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Abstract

Summary: ipDMR is an R software tool for identification of differentially methylated regions (DMRs) using auto-
correlated P-values for individual CpGs from epigenome-wide association analysis using array or bisulfite sequenc-
ing data. It summarizes P-values for adjacent CpGs, identifies association peaks and then extends peaks to find
boundaries of DMRs. ipDMR uses BED format files as input and is easy to use. Simulations guided by real data found
that ipDMR outperformed current available methods and provided slightly higher true positive rates and much lower
false discovery rates.

Availability and implementation: ipDMR is available at https://bioconductor.org/packages/release/bioc/html/ENmix.
html.

Contact: taylor@niehs.nih.gov or niulg@ucmail.uc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is one of the most studied epigenetic markers,
which regulates gene expression by affecting the interactions be-
tween DNA and transcription-related proteins. Advanced high-
throughput array technologies and bisulfite sequencing have made
possible genome-wide profiling of DNA methylation levels in studies
with large numbers of samples. Although individual CpGs may have
weak association, there is growing evidence that spatially clustered
CpGs or ‘differentially methylated regions’ (DMRs) may have stron-
ger associations with disease (Ziller et al., 2013). In recent years,
there is increasing interest in methods that combine information
from adjacent CpGs to identify DMRs (Butcher and Beck, 2015;
Jaffe et al., 2012; Page et al., 2018; Pedersen et al., 2012; Peters
et al., 2015). We here introduce an efficient method to identify
DMR using interval P-values.

2 Materials and methods

ipDMR identifies DMRs based on user-provided association P-val-
ues for individual CpGs. It first calculates a P-value (see below for
detail) for each small interval, i.e. the interval bordered by two adja-
cent CpG within a user-specified value [default: 1000 base pair

(bp)]. Second, it performs the Benjamini–Hochberg (BH) procedure
on the interval P-values to select those significant intervals at a user-
specified false discovery rate (FDR) threshold (seed threshold). It
then joins all nearby significant intervals and CpGs if the gap (the
number of bps between two intervals/CpGs) is less than the user-
specified value (default: 1000 bp). Next, it recalculates P-values for
each combined region using the original P-values for all CpGs in
that region. Finally, it performs another BH procedure on these re-
gion P-values to obtain the FDR-adjusted P-values.

The P-value for an interval/region that contains n CpGs is calcu-
lated as
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where pi is the original P-value for CpG i in the interval/region, U is
the cumulative distribution function for the standard normal distri-

bution, q̂ ij is the estimated correlation between U�1 pið Þ and U�1 pjð Þ.
Here, we assume under the null hypothesis that

U�1 p1ð Þ; U�1 p2ð Þ; � � � ; U�1 pnð Þ
� �0

follows a multivariate normal

distribution with a zero mean vector and covariance matrix qijð Þn�n
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with qii ¼ 1 (1 � i � n). Therefore, under the null hypothesis,Pn
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q follows a standard normal distribution.

P-value correlations between CpGs (q̂ijÞ are estimated using all
possible CpG pairs with distance less than a user-specified cutoff
(default: 1000 bp). We first divide these CpG pairs into bins accord-
ing to a user-specified bin size (default: 50 bp). Then for each bin,
we calculate and test the Pearson correlation between the U�1-trans-
formed P-values of the CpG pairs. For two CpGs with distance d,
the estimated correlation q̂ ij is the Pearson correlation for the corre-
sponding bin that include the distance d. If d is greater than the
user-specified distance cutoff or the correlation test P-value for a
specific bin is greater than 0.05, we set q̂ ij ¼ 0. See Supplementary
Materials for an example of the calculation.

We implemented the method into the ENmix R package with
function name ‘ipDMR’. As with comb-p software (Pedersen et al.,
2012), ipDMR uses BED format P-value files as input. The function
can also generate Manhattan plots that mark DMRs and regional P-
value plots that provide detailed views of significant DMR regions.
Previous studies comparing DMR methods have reported that
comb-p is one of the most effective methods (Mallik et al., 2019;
Peters et al., 2015). However, comb-p was originally written in py-
thon and is not convenient for R users. To facilitate its use in R, we
implement a similar method that we make available in the ENmix R
package with the function name ‘combp’. In order to distinguish
results of the python implementation of comb-p in this publication,
we term the R implementation as ‘ENmix-combp’. The original
comb-p software used the Stouffer–Liptak–Kechris method to com-
bine P-values. To improve computation efficiency, the Enmix-
combp function uses the region P-value formula as described earlier
for ipDMR.

