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Abstract

The spectral computed tomography (CT) has huge advantages by providing accurate material 

information. Unfortunately, due to the instability or overdetermination of material decomposition 

model, the accuracy of material decomposition can be compromised in practice. Very recently, the 

dictionary learning based image-domain material decomposition (DLIMD) can obtain high 

accuracy for material decompositions from reconstructed spectral CT images. This method can 

explore the correlation of material components to some extent by training a unified dictionary 

from all material images. In addition, the dictionary learning based prior as a penalty is applied on 

material components independently, and many parameters would be carefully elaborated in 

practice. Because the concentration of contrast agent in clinical applications is low, it can result in 

data inconsistency for dictionary based representation during the iteration process. To avoid the 

aforementioned limitations and further improve the accuracy of materials, we first construct a 

generalized dictionary learning based image-domain material decomposition (GDLIMD) model. 

Then, the material tensor image is unfolded along the mode-1 to enhance the correlation of 

different materials. Finally, to avoid the data inconsistency of low iodine contrast, a normalization 

strategy is employed. Both physical phantom and tissue-synthetic phantom experiments 
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demonstrate the proposed GDLIMD method outperforms the DLIMD and direct inversion (DI) 

methods.

Keywords

spectral computed tomography; image-domain; material decomposition; dictionary learning; 
tensor unfolding

I. Introduction

The spectral CT system usually employs a photon counting detector (PCD) to collect 

projections of several (greater than two) energy bins/channels and then reconstructs the 

channel-wise spectral CT images by utilizing image reconstruction techniques [1]. The huge 

merits of spectral CT is that it can provide quantitative analysis and distribution of materials 

for some specific applications, such as differentiating small (≤30mm) hepatic hemangioma 

(HH) from small hepatocellular carcinoma (HCC) [2], focal liver lesions characterization[3] 

and left ventricular thrombus diagnosis [4]. Indeed, spectral CT equipped with the PCD can 

improve the signal-to-noise ratio (SNR) of measurements by counting the number and 

energy of received photons in theory. However, in fact, due to spectral distortions (e.g. 

fluorescence x-ray effects, charge sharing, K-escape, pulse pileups), the spectral CT 

projection datasets are corrupted by complicated noises [5] which compromise the final 

accuracy of material decomposition. How to achieve high precision of material information 

is one challenge for spectral CT in clinical applications.

To improve the decomposed material accuracy, it is of great significance to develop 

advanced material decomposition methods. Regarding the material decomposition methods, 

they can be divided into two classes: direct and indirect methods [6]. Although the direct-

type algorithms can directly achieve material images from multi-energy projections [7, 8] by 

employing a known x-ray source spectrum, the used x-ray spectrum depends on many 

factors, such as scatter radiation, detector response, and so on [9]. Furthermore, it is a 

challenge to model and estimate x-ray spectrum in practice [10, 11]. Although the 

regularization priors (i.e., total variation (TV) [12, 13]) have been employed to suppress 

noise to some extent by penalizing material maps independently, the material decomposition 

results are still not satisfactory and they need further improvement.

The indirect decomposition techniques can further be divided into projection-based and 

image-based methods [14]. For the former, the raw measurements can be separated into 

several specific material projections and then image reconstruction algorithms are applied on 

single material projections [15, 16]. In this model, the noise can be magnified by 

decomposing measurements into several single material projections, and the accuracy of 

decomposed materials can be compromised. The image-based methods can be summarized 

as two procedures: image reconstruction and material decomposition. To obtain high quality 

spectral CT images from noise-corrupted projections, numerous iterative-based image 

reconstruction models were proposed. For examples, total variation (TV) constraint was 

imposed on each energy channel [17]. The Local HighlY constrained backPRojection 

Reconstruction (HYPR‐LR) [18] was proposed to exploit data redundancies in the energy 
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domain. The tight frame sparsity was extended to low-dose spectral breast computed 

tomography (CT) [19]. The patch-based low-rank reconstruction model was established for 

sparse-view projections [20]. The prior rank, intensity and sparsity model (PRISM) was 

proposed to characterize the low-rank and sparsity of spectral CT [21]. In 2016, the prior 

image constraint compressed sensing was employed to realize spectral CT reconstruction 

(SPICCS)[22]. Similar to hyperspectral image [23, 24], the images from different energy 

bins share similar structures . Thus, the tensor dictionary learning (TDL) [25] –based 

reconstruction model was also proposed. To improve the performance of TDL in low-dose 

case, the image gradient L0-norm was incorporated into TDL and generated the L0TDL 

method [26]. Incorporating the high quality averaged image, the average-image-incorporated 

block-matching and 3D (aiiBM3D) filtering method was proposed [27]. Furthermore, with 

nonlocal similarities of spectral CT images, the sparse matrix decomposition [28], spatial-

spectral cube matching frame (SSCMF) [29], non-local spectral similarity (MECT-NSS) 

[30] and non-local low-rank cube-based tensor factorization (NLCTF) were also proposed 

[31] Recently, the total image constrained diffusion tensor (TICDT) was developed for 

multi-energy reconstruction [32] and so on [33, 34].

