ := f(x) = BTx, B ∈ ℝp × (K − 1) . By observing KRiwi 

as multivariate responses, one can apply ordinary least square estimates for each of the 

responses separately. However, since the responses share the same clinical outcome Ri for 

the ith sample, it is clear that pooling multivariate responses together can efficiently improve 

the estimation of f0(x) (Breiman and Friedman 1997). This motivates us to incorporate 

shrinkage and selection strategies that explore the correlations among different responses by

argmin
B ∈ ℝp × (K − 1)

1
n(K − 1) ∑

i = 1

n 1
π Ai, xi

KRiwi − BTxi
T

× KRiwi − BTxi + λJ(B),
(12)

where λ is a positive tuning parameter. Then our final least angle decision rule becomes 

d0(x) = argmaxk ∈ 1, …, K wk
TBTx. In this decision rule, the corresponding coefficient for the 

jth variable of x is wk
TBj, for j = 1, …, p, where Bj is the jth row vector of B. Note that for 

any orthogonal matrix,
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‖BΓ‖2, 1 = ∑
j = 1

p
‖Bj

TΓ‖2 = ∑
j = 1

p
Bj

TΓΓTBj

= ∑
j = 1

p
‖Bj‖2 = ‖B‖2, 1,

(13)

which implies that ‖B‖2,1 remains to be the same under any orthogonal transformation of w. 

This is essential since our simplex coding is unique up to the orthogonal rotation. In 

addition, Bj = 0K−1 implies the jth variable has no effect on our least angle decision rule. 

These motivate us to use the group sparsity penalty, that is, the mixed l1/l2 norm as follows

argmin
B ∈ ℝp × (K − 1)

1
n(K − 1) ∑

i = 1

n 1
π Ai, xi

KRiwi − BTxi
T

× KRiwi − BTxi + λ‖B‖2, 1 .
(14)

Model (14) is best suited for the case that all treatments share the common interaction 

covariates. The group sparsity structure of B will not change under any orthogonal 

transformation of w.

In the literature, it is known that group sparsity of a matrix is a special case of a low rank 

matrix. If B = UVT such that U ∈ ℝp × r and V ∈ ℝr × (K − 1) with r < min(p, K − 1). Then 

BTx = V(UTx) implies potential r orthogonal latent factors in the covariates. Hence, we can 

also use the nuclear norm penalty to control the complexity of coefficient matrix B if there is 

a low-rank structure or exists latent factors in the covariates by

argmin
B ∈ ℝp × (K − 1)

1
n(K − 1) ∑

i = 1

n 1
π Ai, xi

KRiwi − BTxi
T

× KRiwi − BTxi + λ‖B‖*,
(15)

where the ‖B‖* is the sum of all singular values of coefficient matrix B. The nuclear norm 

penalty, unlike the rank constraint, provides soft and stable shrinkage on the singular values. 

Similar to the penalty ‖B‖2,1, other penalties including ‖B‖* that are invariant to any 

orthogonal rotation of w can be applied for our methods.

So far, we have only focused on linear decision rules. If f0(x) belongs to some classes of 

nonlinear functions, we can adapt our method to nonlinear learning via kernel learning or 

basis function expansions. For kernel learning, we can apply kernel ridge regression for each 

response separately, using Equation (11). However, it may lose some efficiency, since it does 

not consider the dependence among the responses. How to perform kernel learning with 

multiple responses in our setting is an interesting future research direction. For basis 

function expansions, depending on the problem, we can use spline basis functions, 

interaction functions, wavelet functions, etc. to approximate the nonlinear decision function.

To summarize, Models (14) and (15) are proposed to control the complexity of coefficient 

matrix B and consequently enhance the estimation and prediction. As our proposed AD-
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learning directly targets on the decision function f0(x), it does not suffer the mismatch 

problem between minimizing prediction errors and maximizing value functions happened 

for model-based methods such as l1-PLS. Thus, our proposed method tends to perform 

better in high-dimensional settings. If there are group signals in the covariates for optimal 

ITRs, we recommend to use Model (14). If there are latent factors in the covariates for 

optimal ITRs, we recommend to use Model (15). One can also use the cross-validation 

procedure to choose Model (14) or (15) that maximizes the empirical value function on the 

validation dataset. The computation of these models involves convex optimization and thus 

can be solved efficiently.

3. Extensions to Other Types of Outcomes

In Sections 2, we proposed AD-learning for continuous outcomes. In practice, especially in 

clinical studies, other types of outcomes such as binary, count responses, or survival time 

can also be used. In this section, we extend our AD-learning to more general types of 

outcomes motivated by the following lemma.

Lemma 2

Under the exchange of differential and expectation condition, f0(x) is an optimal solution to

argmin
f ∈ ℱ

E 1
π(A, x) ( K

K − 1R − wTf(x))
2

. (16)

Based on the optimization problem (16), one can write a corresponding working model as

K
K − 1R = wTf(x) + ϵ, (17)

where ϵ is the random error. Note that when f ∈ ℱ, wTf(x) = wTBTx = Tr(BT(xwT)). Then, 

xwT can be regarded as modified covariates. Then, the multiple response regression model in 

(11) can be extended to a more general model, namely trace regression model (Rohde et al. 

2011).

Motivated by the optimization problem (16) and the corresponding working model, we can 

extend our proposed AD-learning to more general settings. In particular, instead of the least-

squared loss for continuous outcome in (16), we can use other loss functions for 

corresponding outcomes.

3.1. Binary Outcomes

When R is binary, motivated by Lemma 2 and the connection between (16) and working 

model (17), we consider to replace the least squared loss in (16) by the deviance loss of 

logistic regression models. Then, we have the following lemma.