3 Evaluation

Several studies showed that reproducibility can greatly affect study
power for specific CpGs (Sugden et al., 2020). To accommodate
these, we performed simulations guided by a blood DNA
Methylation 450K dataset for 128 duplicate samples (Xu et al.,
2020). We first calculated DNA methylation mean beta values,
within-subject variation and between-subject variation for each
CpG. Within-subject variation reflects technical variation, and
between-subject variation reflects biological variation. Pearson’s
correlation coefficients were calculated between each pair of adja-
cent CpGs. Based on Illumina annotation of CpG islands (island,
shore, shelf and other) and genomic locations (Exon, 3UTR, 5UTR,
Body TSS1500 and other), we parsed all CpGs into 168 671 groups,
with an average of 2.7 (range of 1–240) CpGs per group. In each
simulation, we randomly selected 20 groups as true DMR regions.
For each CpG within these regions, we assigned a true effect size
equal to 2/3 of its biological (between subject) standard deviation.
We simulated DNA methylation data [458 178 CpGs, low quality
CpGs were removed as previously described in Xu et al. (2020)] for
100 cases and 100 controls. The simulated data have the same data
properties as the real dataset for the following characteristics: mean
DNA methylation distribution, CpG to CpG auto-correlation, with-
in- and between-subject variation. Because different CpGs have dif-
ferent variance profiles, particularly different relative magnitudes
for within- and between-subject variation, the observed effects at
true DMRs are also widely different from CpG to CpG. We tested
methylation differences for each CpG between cases and controls
using the limma method, and the resulting P-values for individual
CpGs were then used to detect DMRs with different methods
(ipDMR, comb-p and ENmix-combp) using different parameter
configurations. We performed 100 round of simulations and sum-
marized the results in Table 1. In all tests, we set 1000 bp as the
maximum distance to combine adjacent DMRs and use true positive
rate (TPR) and FDR (see Supplementary Results for the definition
and examples) to evaluate the effects of various combinations of the
seed threshold and bin size (termed as ‘steps’ in comb-p software).

As shown in Table 1, both comb-p and ENmix-combp are very sen-
sitive to bin size: when bin size is larger, both TP and FD are larger.

The overall performance of comb-p is similar to ENmix-combp for
the same parameter configuration. The ipDMR is robust to bin size,

and outperformed comb-p and ENmix-combp in all four different
parameter configurations with higher TPR and lower FDR.
Applications in a real dataset are demonstrated in Supplementary

Materials.

4 Discussion

The ipDMR is an efficient method to identify DMRs. Compared to

comb-p using realistic simulation data, ipDMR has a slightly higher
rate for finding true positive DMRs and much lower rate for false
DMRs. Although our evaluations here are limited to 450K data, our

method should apply equally well to 850K array and bisulfite
sequencing data. Compared to comb-p and several other DMR tools

(Jaffe et al., 2012; Pedersen et al., 2012; Peters et al., 2015), ipDMR
is easier to use and requires the specification of fewer tuning param-
eters. Our simulations suggest that ipDMR is robust to most param-

eter specifications except for seed threshold, which provides user-
control sensitivity level. Comb-p requires calculation of smoothed

P-value with a user-specified bin size, while ipDMR uses interval P-
values to identify DMRs, and thus the computation is more efficient.
For example, while it only takes 10 s for ipDMR to infer DMRs in a

set of P-values from 450 K array data with one CUP core, it takes 69
and 44 s, respectively, for comb-p and ENmix-combp with parallel
computing using 22 CUP cores. We should note that all these meth-

ods are exploratory tools. Although they can identify robust statis-
tical DMRs, their biological interpretation should be weighted by

whether they co-locate with tissue-relevant functional epigenomic
loci.
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