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Abstract

X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder affecting

the adrenal glands, testes, spinal cord and brain. The disease is caused by muta-

tions in the ABCD1 gene resulting in a defect in peroxisomal degradation of very

long-chain fatty acids and their accumulation in plasma and tissues. Males with

ALD have a near 100% life-time risk to develop myelopathy. The life-time preva-

lence to develop progressive cerebral white matter lesions (known as cerebral

ALD) is about 60%. Adrenal insufficiency occurs in about 80% of male patients.

In adulthood, 80% of women with ALD also develop myelopathy, but adrenal

insufficiency or cerebral ALD are very rare. The complex clinical presentation

and the absence of a genotype-phenotype correlation are complicating our

understanding of the disease. In an attempt to understand the pathophysiology

of ALD various model systems have been developed. While these model systems

share the basic genetics and biochemistry of ALD they fail to fully recapitulate

the complex neurodegenerative etiology of ALD. Each model system recapitu-

lates certain aspects of the disorder. This exposes the complexity of ALD and

therefore the challenge to create a comprehensive model system to fully under-

stand ALD. In this review, we provide an overview of the different ALD model-

ing strategies from single-celled to multicellular organisms and from in vitro to

in vivo approaches, and introduce how emerging iPSC-derived technologies

could improve the understanding of this highly complex disorder.
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1 | MODEL SYSTEMS ARE
ESSENTIAL FOR PRECLINICAL
RESEARCH

X-linked adrenoleukodystrophy (ALD; OMIM: 300100) is
the most common peroxisomal neurometabolic disorder
characterized by a spectrum of symptoms and defined by
mutations in the ABCD1 gene.1 Nearly all men and ~80%
of women develop slowly progressive spinal cord disease
known as adrenomyeloneuropathy (AMN). In men, fea-
tures range from adrenal insufficiency to progressive
inflammatory cerebral demyelination (cerebral ALD),
which are very rare findings among women with ALD.1,2

Moreover, given that monozygotic twins can have a
disconcordant disease course, a combination of rare
genetic modifiers, epigenetic, and environmental factors
have been hypothesized to impact the disease outcome.3,4

The complex clinical presentation and the absence of a
genotype-phenotype correlation are complicating our
understanding of the disease.

Model systems have been extensively employed in an
attempt to understand the pathophysiology of ALD
(Table 1). Truncation of the ABCD1 gene has been the
most used strategy to experimentally model ALD. in vitro
studies provided us the majority of knowledge on ABCD1
biochemistry and function, but obviously come with limi-
tations when trying to understand a neurological dys-
function. In addition, the creation of animal knockout
models of the human ABCD1 ortholog has advanced our
insights into disease mechanisms. However, animal
models also failed to fully recapitulate the complex neu-
rodegenerative etiology of ALD. Recently, the ALD field
has begun to explore the potentials of induced

pluripotent stem cell (iPSC)-based modeling approaches.
The first patient iPSC studies presented biochemical hall-
marks of ALD in disease-relevant cell types of the ner-
vous system.5,6

Each model system recapitulates certain aspects of
the disorder. This exposes the complexity of ALD and
therefore the challenge to create a comprehensive model
system to fully understand ALD. In this review, we pro-
vide an overview of the different ALD modeling strategies
from single-celled to multicellular organisms and from
in vitro to in vivo approaches, and introduce how emerg-
ing iPSC-derived technologies could improve the under-
standing of this disorder.

2 | BIOCHEMICAL INSIGHTS ON
ABCD1 FUNCTION FROM
UNICELLULAR MODELS

Elevated levels of very long-chain fatty acids (VLCFA,
≥C22:0) in plasma and tissues represent the biochemical
signature of ALD.7 Elevated levels of VLCFA were first
demonstrated in fibroblasts from ALD patients. The postu-
lation that a defect in VLCFA metabolism is central to the

TABLE 1 A summary of the main findings of the model systems used to study ALD

Model system Gene Protein Main findings

Fibroblasts ABCD1 ABCD1 Impaired β-oxidation and accumulation of VLCFA

Yeast pxa1 and pxa2 Pxa1p and Pxa2p Impaired β-oxidation and accumulation of VLCFA