Lemma 3—Under the exchange of differential and expectation condition, an optimal 

solution to
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argmin
f ∈ ℱ

E − RwTf
π(A, x) + log 1 + exp wTf

π(A, x) (18)

is the function f0(x) satisfying

P[R = 1|x, A = i] = exp wiTf0(x)
1 + exp wiTf0(x)

. (19)

Analogous to (17), solving (18) is equivalent to fitting a logistic regression working model 

(19). Based on Lemma 3, we can derive the optimal decision rule for the binary outcome as

d0(x) = argmaxk ∈ 1, …, K P[R = 1|x, A = i]
= argmaxk ∈ 1, …, K wiTf0(x), (20)

which can be also interpreted as the least angle decision rule. Then, we can fit a weighted 

logistic regression with modified covariates x* = xwT by modeling

P[R = 1|x, A] =
exp Tr BTx *

1 + exp Tr BTx *
, (21)

and estimate the coefficient matrix B by maximum likelihood estimation

argmin
B ∈ ℝp × (K − 1)

l(B) = − 1
n ∑

i = 1

n RiTr BTxi*
π Ai, xi

+ 1
n ∑

i = 1

n log 1 + exp Tr BTxi*
π Ai, xi

+ λJ(B),
(22)

where J(B) is either the mixed l1/l2 penalty or the nuclear norm penalty under different 

model assumptions. We can use the accelerated proximal gradient method to solve this 

problem (Beck and Teboulle 2009). However, the gradient of the exponential loss function 

for this model may need relatively large computational time. Efficient group coordinate 

descent proposed by Breheny and Huang (2015) can be an alternative to solve Model (22) 

with the mixed l1/l2 penalty by vectorizing the modified covariates.

3.2. Survival Outcomes

When R is the survival outcome, due to the potential censoring of observations, we do not 

always observe the exact outcomes of patients in clinical studies. Thus, R becomes a pair of 

random variables defined as R = (Y , δ) = (Y ∧ C, δ), where Y  is the patient’s survival time, C 
is the censoring time, and δ is an indicator about whether this patient is censored or not. 

Motivated by Lemma 2 and a similar derivation as in Section 3.1, we can replace squared 

error loss in (16) for continuous outcomes by the negative log-likelihood of the Cox model 

for survival outcomes. Then, we have the following lemma for survival outcomes.
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Lemma 4—Under the exchange of differential and expectation condition, an optimal 

solution to

argmin
f ∈ ℱ

E[∫
0

τ
logE[efTwI(Y ≥ u)]

π(A, x) − fTw
π(A, x)dN(u)] (23)

is the function f* satisfying

exp wiTf * E Λ * Y (i) |x, A = i = P[δ = 1|x, A = i] (24)

for a monotone nondecreasing function Λ*(u), where N(u) = I(Y ≤ u)δ, and τ is a fixed time 

point with P[Y ≥ τ] > 0. If the censoring time is noninformative and the censoring rate for 

each treatment group is the same, then

argmaxi ∈ 1, …, K − wiTf * = argmaxi ∈ 1, …, K E[Λ(Y ) |x, A = i] . (25)

Using Lemma 4, the optimal decision rule for the survival outcome can be written as

d0(x) = argmaxk ∈ 1, …, K wiT −f * . (26)

This is equivalent to fitting a weighted Cox proportional hazard (CPH) model with modified 

covariates x* = xwT, by defining the hazard function as

λ(t |x, A) = λ0(t)eTr BTx * , (27)

where λ0(t) is a baseline hazard function. Then we can estimate the coefficient matrix B by 

maximum likelihood estimation such as

argmin
B ∈ ℝp × (K − 1)

l(B) = 1
n ∑

i:δi = 1
{−

Y iTr BTxi*
π Ai, xi

+ 1
π Ai, xi

log ∑
j:Y j ≥ Yi

exp Tr BTxi* }

+ λJ(B),

(28)

where J(B) is either the mixed l1/l2 penalty or the nuclear norm penalty under different 

model assumptions. As the gradient of the Cox loss function for this model requires heavy 

computation, similar to Section 3.1, efficient group coordinate descent (Breheny and Huang 

2015) can be used to optimize (28) with the mixed l1/l2 penalty through vectorizing the 

modified covariates.

Note that the modified covariates x* in Equation (27) contain the treatment information that 

can be incorporated into the baseline hazard function. Thus, baseline hazard functions can be 

different for different treatments. For Lemma 4, we assume the censoring rate to be equal for 

all treatment groups so that our proposed method can be directly extended to the survival 
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outcome. This assumption can possibly be removed by estimating the censoring rate for each 

group and then adjusting Equation (24).

4. Theoretical Properties of AD-learning

In this section, we show our proposed AD-learning is consistent under some mild conditions 

and establish finite value reduction bounds for our method. We first state the generalized 

margin condition used in our theory.

Assumption 1

For any ϵ > 0, there exists some constants C > 0 and α > 0 such that

P[| wi − wj
Tf0(x)| ≤ ϵ] ≤ Cϵα (29)

for every i, j = 1, …, K.

Assumption 1 is an extension of margin condition used in binary classification problems to 

obtain sharper bounds on the excess 0–1 risk (Audibert et al. 2007). For our ITR problems, 

this generalized margin condition characterizes the behavior of the decision function vector 

f0(x) around the boundary among different treatment regions, thus the level of difficulty in 

finding the optimal ITR. In the literature, Zhao et al. (2012b) used a similar assumption in 

the binary ITR problem. Using Assumption 1, we have the following theorem for the value 

reduction bound.

Theorem 1

For the estimator fn by our proposed AD-learning and the corresponding ITR dn, we have

V (d0) − V (dn) ≤ 2K(K − 1)
1 − C(K) (E‖f0 − fn‖2

2)
1
2 . (30)

Furthermore, if Assumption 1 holds, we can improve the bound by

V d0 − V (dn) ≤ C1(K, α)(E‖f0 − fn‖2
2)

1 + α
2 + α , (31)

where C1(K, α) is the constant that only depends on K and α.