The aforementioned images reconstruction techniques are mainly focusing on improving 

image reconstruction quality. Although the high reconstruction quality can benefit material 

decomposition accuracy to some extent for X-ray imaging [8, 25], the final accuracy may be 

limited by image quality improvement. Aiming at the 2nd step of image-domain material 

decomposition, numerous iterative image-domain material decomposition (IID-MD) 

methods were proposed [35-38]. However, the conventional IID-MD methods are mainly 

focusing on the dual-energy CT (DECT, a simple spectral CT prototype). For examples, Niu 

et al. proposed an iterative material decomposition method using full variance-covariance 

matrix of material components for DECT, and the quadratic smoothness penalty function 

was later introduced to improve the accuracy of decomposed materials [39]. Then, the 

models of edge-preserving with non-local mean [37], spectral diffusion[40], nonlinear 

decomposition [41], penalized weighted least-square with similarity-based regularization 

(PWLS-SBR)[42], entropy minimization[43], average image-induced non-local mean [44], 

data-driven sparsity [8], multiscale penalized weighted least-squares [45], fully 

convolutional network [46], PWLS-TNV-ℓ0 [47] and so on were proposed. However, the 

aforementioned methods are mainly designed to implement material decomposition for 

DECT rather than spectral CT. As for material decomposition methods for spectral CT, Tao 

et al. [48] proposed a prior knowledge aware iterative denoising material decomposition 

(MD-PKAD) model to decompose basis materials from reconstructed images[49]. In 

addition, a multiple constraint image-domain material decomposition (MCIMD) method was 

also proposed and validated by numerical simulations [50].

Very recently, we proposed a dictionary learning-based image-domain material 

decomposition (DLIMD) method [51]. In the DLIMD model, the regularized prior is 

penalized on each material component independently, and there are many parameters to be 

determined for practical applications. Besides, each material is considered independently in 

the process of material decomposition, the correlation of different components is also 

relaxed. Finally, because the concentration of contrast agent(s) is low in clinical applications, 

it can result in data inconsistency for dictionary based representation during the iteration 
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process. In this study, we develop a generalized DLIMD (GDLIMD) to avoid these 

limitations. The contributions of GDLIMD are as follows. First, we construct a generalized 

DLIMD (GDLIMD) model for material decomposition of spectral CT. Second, the material 

tensor image is unfolded along mode-1 to enhance the correlation of different materials. 

Third, a normalization strategy is employed to avoid the data inconsistency of low contrast 

agents.

The remainder of this paper is organized as follows. In section II, the spectral CT image 

reconstruction and image-domain material decomposition models for spectral CT will be 

presented. In section III, both physical phantom and tissue-synthetic phantom experiments 

are performed to evaluate the performance of GDLIMD. In section IV, we will discuss some 

related issues and conclude this paper.

II. Material and method

A. Spectral CT image reconstruction

X-ray image reconstruction is a typical inverse problem, and it is usually unstable and 

irreversible. Considering the noise in projections, the forward model of the typical fan-beam 

X-ray CT can be modelled as a discrete linear system,

y = Px + ϵ , (1)

where x ∈ ℝl(I = IW × IH) is the vectorization of 2D CT image, y ∈ ℝM(M = M1 × M2) is 

the sinogram, IW and IH are the width and height of image, M1 and M2 represent the 

numbers of views and detector units, P ∈ ℝM × 1 represents the CT system matrix depending 

on specific scanning geometry, and ϵ ∈ ℛM is noise which comes from the instability of 

scanning architecture, x-ray source, detector response and so on. To obtain high-quality 

images, the detector unit number, projection view number and image size are usually large. 