C. elegans pmp-4 PMP-4 Motor defects, axonal damage, VLCFA accumulation, and
impaired mitochondrial redox

Drosophila dABCD dABCD Retina neurodegeneration

Zebrafish abcd1 Abcd1 Motor defects, developmental deficiencies in olig2+ progenitors
of oligodendrocyte and motor neuron, VLCFA, and cholesterol
accumulation

Mouse Abcd1 ABCD1 Late onset axonopathy, motor defects, elevated levels of VLCFA
in tissues, and decreased VLCFA β-oxidation capacity

Chimpanzee ABCD1 ABCD1 Cerebral leukodystrophy and elevated VLCFA plasma levels

Human iPSCs ABCD1 ABCD1 Elevated VLCFA levels of iPSC-derived oligodendrocytes,
astrocytes, and neurons from AMN and cerebral ALD patients

Arabidopsis thaliana At_ABCD1 At_ABCD1 Seedling deficiencies in the absence of sucrose and accumulation
of fatty acyl CoAs

SYNOPSIS

This review describes the advantages and limita-
tions of currently available ALD models and
anticipates the impact of iPSC technology on
future models.
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pathogenesis of ALD was confirmed by the demonstration
that fibroblasts from ALD patients have a reduced capacity
to degrade VLCFA.8 In addition, the finding that degrada-
tion of C16:0, which is a substrate for mitochondrial β-oxi-
dation, was completely normal in ALD cells suggested that
VLCFA breakdown involves a specific metabolic pathway
that is distinct from long-chain fatty acids (LCFAs).9 This
notion was supported by the findings that VLCFA
β-oxidation was also deficient in fibroblasts of patients
with the peroxisome biogenesis disorder Zellweger syn-
drome.10 The final demonstration that ALD is a peroxi-
somal disease came from the identification of pathogenic
mutations in the ABCD1 gene.11 Indeed, retroviral-
mediated transfer of the ABCD1 cDNA in ALD fibroblasts
corrected VLCFA β-oxidation to normal levels.12 Thus,
ALD is a peroxisomal disorder identified by mutations in
ABCD1, which encodes for the peroxisomal ATP-binding
cassette sub-family D member 1 (ABCD1), and is biochem-
ically characterized by high VLCFA levels.

Initial insights into ABCD1 function came from stud-
ies in yeast. Deletions in the yeast orthologs of the
human ABCD transporters, that is, Pxa1p and Pxa2p,
disrupted the import of LCFAs into peroxisomes, and
subsequently their β-oxidation.13 Owing to the high simi-
larity between ABCD1 and the yeast ABC transporters,
together with the common biochemical deficiencies in
the β-oxidation of fatty acids, Hettema and colleagues
suggested that ABCD1 might be involved in the uptake of
VLCFAs into the human peroxisomes.13 In agreement
with these findings, expression of human ABCD1 in the
pxa1/pxa2Δ double mutant partially restored decreased
β-oxidation activity levels. This provided the first evi-
dence that homodimeric ABCD1 may indeed transports
VLCFA into the peroxisomes. Due to technical chal-
lenges, it still took >15 years before it was demonstrated
that ABCD1 transports VLCFA, as their CoA esters,
across the peroxisomal membrane.14 Using purified per-
oxisomes from ALD patient fibroblasts, Wiesinger et al
demonstrated that β-oxidation of VLCFacyl-CoA esters
directly depends on ABCD1.15 Together, these findings
confirmed the function of ABCD1 in VLCFA metabolism
and established that ABCD1 is an integral peroxisomal
membrane transporter that shuttles VLCFA CoA-esters
into the peroxisome for β-oxidation.

In addition to ABCD1, the peroxisomal membrane
harbors two additional ABC transporters: the
adrenoleukodystrophy-related protein (ALDPR/
ABCD2)16 and the 70 kDa peroxisomal membrane pro-
tein (PMP70/ABCD3).17 Yeast pxa1/pxa2Δ proved to be
useful in identifying the substrate that is specific for the
human ABCD transporters. The saturated fatty acids
C24:0 and C26:0 are preferentially imported by ABCD1,18