Remark 1

Based on (31), we can see that when α = 0 and C = 1, Assumption (1) always holds for any 

ϵ > 0. In this case, (31) reduces to (30). Based on (29), if α increases, the outcomes 

corresponding to various treatments become more different. As a result, the corresponding 

exponent 1 + α
2 + α  becomes larger, and consequently a sharper bound in (31) can be obtained.

Theorem 1 gives an upper bound for the value function reduction in terms of the prediction 

error. For simplicity, we first consider Model (14) with equal π(Ai, xi) for each treatment. 
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Then, we can use the main idea from Lounici et al. (2009). We first vectorise the multiple 

responses and the coefficient B so that the model becomes

argmin
β ∈ ℝp(K − 1)

1
n(K − 1) ∑

k = 1

K − 1
yk − Xβk

T yk − Xβk + λ‖β‖2, 1, (32)

where vector yk = KRwk ∈ ℝn for k = 1, …, K − 1 and X is a design matrix with the ith row 

being the ith patient covariates xi. Denote each column of the coefficients B as βk, for k = 1, 

…, K − 1. Then, β ∈ ℝp(K − 1) is formed by stacking the coefficient βk, for k = 1, …, K − 1. 

We further define the (K −1)n×p(K −1) block diagonal matrix Z with its k-th block formed 

by the design matrix X.

We assume the underlying true f0 is linear with coefficient β0. Define S(β) = {j : βkj ≠ 0, k 1, 

…, K − 1 and the cardinality of S(β) as ‖S(β)‖0. We make the following two assumptions as 

in Lounici et al. (2009). The first one is the restricted eigenvalue (RE) assumption 

considered by Bickel et al. (2009) with an extension to the mixed l1/l2 norm.

Assumption 2

[RE(s)] For any nonzero β with ‖S‖0 ≤ s and ‖βSc‖2, 1 ≤ 3‖βS‖2, 1, there exists a positive real 

number ρ(s) such that

βΣβ ≥ ρ(s)‖βS‖, (33)

where S denotes the short notation of S(β) and Σ = 1
nZTZ.

The next assumption is to control the stochastic error term in Model (14) with the bounded 

variance assumption.

Assumption 3

1. Assume that the random error eki = yki − xiTβk ; i = 1, …, n, k = 1, …, K − 1, are 

independent among different i with mean zero and finite variance E eki
2 ≤ σ2.

2. There exists a constant c such that max1≤i≤n max1≤j≤p |xij| ≤ c.

With the assumptions in place, we have the following theorem.

Theorem 2

Consider Model (14), for p ≥ 3 and K, n ≥ 1. Assume S(β0) ≤ s, Assumptions 2 and 3 and 

the RE(2s) assumption hold. Let

λ = σ (logp)1 + δ
n(K − 1) ,
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for any δ > 0. Then with probability at least 1 − (2elogp − e)c2

(logp)1 + δ , for the solution B to the Model 

(14), we have

V d0 − V (dn) ≤ K − 1K(K − 1)
1 − C(K)

4 10c
ρ2(2s)

σ s(logp)1 + δ

n . (34)

Furthermore, if Assumption 1 is satisfied, we can improve the bound by

V d0 − V (dn) ≤ C(K, α) 32
ρ2(s)

σ2s (logp)1 + δ

n

1 + α
2 + α

, (35)

where C(K, α) only depends on K and the margin condition constant α.

Theorem 2 gives us the value reduction bound of order nearly 1
n  as long as α is large 

enough. This value bound is consistent with l1-PLS proposed by Qian and Murphy (2011) if 

we assume the underlying true function is linear. For a general function approximation, an 

additional approximation error to f0(x) needs to be considered.

For Model (15), Rohde et al. (2011) has obtained the same rate O(1
n ) for the prediction error 

and thus the order of value reduction bound for Model (15) is the same as Theorem 2. For 

Model (22), it can be regarded as usual logistic regression with modified covariates. If we 

consider the mixed l1/l2 penalty, error bounds of the same order were developed in Meier et 

al. (2008). These results are applicable to our proposed AD-learning. However, to the best of 

our knowledge, the finite sample properties of other settings such as CPH models with the 

mixed l1/l2 penalty or low-rank penalty require further developments and we leave it as the 

future work.

5. Simulation Study

In this section, we perform an extensive simulation study to investigate the finite sample 

performance of AD-learning for various types of outcomes. For all simulation settings, we 

consider four-armed (K = 4) randomized trials with equal probabilities of patients being 

assigned to each treatment group. For the low-dimensional simulation setting, we set the 

sample size n to be 200, 400, and 800. The number of covariates p is set to be 20 and 40. For 

high-dimensional simulation settings, we let the sample size be 400 and p be 1000. Each 

simulation is repeated for 120 times. Additional simulation results are in the supplementary 

material, such as settings with n = 200, low-rank decision function simulation studies, etc.

For the implementation details of AD-learning, two types of algorithms can be applied. The 

first one is the accelerated proximal gradient method. In particular, Models (14) and (15) can 

be represented as follows:

minF (B) := L(B) + λJ(B), (36)
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where L(B) is a smooth convex function with its gradient being Lipschitz continuous and 

J(B) is a nonsmooth convex function, of which the proximal operator can be computed 

efficiently. Then, we can use the accelerated proximal gradient method to solve it with low 

computational complexity. It achieves the optimal converge rate O( 1
m2 ) for gradient methods, 

where m is the number of iterations for the algorithm. More details can be found in Nesterov 

(2013) and Toh and Yun (2010).