This makes it impossible to save the matrix P in memory. Therefore, it is impossible to solve 

Eq. (1) directly by employing a matrix inversion transform. To avoid this limitation, image x 
usually can be reconstructed from projections y by an iterative strategy by minimizing the 

following optimization problem

argmin
x

1
2‖y − Px‖2

2 , (2)

where ∥.∥2 is the L2-norm for a vector. Eq. (2) is a least square convex optimization problem, 

and it can be solved by searching the minimization point. It can be furtherly expressed as

P T(Px − y) = 0 . (3)

Eq. (3) can is equivalent to

P TPx = P Ty + P TPx(k) − P TPx(k), (4)

where k is the current iteration. Here, the reconstructed image can be achieved by the 

following expression
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x(k + 1) = x(k) − λ(k)P T(Px(k) − y) . (5)

where λ(k) is a relaxation factor. Since the projections contain noise, it is difficult to find 

appropriate solution using Eq. (5). The regularization prior usually is used to find the 

satisfied solution. To further optimize Eq. (5), a regularization prior can be introduced. Then, 

the image reconstruction model can be modeled as

argmin
x

1
2‖y − Px‖2

2 + τR(x) , (6)

where τ > 0 is a regularization factor, which can be carefully selected by a specific case in 

practice. From Eq. (6), one can see that it contains two terms, i.e., data fidelity term 
1
2‖y − Px‖2

2 and regularization prior R(x). Considering different features of CT images, R(x) 

corresponds to different expressions and further result in different image techniques. To 

improve the reconstructed image quality, TV [52, 53] is a typical regularizer to characterize 

piece-wise constant of image reconstruction. Besides, wavelet frame [54], image gradient 

L0-norm [55], low-rank [56] , and so on, are also treated as R(x) for different reconstruction 

applications.

Regarding the spectral CT, the x-ray spectrum is divided into several energy bins/channels, 

and the multiple projection datasets can be obtained from one scan. For each energy bin, we 

can obtain a single-energy image. Again, we can reconstruct multiple spectral CT images for 

the same the object using spectral CT projections. Similar to Eq. (6), spectral CT 

reconstruction model can be formulated as follow

argmin
x

∑
c = 1

C 1
2‖yc − Pxc‖2

2 + μR1(x) , (7)

where c (c = 1,2, ⋯ , C) is the index of energy channels and C represents the number of 

energy channels. xc ∈ ℝl(c = 1, 2, ⋯, C) is a vectorization image from cth energy channel. xc 

is cth row of the mode-3 unfolding of the reconstructed image in terms of 3rd order tensor 

x ∈ ℝl1 × l2 × C. yc represents cth row of the mode-3 unfolding of the measurement in terms 

of 3rd order tensor y ∈ ℝM1 × M2 × C. Similar to the conventional CT reconstruction model, 

the first term in Eq. (7) (i.e., ∑c = 1
C 1

2‖yc − Pxc‖2
2 ) represents spectral CT data fidelity and its 

errors come from the summation error of all energy channels. μ > 0 is designed to balance 

the data fidelity term and regularization prior for spectral CT.

To obtain the optimized solution of Eq. (7), R1(X) can be considered as regularization prior. 

Here, the model of Eq. (7) can be solved by introducing ℱ to replace X. Then, Eq. (7) can 

be rewritten as the following two sub-problems:

argmin
x

∑
c = 1

C 1
2‖yc − Pxc‖2

2 + ℎ
2 ‖x − ℱ(k)‖F

2 , (8a)
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argmin
ℱ

1
2‖ℱ − x(k + 1)‖2

2 + μR1(ℱ) . (8b)

As for Eq. (8a), it is equal to the following problem

argmin
{xc}c = 1

C
∑

c = 1

C 1
2‖yc − Pxc‖2

2 + ℎ
2 ∑

c = 1

C
‖xc − fc

(k)‖F
2 . (9)

Here, {xc}c = 1
C  can be separately updating by the following expression

xc(k + 1) = xc(k) − λ(k) ×
P TPxc(k) − yc) + ℎ(xc(k) − fc

(k)) , c = 1, …, C,
(10)

where I is the equality transform. Almost all optimized iteration-type regularized image 

reconstruction models are to choose an appropriate prior, i.e., the specific regularization 

forms of R1 (∙) in Eq. (7). As far as we know, all regularization forms about R1 (∙) can fall 

into two classes: channel-dependent and channel-independent. Regarding the channel-

dependent priors, the correlation of different channel images {fc}c = 1
C  are considered in the 

formulated reconstruction models, such as TDL[25], SSCMF[29] and NLCTF. In such 

cases, Eq. (8b) is not equal to a set of single energy bin model and then optimize them one 

by one. As for channel-independent regularizers (e.g., TV-based model [17], aiiBM3D[27], 

(SPICCS)[22]), Eq. (8b) can is equal to the following optimization model

argmin
{Fc}c = 1

C
∑

c = 1

C 1
2 Fc − Xc

(k + 1)
2
2 + ∑

c = 1

C
μcR1(Fc), (11)

where μc represents the regularization parameter of cth energy channel. Fc and Xc represent 

the matrix forms of fc and xc.