while polyunsaturated fatty acids are transported by

ABCD2,18 and dicarboxylic acids by ABCD3.19 Interest-
ingly, overexpression studies showed that ABCD1,
ABCD2, and ABCD3 can have overlapping substrate
functions, although each transporter presents distinctive
substrate preferences under normal physiological condi-
tions.18,19 Substrate specificity also plays a role in the case
of the fatty acids elongases. Expression of the seven
human ELOVL enzymes in yeast revealed ELOVL1 as
the single elongase that catalyzes the synthesis of both
saturated VLCFA (C26:0) and monounsaturated VLCFA
(C26:1) in humans.20 Expression of ELOVL1 is not
increased in ALD patient fibroblasts, indicating that elon-
gation of VLCFAs is increased in ALD patients due to
elevated substrate availability.20,21 Moreover, deuterium
tracing of newly synthesized VLCFA in ALD fibroblast
cultures demonstrated that the elongated fatty acids are
incorporated into complex lipids.21 Therefore, the pri-
mary deficiency of ABCD1 results in accumulated cyto-
solic VLCFA-CoA levels, which are substrate for further
chain lengthening by ELOVL1. These fatty acids are
incorporated into complex lipids.

The peroxisomal ABCD proteins are half-transporters
that have to dimerize to form a functional unit. Early stud-
ies using the yeast two-hybrid system revealed that the
carboxyl-terminal halves of ABCD1-3 transporters can
homo- as well as heterodimerize.22 By co-immuno-
precipitation and FRET analyses, the presence of both
homo- and heterodimeric structures was confirmed.23,24

Functionality of homodimers is further supported as
expression of each ABCD1-3 alone restored β-oxidation
levels in pxa1/pxa2Δ mutants.14,19 Chimeric expression of
homo- and heterodimers in pxa1/pxa2Δ yeast mutants
showed that both are functional conformations.25 More-
over, their expression in primary fibroblasts from ALD
patients partially reduced VLCFA levels.25 Noteworthy, a
recent characterization of the quaternary structure rev-
ealed the existence of ABCD1 and ABCD2 as tetramers in
the peroxisomal membrane, mainly as homotetramers.26

However, the functional significance of these heterodimers
remains unknown. Overall, the peroxisomal transporter
ABCD1 has been shown to preferentially function as a
homodimer in vivo. Whether the heterodimers that are
formed in vitro also occur in vivo has yet to be proven.

3 | MULTICELLULAR ORGANISMS
MODELING OF ALD

A great diversity of animal models have been generated
in an effort to understand how deficiencies in peroxi-
somal transport of fatty acids and subsequent accumula-
tion contribute to the axonal loss and demyelination seen
in ALD patients.

546 MONTORO ET AL.



4 | MITOCHONDRIAL
COMPENSATION IN
CAENORHABDITIS ELEGANS

Recently, a nematode model of ALD has been developed
by mutating the peroxisomal membrane protein pmp-4,
which is the Caenorhabditis elegans ortholog of the mam-
malian ABCD transporters ABCD1 and ABCD2.27 Defi-
ciencies in PMP-4 lead to VLCFA accumulation,
impaired mitochondrial redox homeostasis, and motor
behavior defects associated with axonal damage.27 In line
with other peroxisomal mutants, pmp-4 worms presented
increased total numbers of lipid droplets with a diameter
>5 μm. During starvation the main fuel comes from lipid
degradation. However, fasted pmp-4 worms were unable
to make use of their lipid reserves. Intriguingly, mito-
chondrial antioxidant treatment normalized the lipid
droplet amount and size. This scenario uncovers the pos-
sibility that mitochondria may compensate peroxisomal
impairment and degrade lipid droplet-derived fatty acids.
Additional studies are needed to reveal the impact on
axonal degeneration by the proposed axis between the
loss of peroxisomal function, lipid droplet accumulation,
and mitochondrial redox imbalance.

5 | RETINA
NEURODEGENERATION IN
DROSOPHILA

A variety of drosophila models have been developed to
study VLCFA metabolism. Disruption of the drosophila
orthologue of the human ABCD1, termed dABCD, results
in an age-dependent neurodegeneration specified by reti-
nal holes and pigment cell loss.28 Interestingly, cell type-
specific knockdown of dABCD revealed that retinal
defects are only seen when neuronal, but not glial
dABCD is targeted.28 This warrants further characteriza-
tion of the dABCD1 model.