In binary and survival outcome settings, the gradient of function L(B) may need large 

computational cost to calculate. To address the problem, the stochastic block coordinate 

decent algorithm can be applied instead when J(B) is the mixed l1/l2 penalty. By using this 

algorithm, each gradient decent iteration can be efficiently computed. Thus, the stochastic 

block coordinate decent algorithm may cost less time than the accelerated proximal gradient 

method.

The tuning parameter λ is selected based on the cross-validation procedure. The criterion is 

to select λ that maximizes the average of estimated value functions on the validation data set 

defined as follows:

V (d) = En[RI(A = d(x))/π(A, x)]
En[I(A = d(x))/π(A, x)] , (37)

where En denotes the empirical average.

5.1. Study of Continuous Outcomes

When the clinical outcome R is continuous, we generate our data from Model (7). 

Specifically, for i = 1, …, n, let

Ri = μ xi + δ xi + ϵi,

where δ xi = ∑k = 1
K xiTβk I(A = k), each covariate is generated by the uniform distribution 

from −1 to 1, and ϵi follows from the standard normal distribution. For each simulation 

scenario, we consider μ(x) = 1 + X1 + X2 and consider other types of main effect functions 

in the supplementary material. We design the following three interaction functions similar to 

those in Zhou et al. (2017) and Zhang et al. (2015):

1. δ(x) = 1 + X1 + X2 + X3 + X4 I(A = 1) + 1 + X1 −
X2 − X3 + X4 I(A = 2) + 1 + X1 − X2 + X3 − X4 I(A =
3) + 1 − X1 − X2 + X3 + X4 I(A = 4);

2. δ(x) = 3I X1 ≤ 0.5 I X2 > − 0.6 − 1 I(A = 1) +
I X3 ≤ 1 2I X4 ≤ − 0.3 − 1 I(A = 2) + 4I X5 ≤

0) − 2)I(A = 3) + 4I X6 ≤ 0 − 2 I(A = 4);

3. δ(x) = 0.2 + X1
2 + X2

2 − X3
2 − X4

2 I(A = 1) + 0.2 + X2
2 +

X3
2 − X2

2 − X4
2 I(A = 2) + 0.2 + X1

2 + X4
2 − X2

2 − X3
2 I(A =

3) + 0.2 + X2
2 + X3

2 − X1
2 − X4

2 I(A = 4) .
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The first scenario corresponds to linear interaction effects. For the second scenario, we 

consider tree-type interaction effects. The last scenario includes polynomial interaction 

effects and we use degree 2 polynomials as basis functions for all methods. For each 

simulation scenario, we compare our proposed AD-learning using the group sparsity penalty 

with the following methods:

1. l1-PLS proposed by Qian and Murphy (2011) with basis (1, x, xA);

2. pairwise D-learning;

3. the decision list (DL) method proposed by Zhang et al. (2015);

4. adaptive contrast weighted learning (ACWL-1 and ACWL-2) methods proposed 

by Tao and Wang (2017);

5. the method of virtual twins (VT) proposed by Foster et al. (2011),

where we use degree 2 polynomials as basis functions for all methods in the last scenario. 

Additional simulation study results on AD-learning using the low rank sparsity penalty are 

included in the supplementary material. In addition, we also perform the comparison 

between group l1-PLS and l1-PLS in the supplementary material, which shows little 

differences between l1-PLS and group l1-PLS in our simulation studies. This confirms our 

appropriate use of l1-PLS instead of group l1-PLS unless there are some prior information 

about strong group sparsity structures.

All the tuning parameters are selected via 10-fold cross-validation. We report the value 

functions and misclassification errors for p = 40 on 10,000 independently generated test data 

in Table 1. From Table 1, we can see that our AD-learning has competitive performance 

among all methods. When we consider linear interaction effect, it is expected that our 

proposed AD-learning and l1-PLS perform the best compared with other methods. In 

particular, our method will potentially be better than l1-PLS because l1-PLS suffers the 

mismatch problem discussed previously. For the second simulation scenario that corresponds 

to simple tree-type interaction effect, while those tree-based methods such as VT, DL and 

ACWL perform well, our method is still competitive. Similar results for p = 20 are included 

in the supplementary material. An interesting observation for this scenario is that although 

VT has the largest empirical value function among all methods, its misclassification rate is 

similar to that of our proposed method when n = 400. One potential reason is that VT is 

focused on model fitting while our method directly targets on decision rules. For the last 

scenario, since the basis functions we used correctly identify the interaction effect, our 

proposed AD-learning and l1-PLS enjoy some advantages over other methods.

5.2. Study of Binary and Survival Outcomes

For the binary outcome R, the dataset is independently generated by the logistic regression 

model

logit P Ri = 1 = μ xi + ∑
k = 1

K
xiTβk I(A = k),
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where the link function logit(x) = log x
1 − x . We consider same interaction effects as the first 

two scenarios of the continuous outcome simulation study.

Since pairwise D-learning and ACWL are not intended for the binary outcome, after 

modifying the l1-PLS by using l1 penalized logistic regression (l1-PLR), we compare l1-

PLR, DL and VT with our AD-learning. Table 2 shows the value functions and 

misclassification rates for p = 40 and n = 400, 800. We can see that our proposed AD-

learning has largest value functions and lowest misclassification rates in both scenarios. 

Moreover, there are some mismatches in model-based methods such as l1-PLS, where the 

misclassification rates and the value functions are both high. One potential reason is the 

mismatch between the optimization criterion and the tuning procedure in l1-PLS. The other 

potential reason is the mismatch between minimizing prediction error and maximizing value 

function in model-based methods.