B. Material decomposition

To decompose the material images {un}n = 1
N  (N is the number of basis materials) from 

reconstructed channel-wise spectral CT images xc(1 ≤ c ≤ C), the basis material 

decomposition process can be characterized as

ω11 ⋯ ω1N
⋮ ⋱ ⋮

ωC1 ⋯ ωCN

(u1)T

⋮
(uN)T

=
x1
⋮

xC

, (12)

where ωcn is the attenuation coefficients of nth material in cth energy bin and it can be 

calculated by averaging a uniform region in the nth material [57]. To simplify Eq. (12), it can 

be further expressed as
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wu(3) = x(3), (13)

where = 

ω11 ⋯ ω1N
⋮ ⋱ ⋮

ωC1 ⋯ ωCN
∈ ℝC × N , U ∈ ℛlW × IH × N is a 3rd order tensor representing the 

material images, and. U(3) ∈ ℛN × M and X(3) ∈ ℛC × M are the mode-3 unfolding of U and 

X. From Eq. (13), it can be seen that the direct inversion (DI) method [35] can be adopted to 

obtain the material components. Again, U can be obtained by the following expression

U(3) = (wTw)−1wTx(3) (14)

However, the process of material decomposition usually is instable. To further improve the 

accuracy of material decomposition, the disturbance within spectral CT images should be 

considered in the material decomposition model. Thus, considering the disturbance, Eq. (13) 

can be rewritten as

wU(3) = x(3) + σ, (15)

where σ ∈ ℛC × M represents the disturbance. To decrease the error of decomposition results 

as much as possible, it is appropriate to adopt the least square linear programming problem 

to formulate the optimization problem with Eq. (15),

min
u

1
2‖x(3) − wU(3)‖F

2 , (16)

where ∥∙∥F is Frobenius norm. Noting that Eq. (16) is a convex quadratic optimization, it can 

be easily solved. As the aforementioned, the regularization prior can be introduced into Eq. 

(16) to constrain the feasible domain so that to search an appropriate solution for material 

images, i.e., Eq. (16) can be further reformulated as

min
u

1
2‖x(3) − wU(3)‖F

2 + θ
2R2(U) , (17)

where θ is a regularization parameters to balance decomposition model. 1
2‖X(3) − wU(3)‖F

2  is 

the data fidelity of material decomposition and R2(U) is a regularization term of the material 

images.

To further shrink the feasible domain of material decomposition, the volume conservation 

can be employed as a constraint for multi-material components. The summation of pixel 

value from multiple materials at the same position should be one [58]. Considering the air, 

we have,
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∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1 (1 ≤ iw ≤ IW , 1 ≤ iℎ ≤ IH), (18)

where Uiwiℎn represents the (j1, j2, m)th pixel value of U. Aiwih represents the (j1, j2)th pixel 

value of A. Besides, the pixel value of Aiwih is assumed binary (0 or 1), and pixel value of U
should be ranged from zero to 1, i,e.,

0 ≤ U ≤ 1 . (19)

Introducing the above two constraints, the dictionary learning based image-domain material 

decomposition (DLIMD) model [51] can be formulated as Eq. (20).

min
U, {βn}n = 1

N
∑

n = 1

N θn
2 ∑

i = 1

I
‖Ei(Un) − Dβni‖F

2 + vni‖βni‖0

+ 1
2‖x3 − wU(3)‖F

2 , s . t . 0 ≤ U

≤ 1, ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1,

(20)

where Un is the matrix form of nth material images, βni is sparse representation coefficients 

of ith image patch within nth material image, βm = {βm}i = 1
I , Ei(Un) is the ith image patch 

extraction operator from Un, and D is the trained dictionary.