Free fatty acids are, in general, metabolically inactive.
To be transported by ABCD1 into the peroxisome,
VLCFAs have to be thioesterified to coenzyme A
(VLCFA-CoA) by acyl-CoA synthetases.29 Bubblegum
(bgm) and double bubble (dbb) have been identified as the
long- and very-long-chain acyl-CoA synthetases in Dro-
sophila.30,31 Increased VLCFA levels are present in bgm/
dbb double mutant flies, but not in the single mutants.
Bgm and dbb single mutants show laminal and retinal
degeneration, thinning, and irregularity of the fenes-
trated membrane, and decreased locomotion. A diet rich
in the medium-chain fatty acids significantly reduced the
retinal defects in bgm and dbb mutants.28 Meanwhile,
supplementation by LCFAs did not worsen the

phenotype, which supports the idea proposed by Gordon
et al28 that neurodegeneration results from lack of
VLCFA metabolic products.

Once inside the peroxisome, acyl-CoA oxidase 1
(ACOX1) is the rate-limiting enzyme for the β-oxidation
of VLCFA-CoA esters.32 In drosophila, dACOX1 is highly
expressed in glia, including perineural glia and wrapping
glia, while poorly expressed in neurons.33 Loss of
dACOX1 leads to lifespan reduction, increased VLCFA
levels, retina degeneration, reduced motor skills, and fail-
ure of wrapping glia to ensheath axons that consequently
leads to axonal loss. Pharmacological treatment of
dACOX1-deficient flies with bezafibrate, which directly
inhibits C26:0 synthesis through a direct inhibition of
ELOVL1,34,35 suppressed lethality, improved locomotion,
and ameliorated the synaptic transmission and integra-
tion in the retina. Surprisingly, a much higher dose was
needed to reduce C26:0 levels in fibroblasts compared to
the dose required to observe an effect in flies.34 Accord-
ingly, knockdown of dELOVL1 by RNAi led to the same
phenotype improvements.33 Together, these findings pro-
vide strong support for the hypothesis that elevated levels
of VLCFAs in glia promotes neurodegeneration.

On the other hand, dACOX1 gain-of-function in lar-
vae results in increased levels of reactive oxygen species
(ROS) and lethality, which can be overcome by treatment
with antioxidant, N-acetyl cysteine amide (NACA).33

Tissue-specific dACOX1 gain-of-function determined that
the glial- and wrapping glia-specific drivers impact viabil-
ity most. Also, dACOX1 gain-of-function in wrapping glia
causes locomotion defects that can be rescued by treat-
ment with catalase, including normalization of ROS
levels. In rat, overexpression of ACOX1 and its gain-of-
function caused Schwann cell death, which is reversed by
treatment with NACA.33 ACOX1 was shown to be pre-
sent in myelinating Schwann cells but not in the axons
they ensheath. Noteworthy, a patient carrying the
ACOX1 gain-of-function variant showed severe demyelin-
ation, loss of Schwann cells, and neurodegeneration.33

These insights in dABCD1 led to the following ques-
tions: Do dABCD1 mutants also accumulate VLCFAs?
What is the expression pattern of dABCD1? How is wrap-
ping glia affected in dABCD1mutants?

6 | A DEVELOPMENTAL VIEW OF
ALD FROM ZEBRAFISH

Zebrafish abcd1 mutants present severely disrupted
development of the CNS and the interrenal organ, the
zebrafish homolog of the mammalian adrenal glands.
Importantly, abcd1 mutants display elevated VLCFA
levels, cholesterol accumulation, and motor
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impairments.36,37 Gene expression analysis revealed that
olig2+ oligodendrocyte progenitor cells (OPCs) in the
developing brain and spinal cord express abcd1. Accord-
ingly, abcd1-deficient OPCs have a profound effect on
myelin development and oligodendrocyte generation, as
shown by reduced expression of the myelin protein pro-
teolipid protein 1a (plp1a), a decreased percentage of
myelinated axons in the spinal cord, and an incorrect pat-
terning of OPCs.37 Although there was an increase in
apoptosis in the mutant brains, programmed cell death
was not specific to OPCs. Interestingly, expression of
human ABCD1 under sox10 promoter reduced apoptosis,
rescued the deficient numbers and affected patterning of
OPCs, and improved locomotion behavior. Given that in
addition to oligodendrocytes, olig2+ progenitors also give
rise to motor neurons,38 follow up studies on this ALD
model could determine the impact of abcd1 defects on
motor neuron development and function.

These findings drawn from zebrafish suggest that
there might be an underlying developmental component
of the neurodegenerative disorder. In a developmental
view of ALD depicted by zebrafish modeling, deficiencies
in the progenitor pool of oligodendrocytes and motor
neurons in early development would lead to an increased
susceptibility to develop cerebral demyelination or neu-
rodegeneration later in life.