Next, we consider R to be the outcome of time to event. The simulated data are generated by 

the following model with the exponential distribution:

Ri = exp λi ,

where exp denotes the exponential distribution and λi = μ xi + ∑k = 1
K xiTβk I(A = k) for i = 

1, …, n. The censoring time Ci; i = 1, …, n, are generated from an exponential distribution 

with mean θ to induce around 25% censoring rate. We consider the same settings as those in 

the binary case. For comparisons, we apply the l1 penalized CPH models and compare it 

with AD-learning, since other methods we use previously are not designed for the survival 

outcome. From Table 3 with p = 40, we can see that our proposed AD-learning has clear 

advantages over l1-CPH. In addition, we also observe the mismatch phenomena of l1-CPH in 

Scenario 2 of Table 3.

5.3. Study of High-Dimensional Problems

We evaluate our AD-learning performance for high-dimensional settings. We consider the 

sample size n = 400 so that each treatment group has roughly 100 patients and number of 

covariates p = 800. Scenarios 1–2, 3–4, 5–6 correspond to continuous, binary, and survival 

outcomes, respectively. The interaction effects considered here are the same as the first two 

scenarios in the continuous setting in Section 5.1.

From Table 4, we can find that our proposed AD-learning performs better than l1-PLS. One 

of the possible reasons is that our proposed method tends to select right covariates for the 

interaction effect function due to the direct learning of the decision rule. An interesting 

observation is that although pairwise D-learning has the lowest misclassification rate in 

Scenario 2, its corresponding value function is the lowest. This mismatch comes from the 

potential sub-optimality of pairwise comparisons.
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6. Real Data Applications

In this section, we perform a real data analysis to further evaluate our proposed AD-learning. 

We consider a clinical trial dataset from “AIDS Clinical Trials Group (ACTG) 175” in 

Hammer et al. (1996) to study whether there is a subgroup of patients suitable for different 

combination treatments of AIDS. In this study, with equal probabilities, a total number of 

2139 patients with HIV infection were randomly assigned into four treatment groups: 

zidovudine (ZDV) monotherapy, ZDV combined with didanosine (ddI), ZDV combined with 

zalcitabine (ZAL), and ddI monotherapy.

We choose 12 baseline covariates in our model: age (year), weight(kg), CD4+T cells amount 

at baseline, CD8 amount at baseline, Karnofsky score (scale at 0–100), gender (1 = male, 0 

= female), race (1 = nonwhite, 0 = white), homosexual activity (1 = yes, 0 = no), history of 

intravenous drug use (1 = yes, 0 = no), symptomatic status (1 = symptomatic, 0 = 

symptomatic), antiretroviral history (1 = experienced, 0 = naive) and hemophilia (1 = yes, 0 

= no). The first five covariates are continuous and have been scaled before estimation. The 

remaining seven covariates are binary categorical variables.

We consider two outcomes for our analysis. The first outcome is the difference between the 

early stage (around 25 weeks) CD4+ T (cells/mm3) cell amount and the baseline CD4+ T 

cells prior to the trial. This was also studied in Lu et al. (2013) and Fan et al. (2017). Using 

this short-term outcome, our goal is to use AD-learning to find the short-term optimal ITR 

for each patient with AIDS among four treatment groups. We report the estimator of the 

coefficient wiTBT for each treatment in Table 5.

In Table 5, we can see that four covariates including Age, CD4 baseline, homosexual activity 

and history of drug use, are identified to play an important role in our estimated optimal 

ITRs. These variables were also identified in the previous literature such as Lu et al. (2013) 

and Fan et al. (2017). According to the analysis in Hammer et al. (1996), ZDV alone is 

inferior to the other treatments, which is also confirmed in our estimated ITR. Based on the 

CD4 change in the early stage, Zal treatment is generally not recommended in our finding 

with one possible reason that Zal has the most serious adverse event compared with ZDV 

and ddI (Kakuda 2000). According to our estimated ITRs, those old patients with small 

amount of CD4 T cell baseline and having history of drug use but not homosexual activity, 

are recommended to take ZDV + ddI. The patients with large amount of CD4 T cell baseline 

and history of homosexual activity but not drug use history, are more advisable to take ddI 

alone.

To evaluate the performance of our proposed AD-learning, we randomly split the data into 

five folds and use four folds to train the model. We evaluate our method on the remaining 

one fold of data based on the empirical value function. We repeat this procedure for 1000 

times. From Table 6, we can see our AD-learning has the largest value.

The second outcome is patients’ time to event. Using this long-term outcome, our second 

goal is to find the long-term optimal ITR for patients among four treatment groups. The 

AIDS data consist of 2139 patient time to event responses with around 75% censor rate 
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during the four-year long trial study. We use our proposed Model (23) to estimate the 

optimal ITR. We report the estimates of the coefficient wiTBT for each treatment of 12 

covariates in Table 7. We can see that all covariates, except the indicator of homosexual 

activity and symptomatic, play an important role in the estimated optimal ITR. It may not be 

surprising because it is a long-term study and thus more complicated. Since we model via 

the hazard function, the smaller the coefficient is, the longer the survival time is.

Compared with the previous finding based on the short-term CD4 T cells amount, covariates 

including age, CD4 baseline and history of drug use have the similar effect on the ZDV + 

ddI and ddI alone treatments. In addition, we also find that ZDV + Zal treatment may not be 

good to take for the female patients with hemophilia, but may be suitable for the male 

patients with high Karnosky score and history of drug use. The estimated optimal ITR for 

other treatments can be interpreted in the similar way. In general, ZDV alone is always the 

least preferable among other treatments for patients and ZDV+ddI is always preferable for 

patients. Based on time-to-event outcome, ZDV+ Zal is relatively more preferable than ddI 

alone. In addition, we evaluate our AD-learning with l1-CPH using the same scheme based 

on value functions. Our AD-learning has an average value of911.20,compared with the 

average value of 905.02 for l1-CPH.