In Eq. (20), the dictionary D is achieved from all material components to characterize image 

similarity. However, each material component is individually considered in the decomposing 

process, it can overlook the correlation of different materials. Besides, each material map 

has itself regularization parameters θn(n = 1, … , N) , sparse representation error εn(n = 1, 

… , N) and atom number Ln (n = 1, … , N). It becomes a big challenge for choosing a series 

of appropriate parameters in practice. Therefore, to overcome these limitations of DLIMD 

method, a generalized dictionary learning based image-domain material decomposition 

(GDLIMD) method is proposed as follow:

min
U, β

θ
2 ∑

i = 1

I
‖Ei(U(1)) − Dβi‖F

2 + vi‖βi‖0

+ 1
2‖x3 − wU(3)‖F

2 s . t . 0 ≤ U

≤ 1, ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1,

(21)

where U(1) represents the mode-1 unfolding of tensor U, θ is the regularized parameter, and 

vi is the Lagrange multiplier. Because the material component distribution depends on the 

imaging object, it can be significantly different among material channels. Generally 

speaking, the maximum value with respect to materials is significantly different. To address 
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the issue, a weighting vector z ∈ ℛN is introduced into Eq. (21) for normalizing material 

fraction across material channels:

zn = 1
max(Un) , (22)

where max(Un) represents the maximum positive value of Un. The weighting vector z can be 

calculated from the material components during each iteration. Therefore, the normalized 

material component maps can be expressed as

U = K(U, z), (23)

where K represents the weight operation for U, i.e., Un = zn × Un. Similarly, U can be 

recovered from Eq. (23). Again,

U = K−1(U, z), (24)

where K−1 represents the inverse weight operation. To avoid the aforementioned 

inconsistency of fraction with different materials, the normalized material maps U rather 

than the raw material tensor U is considered in Eq. (21), and it can be modified as Eq. (25).

min
U, β

θ
2 ∑

i = 1

I
‖Ei(U(1)) − Dβi‖F

2 + vi‖βi‖0

+ 1
2‖x3 − wU(3)‖F

2 s . t . 0 ≤ U

≤ 1, ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1 .

(25)

According to the APPENDIX, Eq. (25). can be updated by following three sub-problem

min
U

1
2 (wTw + γ)Uiwiℎ# − wTx#iwiℎ + γdiwiℎ#

(k)
F
2 ∀ iw, iℎ, s . t . (

∑N
n = 1Uiwiℎn) + AAiwiℎ = 1, 0 ≤ U ≤ 1,

(26a)

min
d, β

γ
2 d(3) − K(U(k + 1), z(k)) (3) F

2

+ θ
2 ∑

i = 1

I Ei K(d, z(k))(1) − Dβi F
2

+vi‖βi‖0

, (26b)

zn(k + 1) = 1
max(Un

(k + 1))
. (26c)
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Eq. (26b) is a dictionary learning based image denoising model [59], and we can obtain 

d(k+1) by normalizing the iteration results of Eq. (26a) and then denormalizing the iteration 

results of Eq. (26b). During the process of dictionary learning based image denoising, the 

parameters of sparsity level L and tolerance of representation error ε play important roles in 

controlling the dictionary quality and material decomposition accuracy. In this study, the 

proposed GDLIMD method mainly contains three parameters of ε, L and θ. The main steps 

of GDLIMD are summarized in Algorithm I.

Since there is no regularizer prior for the DI model (i.e., Eq. (16)), its ability is weak to 

suppress noise and reduce artifacts. Compared with the DI method, the previous DLIMD has 

a good capability to suppress noise and reduce artifacts. However, according to the DLIMD 

mathematical model (i.e., Eq. (20)), each material corresponds to a series of parameters. 

This means there are lots of parameters that should be chosen in practice for implementing 

material decomposition. In contrast, the GDLIMD model (i.e., Eq. (21)) can not only reduce 

the number of parameters but also fully explore the correlation among different materials by 

updating the zn during each iteration.

Algorithm I: GDLIMD

Input: η, ε, L, T , K and other parameters; Initialization of U(0) = 0, d(0) =
0, z(0) = I, k = 0 .
Output: Material decomposition tensor U .
Part I: Dictionary training
1: Recontructing channel‐wise spectal CT images;
2: Formulating the material attenuation matrix using reconstruction results;
3: Decomposing the reconstructed images using DI method;
4: Normalizing the DI results;
5: Extracting image patches to form a dictionary trining dataset;
6: Training a dictionary using K‐SVD technique.
Part II: Material decomposition
7: While not convergence do

8: Updating U(k + 1) using Eq.(26a);

9: Finding and processing the air pixels inU(k + 1) using DI technique;
10: Normalizing U using z;
11: Updating d and β using Eq.(26b);