7 | MOUSE MODELS PRESENT
NEURONAL AND GLIAL
INVOLVEMENT

In 1997, three independent laboratories reported the gen-
eration of an ALD mouse model.39-41 All three models
were generated by gene targeting which completely
abolished ABCD1 protein expression. The ALD mouse
recapitulates the key biochemical features of ALD: fibro-
blasts generated from Abcd1 null mice have decreased
VLCFA β-oxidation capacity41 and tissues have elevated
levels of VLCFAs39-42 and lipid inclusions in adrenals,
but not in the CNS.39 Despite these key features, ALD
mice do not develop adrenal insufficiency43 or cerebral
ALD. Instead, ALD mice develop a late-onset axonopathy
and locomotor impairment at 20 months of age.44 ALD
mice develop an isolated spinal cord phenotype that
resembles the late onset seen in women with ALD.2,45

Already at 3.5 months of age, motor neurons of the spinal
cord display oxidative stress as well as oxidative,
glycoxidative, and lipoxidative damage to proteins.42

Excess amounts of VLCFA impair mitochondrial oxida-
tive phosphorylation (OXPHOS) and key enzymes of the
tricarboxylic acid (TCA) cycle in the spinal cord of Abcd1
null mice, but not in other tissues.46-48 This cascade of

redox imbalances originates from the combined effect of
increased mitochondrial ROS caused by the increased
levels of VLCFA,49 along with impairment of the
proteasome, autophagy, and antioxidant systems,50-53

which ultimately leads to axonal degeneration in the
Abcd1 null mouse. In the ALD mouse, oxidative stress is
associated with axonal degeneration as a combination of
the antioxidants α-tocopherol, N-acetylcysteine, and
α-lipoic acid ceased axonal damage, reversed locomotor
capabilities, and reduced elevated ROS.49 Furthermore,
this treatment prevented energetic dysfunction46 and res-
cued deficiencies in the protein homeostasis network.51,52

In a recent small phase II pilot open-label study,
13 patients with AMN received a combination of high-
dose α-tocopherol, N-acetylcysteine, and α-lipoic acid.
The primary outcome of the study was the validation of a
panel of oxidative damage and inflammation bio-
markers54 which normalized upon treatment. In addi-
tion, an improvement on the 6-minutes walk test was
reported in some patients justifying a larger placebo-
controlled trial in the future.

To model severe neurological manifestations of ALD,
Abcd1 null mice have been crossed to several other mice
carrying mutations that are considered possible modifier
genes for ALD (Table 2). Compared to single mutants,
double Abcd1/Abcd2 KO mice show a more severe AMN
phenotype accompanied by higher VLCFA accumulation
in the spinal cord and adrenal glands,55 locomotion
impairment at an earlier onset, greater levels of oxidative
damage in the spinal cord,56 and presence of inflamma-
tory infiltrates of T lymphocytes in the spinal cord.55 In
another effort to obtain a more relevant clinical pheno-
type, ELOVL1 was overexpressed in Abcd1y/− mice.57

While ELOVL1 overexpression revealed that

TABLE 2 Comparison between the main findings of the

double knockout mice and the ALD mouse

Genotype
Main findings in comparison to ALD
mouse model

Abcd1−/y/
Abcd2−/−

Higher VLCFA accumulation in the spinal
cord and adrenal glands, accelerated motor
defects and greater levels of oxidative
damage in the spinal cord

Abcd1−/y/
ELOVL1+/−

Higher VLCFA levels in brain and spinal cord

Abcd1−/y/
Vlcs−/−

Decreased VLCFA β-oxidation and similar
levels of VLCFA

Abcd1−/y/
Mag−/−

Increased myelin destabilization

Abcd1−/y/
Pex7−/−

Impaired biosynthesis of plasmalogens,
demyelination of CNS and PNS, increased
axonal loss, and reactive gliosis
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oligodendrocytes account for the majority of VLCFA syn-
thesis and degradation in brain, the Abcd1−/y/ELOVL1+/−