7. Conclusion

In this article, we propose an AD-learning method to estimate the optimal ITRs in multiple 

treatment settings for various types of outcomes. Our proposed method provides a clear 

geometric interpretation about the relative effectiveness of treatments for patients, which is 

quantified by angles in the Euclidean space. Our proposed AD-learning is robust to model 

misspecification. By incorporating group or low rank sparsity, our AD-learning can further 

improve the estimation of decision rules and interpretation, especially for high dimensional 

settings. The competitive performance of our method has been demonstrated via the 

simulation studies and data applications.

Several possible extensions can be explored for future study. Our proposed method for the 

survival outcome is based on the noninformative censoring and Cox proportional hazard 

assumption. It will be interesting to develop methods for more complex settings. In order to 

use nonlinear functions to approximate f0(x), we can use different types of basis functions 

such polynomials or wavelet functions. It will be also interesting to develop kernel methods 

for our AD-learning, such as multiple kernel learning (Bach et al. (2004)). Finally, the 

current AD-learning focuses on a single decision point. It will be worthwhile to develop the 

corresponding methods for multiple decision points (Zhao et al. 2015a; Liu et al. 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Lemma 1

Let g(f) = E[ 1
π(A, x) (KRw − f(x))TΣ(KRw − f(x))]. Taking the derivative over f and setting it to 

zero, we get

∂g(f)
∂f = 2ΣEx E[( KRW

π(A, x) − f(x)
π(A, x) ) |x]

= 2ΣEx KE[ RW
π(A, x) |x] − f(x) |x] = 0.

Proof of Lemma 2

Let g(f) = E[ 1
π(A, x) ( K

K − 1R − wTf(x))
T

( K
K − 1R − wTf(x))]. Taking the derivative over f and 

setting it to zero, we get

∂g(f)
∂f = Ex E W ( KR

(K − 1)π(A, x) − W Tf(x)
π(A, x) ) |x

= Ex
K

K − 1E RW
π(A, x) |x] − K

K − 1f(x) |x = 0,

where the second equality holds because E[ W W T
π(A, x) |x] = K

K − 1IK − 1 by definition. Thus, f0(x) 

is an optimal solution.

Proof of Lemma 3

Let g(f) = E[− RwTf
π(A, x) +

log 1 + exp wTf
π(A, x) ]. Taking the derivative over f and setting it to zero, 

we get

∂g(f)
∂f = 2Ex E[ RW

π(A, x) −
W exp wTf

1 + exp wTf π(A, x)
|x]

= 2EX ∑
i = 1

K
wiP[R = 1|x, A = i] − ∑

i = 1

K
wi

exp wiTf

1 + exp wiTf
= 0.

If P[R = 1|x, A = i] =
exp wiTf *

1 + exp wiTf *
, then f* is an optimal solution to (18).
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Proof of Lemma 4

Let g(f) = E ∫0
τ logE[efTwI(Y ≥ u)]

π(A, x) − fTw
π(A, x)dN(u) . Taking the derivative over f and setting it to 

zero, we get

∂g(f)
∂f = Ex ∫0

τ ∑
i = 1

K
wiE I(Y ≥ u)λi(u, x) |x, A = i

−
wiexp wiTf I Y (i) ≥ u E[I(Y ≥ u)λ(u, x) |x]

E exp W Tf I(Y ≥ u)
du

= Ex ∫0
τ ∑

i = 1

K
wi E I(Y ≥ u)λi(u, x) |x, A = i

−exp wiTf Λ * Y (i) du
= 0,

where λi(u, x) is the hazard function for the i-th treatment and Λ*(Y) is the cumulative 

hazard function. Then, we get a sufficient condition that if 

exp wiTf Λ * Y (i) = P[δ = 1|x, A = i], then f* is an optimal solution. If the censoring time in 

each treatment group is the same, then we get (25).

Proof of Theorem 1

For any ITR d, we have
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V (d) = E ∑
k = 1

K
E[R |x, A = k]I(d(x) = k)

= E 1
1 − C(K){ ∑

k = 1

K
(1 − C(K))E[R |x, A = k I(d(x) = k)

+ ∑
j = 1

K
C(K)E[R |x, A = j]} − C(K)

1 − C(K) ∑
j = 1

K
E[R |x, A = j]]

= E 1
1 − C(K){ ∑

k = 1

K
E[R |x, A = k I(d(x) = k)

+ ∑
j = 1

K
C(K)E[R |x, A = j] ∑

i ≠ j

K
I(d(x) = i)}] − Δ

= E 1
1 − C(K){ ∑

k = 1

K
E[R |x, A = k I(d(x) = k)

+ ∑
i = 1

K
∑
j ≠ i

K
C(K)E[R |x, A = j]I(d(x) = i)}] − Δ

= E 1
1 − C(K) ∑

k = 1

K
(E[R |x, A = k]

+ ∑
j ≠ k

K
C(K)E[R |x, A = k] I(d(x) = k) − Δ

= E 1
1 − C(K){ ∑

k = 1

K
wk

TE RW
π(A, x) |x I(d(x) = k)} − Δ

= E 1
1 − C(K){ ∑

k = 1

K
wk

Tf0(x)I(d(x) = k)} − Δ,

(A1)

where Δ = E C(K)∑j = 1
K E[R |x, A = j]] that does not depend on the ITR d. Then we can 

obtain the value reduction bound between the optimal ITR d0 and our estimated ITR d by 

using (A1):
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V d0 − V (d)

≤ 1
1 − C(K)E[{ ∑

k = 1

K
wk

Tf0(x)(I(d(x) = k) − I(d(x) = k)}]

≤ 1
1 − C(K)E[{ ∑

i ≠ j
|wiTf0(x) − wjTf0(x)|I(d(x) = i, d(x) = j)}]

≤ 1
1 − C(K)E[{ ∑

i ≠ j
|wiTf0(x) − wjTf0(x)|I wiTf0(x)