mice did not worsen the phenotype compared to the
Abcd1 null mice despite higher VLCFA levels.57 In the
opposed scenario, Abcd1/VLCS (very long-chain acyl-
CoA synthetase) double KO mice present decreased levels
of β-oxidation of VLCFA; however, such reduction did
not lead to increased VLCFA levels nor aggravated the
phenotype of the Abcd1 single-mutant.58 In addition, fur-
ther destabilization of myelin sheaths in Abcd1/Mag
(myelin-associated glycoprotein) double KO mice did not
trigger inflammatory demyelination, which indicates that
disruption of the Mag-mediated glia-axonal interactions
is not sufficient to trigger the neuroinflammation seen in
patients.59 Contrary to the mouse models described
above, additional defects in plasmalogen synthesis in
Abcd1/Pex7 double KO mice recapitulate the most severe
form of ALD, presenting inflammatory cerebral demye-
lination, together with axonal loss and reactive gliosis.60

The aforementioned different extra impairments on per-
oxisomal or related functions result, in some cases, in a
more pronounced phenotype that ultimately highlight
the importance of peroxisomes in several biological sys-
tems. Unfortunately, there are little, if any, follow up
studies on these ALD mouse models.

Peroxisomes have crucial roles in neural networks as
supported by several metabolic disorders presenting clear
disruptions in the nervous system.61 In agreement with
this, deletion of functional peroxisomes from all neural
cells in Nes-Pex5−/− mice caused affected neuronal migra-
tion in development and axonal degeneration in adult-
hood.62 Further, impairment of peroxisomal function in
neural- and astrocytic-specific Pex5−/− mice did not pro-
duce any major impact on neurological functioning.63

Strikingly, no peroxisomal metabolism in oligodendro-
cytes in CNPase-Pex5−/− mice resulted in axonopathy
throughout the central nervous system, leading to axonal
loss, demyelination and neuroinflammation in adult
mice. This study revealed a fundamental role for oligo-
dendrocytes in axonal pathology in ALD.64 Noteworthy,
oligodendrocytes account for the majority of VLCFA syn-
thesis and degradation of the brain.57,64 Given that ele-
vated VLCFA levels is the signature of virtually all
neurodegenerative peroxisomal disorders, these findings
suggest a prominent role for oligodendrocyte peroxisomal
metabolism to support axons.65

8 | CASE REPORT OF ALD IN A
CHIMPANZEE

In 2017, a case report described an 11-year-old male
chimpanzee with signs and symptoms resembling

childhood cerebral ALD, including occasional erratic
behavior, impaired vision, and difficulty swallowing.66

A brain MRI showed leukodystrophy with involvement
of the frontal lobes, the genu of the corpus callosum
and a relatively symmetric involvement of the bifrontal
periventricular white matter. In addition, there was
peripheral contrast enhancement which indicated active
demyelinating lesions similar to childhood cerebral
ALD. Compared to healthy chimpanzees, plasma
VLCFA levels of this male were highly elevated. DNA
analysis revealed a pathogenic missense mutation
(p.Arg554His) that has also been reported in 50 ALD
patients (https://adrenoleukodystrophy.info). At the
time of diagnosis the mother of the chimpanzee was
deceased already and there was no genomic DNA avail-
able to determine if this ABCD1 mutation was inherited
or de novo.

9 | MODELING ALD WITH
INDUCED PLURIPOTENT STEM
CELLS

Recent developments in differentiation protocols for
iPSCs enabled the generation of human cell types of dif-
ferent lineages. As consequence, iPSC-derived cultures
provide an in vitro platform to study disease-relevant cell
types that would otherwise not be accessible. In addition,
the differentiated cells maintain the genetic background
of the patient, which offers the opportunity to investigate
complex genetic disorders. These properties make iPSCs
attractive model systems with great potential to comple-
ment and expand our knowledge on ALD.

iPSC technology has begun to emerge in ALD
research. At the pluripotent stem cell stage, iPSC from
ALD patients do not accumulate VLCFA; however, a
study reported elevated levels of VLCFA in early passage
iPSC-derived from childhood cerebral ALD patients.6,67,68

Interestingly, undifferentiated iPSCs from ALD patients
showed dysregulated expression of genes involved in per-
oxisome abundance and neuroinflammation.68 In contrast
to iPSCs, iPSC-derived oligodendrocytes, astrocytes, and
neurons derived from AMN and cerebral ALD patients
showed elevated levels of VLCFA relative to healthy con-
trols.5,6 iPSC-derived oligodendrocytes derived from AMN
patients showed lower VLCFA levels than those derived
from cerebral ALD patients.5,6 In addition, generated oli-
godendrocytes and astrocytes presented higher saturated
VLCFA levels, with the latter also showing higher expres-
sion of inflammatory markers and a greater response to
cytokines.5 Despite the low number of cell lines included
in these studies, these iPSC-based findings are in line with
a human study that demonstrated a correlation between
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C26:0 levels in normal-appearing white matter and the
clinical phenotype.69

The brain microvascular endothelial cells (BMECs)
are a major cellular component of the brain-blood barrier
(BBB) responsible for its selective permeability.70 iPSCs
from childhood cerebral ALD patients differentiated to
BMECs presented decreased barrier integrity as seen by
decreased trans-endothelial electrical resistance. In addi-
tion, ALD BMECs accumulated more lipid droplets than
normal BMECs.71 In addition, transcriptome analysis
showed a decreased expression of genes involved in cell-
to-cell attachment and an increased expression of genes
related to inflammation. Although other BBB important
cell types like pericytes and astrocytes are missing in this
model, such leaky barrier would influence the develop-
ment of cerebral ALD, characterized by immune cells
infiltration in the CNS that accelerates the demyelination
process.

New differentiation approaches to generate more
advanced iPSC-derived models are evolving rapidly.
iPSCs from ALD patients have also been differentiated to
microglia cells and in 3D to cerebral organoids, yet the
focus of both studies was the generation of differentiation
protocols and the patient-derived produced cultures were
not characterized.72,73 Taken together, iPSC cultures have
the potential to elucidate disease mechanisms by their
ability to generate patient specific cell types that were
previously inaccessible.

10 | EVOLUTIONARY CONSERVED
MECHANISMS IN PLANTS

The Arabidopsis thaliana homolog of ABCD1, named
At_ABCD1 (alternative names are: CTS, PED3, PXA1,
ACN2), encodes a full-size peroxisomal transporter of
fatty acids.74-76 At_ABCD1 controls the shift between
dormancy and germination by promoting seed growth,
and it is involved in root development and fertility.76-80

Mutants lacking At_ABCD1 accumulate fatty acyl CoAs
and present seedling germination deficiencies in the
absence of sucrose.74-76 Interestingly, expression of
human ABCD1 and ABCD2 proteins in Arabidopsis
thaliana resulted in their correct peroxisomal localiza-
tion, which is mediated by At_PEX19.81 Moreover,
expression of human ABCD2 complemented the seed
germination deficit of At_ABCD1 mutants, but expres-
sion of either ABCD1 or ABCD2 failed to rescue seedling
establishment.81 Overall, these results support that the
process of peroxisomal targeting of proteins is evolution-
arily conserved, but suggest divergence in function
and/or substrate specificity for ABCD transporters among
plants and mammals.

11 | CONCLUDING REMARKS

In this review, we have discussed the multiple models
that have been generated to investigate ALD. This pleth-
ora of experimental models has advanced our under-
standing of the biochemical and cellular aspects
underlying this complex disorder. However, despite
extensive research, there has been no translation to the
clinic and it is still not known why some patients develop
the cerebral form of the disease or what is the role of
VLCFA accumulation in the pathogenesis of ALD.

Our progress might be hampered by limitations of
our current model systems. Even though some crucial
components of the disease can be modeled, until now
none of the model systems that have been developed can
recapitulate ALD entirely. Specifically, accumulation of
VLCFAs has been considered sufficient to label
ABCD1-deficient animals as valid models of ALD. How-
ever, animal models fail to develop cerebral white matter
degeneration, the most severe and distinctive feature of
the leukodystrophy. Still, each model develops different
phenotypes, all related to a specific feature of ALD and
associated with the same biochemical defect, which
leaves open the opportunity to study multiple aspects of
the disorder with the variety of model systems available.

ABCD1 deficiency impacts in one way or another the
nervous system of the various research models of ALD.
Although anecdotic, ABCD1 disruption resulted in cere-
bral ALD in chimpanzee, a nonhuman primate highly
representing the clinical neurological phenotype and dis-
ease pathophysiology. Therefore, iPSC-derived cultures,
more specifically cerebral organoids, from cerebral ALD
patients might provide the missing insights to further
understand the neurobiology underlying ALD. The
assortment of ALD model systems from uni- to mul-
ticellular organisms and from in vitro to in vivo
approaches has provided, but will also yield new insights
and directions for future studies to understand ALD.
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