−wjTf0(x))(wiTf(x) − wjTf(x) < 0)}]
≤ 1

1 − C(K)E[{ ∑
i ≠ j

|wiT(f0(x) − f(x)) − wjT(f0(x) − f(x))|

I(wiT(f0(x) − f(x))wjT(f0(x) − f(x)) < 0)}]
≤ 1

1 − C(K) ∑
i ≠ j

(E‖f0(x) − f(x)‖2 + E||f0(x) − f(x)‖2)

≤ 2K(K − 1)
1 − C(K) (E‖f0(x) − f(x)‖2

2)
1
2 ,

(A2)

where the second to last inequality holds by using the Hölder and Minkowski inequality 

together with ‖wi‖ = 1 for i = 1, …, K. Furthermore, if we assume Assumption 1 holds, then 

we can further bound the value reduction by

V d0 − V (d)

≤ 1
1 − C(K)E { ∑

i ≠ j
|wiTf0(x) − wjTf0(x)|I(wiTf0(x)

−wjTf0(x)(wiTf(x) − wjTf(x) < 0)}

≤ 1
1 − C(K)E { ∑

i ≠ j
ϵI(| wi − wj

Tf0(x)| < ϵ)I( wi − wj
T

f0(x) ( wi − wj
Tf(x)) < 0)}

+ 1
1 − C(K)ϵE { ∑

i ≠ j
(wiTf0(x) − wjTf0(x))2I( wi − wj

T

f0(x) ( wi − wj
Tf(x)) < 0)}

≤ 1
1 − C(K) ∑

i ≠ j
ϵP | wi − wj

Tf0(x) < ϵ + 2
ϵ (E‖f0(x) − f(x)‖2

2

+E‖f0(x) − f(x)‖2
2)

≤ 1
1 − C(K) ∑

i ≠ j
Cϵα + 1 + 4

ϵ E‖f0(x) − f(x)‖2
2),

(A3)

for any ϵ > 0. We can then minimize right-hand-side above over and get the desired bound

V d0 − V (dn) ≤ C1(K, α)(E‖f0 − fn‖2
2)

1 + α
2 + α .
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Proof of Theorem 2

Define βj = (βkj, k = 1, …, (K − 1))T, and let λ = σ (logp)1 + δ
n(K − 1) . With probability at least 

1 − (2elogp − e)c
(logp)1 + δ , we have the following inequality

1
n(K − 1)‖Z(β − β0)‖2 + λ‖β − β‖2, 1 ≤

≤ 1
n(K − 1)‖Z β − β0 ‖2 + 4λ ∑

j ∈ S(β)
‖β j − βj‖,

(A4)

for any β. This was previously shown in Theorem 5.2 by Lounici et al. (2009). Let β = β0. 

Then with probability at least 1 − (2elogp − e)c
(logp)1 + δ , we have

1
n(K − 1)‖Z(β − β0)‖2 ≤ 4λ ∑

j ∈ S(β)
‖βj − βj‖

≤ 4λ s‖(β − β)S‖

and

‖β − β‖2, 1 ≤ 4‖(β − β)S‖,

which implies ‖β − β‖Sc ≤ 3‖(β − β)S‖. Then by the RE(s) assumption, with probability at 

least 1 − (2elogp − e)c
(logp)1 + δ , we have

1
n(K − 1)‖Z(β − β0)‖2 ≤ 4λ s‖(β − β)S‖

≤ 4λ s
‖Z(β − β0)‖

ρ(s) n ,

such that we can bound the empirical error by

1
n‖Z(β − β0)‖2 ≤ 16(K − 1)

ρ(s) σ2s (logp)1 + δ
n .

With the RE(2s) assumption, we can further show that with the same probability

1
K − 1‖β − β0‖ ≤ 4 10

ρ2(2s)
σ s(logp)1 + δ

n .

Combining with Theorem 1, we get the value reduction bound
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V d0 − V (dn) ≤ K − 1K(K − 1)
1 − C(K)

4 10c
ρ2(2s)

σ s(logp)1 + δ
n .

Together with our margin condition, we can directly get the corresponding improved bound 

(31).
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Figure 1. 
Graphical illustration of the estimated ITR for a given patient in a three-treatment setting. 

Vertices A, B, and C represent 3 treatments. The estimated ITR of the patient has the least 

angle with treatment B which is thus more preferable than the other two treatments.
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Figure 2. 
Geometric interpretation of our least angle decision rule. When K = 3 or K = 4, the estimate 

f  has the smallest angle with treatment 1 so we recommend treatment 1 as the optimal 

treatment. When K = 2, we can see f  has the smallest angle with vector w2 and the optimal 

rule for this patient is treatment 2.
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Table 1.

Results of average means (standard deviations) of empirical value functions and misclassification rates for four 

continuous-outcome simulation scenarios with 40 covariates. The best value functions and misclassification 

rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

Pair-D 2.67(0.06) 0.49(0.02) 3.01(0.02) 0.32(0.02)

l1-PLS 3.05(0.04) 0.24(0.01) 3.15(0.01) 0.16(0.01)

DL 2.6(0.04) 0.54(0.01) 2.78(0.02) 0.47(0.01)

ACWL-1 2.69(0.05) 0.46(0.01) 2.9(0.02) 0.37(0.01)

ACWL-2 2.77(0.05) 0.43(0.01) 3.02(0.01) 0.31(0.01)

VT 2.66(0.03) 0.5(0.01) 2.81(0.02) 0.45(0.01)

Group-AD 3.06(0.05) 0.22(0.02) 3.14(0.03) 0.15(0.02)

Scenario 2

Pair-D 2.84(0.12) 0.32(0.04) 2.93(0.1) 0.3(0.03)

l1-PLS 2.93(0.11) 0.36(0.04) 3.01(0.1) 0.32(0.04)

DL 2.89(0.12) 0.34(0.04) 3.04(0.11) 0.28(0.04)

ACWL-1 2.76(0.11) 0.38(0.02) 2.96(0.11) 0.32(0.02)

ACWL-2 2.81(0.11) 0.38(0.02) 3.03(0.1) 0.29(0.03)

VT 3.07(0.09) 0.31(0.02) 3.12(0.1) 0.27(0.02)

Group-AD 2.97(0.1) 0.31(0.03) 2.97(0.1) 0.3(0.03)

Scenario 3

Pair-D 1.2(0.03) 0.75(0.03) 1.2(0.03) 0.75(0.03)

l1-PLS 1.42(0.18) 0.61(0.13) 1.58(0.22) 0.47(0.18)

DL 1.38(0.08) 0.64(0.06) 1.5(0.08) 0.57(0.06)

ACWL-1 1.29(0.08) 0.7(0.04) 1.49(0.07) 0.56(0.05)

ACWL-2 1.3(0.07) 0.69(0.04) 1.57(0.06) 0.51(0.05)

VT 1.39(0.05) 0.64(0.03) 1.44(0.04) 0.6(0.03)

Group-AD 1.57(0.14) 0.5(0.11) 1.76(0.04) 0.3(0.05)
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Table 2.

Results of average means (standard deviations) of empirical value functions and misclassification rates for two 

binary-outcome simulation scenarios with 40 covariates. The best value functions and misclassification rates 

are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

l1-PLR 0.88(0.01) 0.58(0.02) 0.91(0) 0.45(0.02)

DL 0.85(0.01) 0.67(0.01) 0.87(0.01) 0.61(0)

VT 0.84(0.01) 0.68(0.01) 0.84(0) 0.69(0)

Binary-AD 0.9(0.01) 0.44(0.02) 0.92(0) 0.32(0.02)

Scenario 2

l1-PLR 0.83(0.01) 0.66(0.05) 0.86(0) 0.61(0.05)

DL 0.81(0.01) 0.53(0.01) 0.85(0.01) 0.44(0.01)

VT 0.83(0.01) 0.43(0.01) 0.83(0.01) 0.51(0)

Binary-AD 0.86(0.01) 0.43(0.04) 0.87(0.01) 0.4(0.04)
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Table 3.

Results of average means (standard deviations) of empirical value functions and misclassification rates for two 

survival-outcome simulation scenarios with 40 covariates.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

l1-CPH 41.35(2.2) 0.33(0.04) 45.05(1.1) 0.21(0.02)

Surv-AD 43.91(1.3) 0.25(0.02) 45.56(1.06) 0.18(0.01)

Scenario 2

l1-CPH 21.95(0.63) 0.57(0.04) 23.21(0.59) 0.5(0.04)

Surv-AD 22.1(0.62) 0.46(0.02) 22.78(0.53) 0.44(0.02)

NOTE: The best value functions and misclassification rates are in bold.
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Table 4.

Results of average means (standard deviations) of empirical value functions and misclassification rates for six 

high-dimensional simulation scenarios.

Method Value Misclassification

Scenario 1 l1-PLS 5.3(0.02) 0.17(0.01)

Pair-D 4.51(0.14) 0.47(0.03)

Group-AD 5.31(0.04) 0.15(0.02)

Scenario 2 l1-PLS 5.64(0.03) 0.22(0.01)

Pair-D 5.51(0.02) 0.2(0.01)

Group-AD 5.65(0.04) 0.21(0.01)

Scenario 3 l1-PLR 0.88(0.02) 0.64(0.04)

Binary-AD 0.92(0.02) 0.46(0.06)

Scenario 4 l1-PLR 0.84(0.01) 0.7(0.02)

Binary-AD 0.87(0.01) 0.45(0.03)

Scenario 5 l1-CPH 771.35(126.2) 0.41(0.09)

Surv-AD 1004.57(40.19) 0.2(0.02)

Scenario 6 l1-CPH 150.87(7.71) 0.63(0.02)

Surv-AD 158.92(4.73) 0.45(0.02)

NOTE: The best value functions and misclassification rates are in bold.
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Table 5.

Results of coefficients estimation for comparison functions.

Variable Name (1–7) ZDV ZDV+ddI ZDV+Zal ddI

Intercept −49.86 44.66 −3.53 8.73

Age −0.47 4.33 −3.34 −0.52

Weight 0 0 0 0

Karnofsky Score 0 0 0 0

CD4 baseline 3.58 −14.79 −14.78 9.46

Days preantiretroviral therapy 0 0 0 0

Hemophilia 0 0 0 0

Homosexual activity −0.28 −3.96 0.65 3.60

History of drug use −2.50 8.20 4.03 −9.74

Race 0 0 0 0

Gender 0 0 0 0

Antiretroviral history 0 0 0 0

Symptomatic indicator 0 0 0 0
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Table 7.

Results of coefficient estimation for survival time of failure.

Variable Name (1–7) ZDV ZDV+ddI ZDV+Zal ddI

Age 0.04 −0.11 0.04 0.03

Weight 0.11 0.02 0.02 −0.14

Karnofsky Score 0.06 0.03 −0.09 0.01

CD4 baseline −0.04 0.04 −0.00 0.00

Days preantiretroviral therapy 0.09 −0.07 −0.04 0.02

Hemophilia 0.05 −0.06 0.16 −0.15

Homosexual activity 0.00 0.00 0.00 0.00

History of drug use 0.04 −0.11 −0.12 0.18

Race 0.03 −0.04 0.01 0.01

Gender 0.31 −0.08 −0.16 −0.07

Antiretroviral history 0.17 −0.15 0.04 −0.06

Symptomatic Indicator 0.00 0.00 0.00 0.00
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