12: Denormalizing d(k + 1) using z;
13: Updating z using Eq.(26c);
14: k = k + 1;
15:End While

III. Experiments and Results

To evaluate the advantages of the developed GDLIMD method for decomposition of 

multiple materials, the physical phantom and tissue-synthetic phantom are employed in this 

study. Since the dictionary learning based material decomposition method outperforms the 
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TV-based method, only DI and DLIMD are selected as comparisons. To quantitatively 

analyze the decomposition results with different methods, the root means square error 

(RMSE), peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) are employed 

as metrics. As the aforementioned, while the DLIMD has different parameters for different 

materials, the developed GDLIMD mainly contains three parameters, i.e., regularization 

parameter θ , atom number L and error parameter ε. As for the dictionary learning, the 

number of image patches is set as 104 in both physical phantom and tissue-synthetic 

phantom experiments. The size of image patch is 9×9 and 8×8 for physical phantom and 

tissue-synthetic phantom cases. The optimized parameters used in material decomposition 

process are listed in Table I.

A. Physical Phantom

Fig. 1 demonstrates the physical phantom which consists of three different basic materials 

(aluminum, water and iodine). The phantom contains five cylinders and their details can also 

refer to Fig. 1 (a). The spectral CT system has a 225Kv micro-focus x-ray source from 

YXLON and PCD (XC-Hydra FX20) from Xcounter with 2 energy bins. Here, the PCD 

contains 2048 detector units with 0.1 mm length, and every 4 cells are combined to improve 

SNR. The projection size is 512×1080×4, where 1080 is the number of projection views. 

The process of scanning consumes 36 minutes. The x-ray spectrum is divided into 4 energy 

bins (i.e., [13.0, 22.0], (22.0, 30.8], (30.8, 48.5] and (48.5, 137], unit: KeV) by scanning 2 

times (see Fig. 1 (b)). The distances starting from x-ray source to rotation axis and PCD are 

182.68 mm and 440.50 mm, respectively, resulting in an FOV with radius of 41.3 mm. The 

reconstructed material image includes 256×256 pixels each of which covers an area of 

0.324×0.324 mm2.

The reconstructed images of physical phantom by FBP are in Fig. 2. To evaluate the 

performance of GDLIMD for material decomposition, the FBP results are decomposed into 

three basic materials (i.e., aluminum, water and iodine) using the DI method for comparison 

as shown in Fig. 3. From Fig. 3, one can see the decomposed images for the iodine material 

appear some non-uniform pattern. In fact, from Fig. 2, we can observe that the reconstructed 

channel-wise images contain beam hardening artifacts, and this can affect the material 

decomposition accuracy. Besides, the material decomposition is performed on the 

reconstructed image pixel-by-pixel, and each pixel is considered independently. This is 

another source of the non-uniform pattern. To further improve the material accuracy, we 

assume the iodine component and aluminum cannot exist in the same pixel. From Fig. 3, it 

can be seen that both DLIMD and GDLIMD can obtain higher accuracy than the DI method 

in all material images. Compared with the previous DLIMD method, the GDLIMD method 

can obtain higher material image quality than the DLIMD method. To fully understand this 

point, it is necessary to clarify the generation of dictionary. First, the normalization is 

performed on the DI material decomposition results. It can help to minimize the bias of 

different material decomposition. Then, all stacked material decomposition results are 

unfold along mode-1 to enhance the level of sparse representation. Finally, the SVD is 

employed to train the unified dictionary. In this study, because the accuracy of low 

concentration iodine is normalized to the same range of water and aluminum, the ability of 

dictionary representation is enhanced and the accuracy of iodine contrast is improved. Once 
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the accuracy of iodine contrast is improved, the accuracy of water and aluminum will be 

increased simultaneously with the constraint of volume conservation. Particularly, in terms 

of water component, the GDLIMD results contain less artifacts, which is confirmed by the 

region indicated by the red arrow. As for the iodine contrast component, the GDLIMD can 

obtain remarkably accuracy than the DLIMD, i.e., the GDLIMD can remove the outlier 

artifacts in the DLIMD and DI methods.

It is important to perform quantitative analysis for the decomposed materials in practical 

applications. Five regions of interest (ROIs) are extracted from Fig. 3 and then they are 

evaluated in this study. Besides, three referred indexes including RMSE, SSIM and FSIM 

are employed and the quantitative results are summarized in Table II. Here, the ground truth 

of five extracted ROIs can be obtained from Fig. 1. Particularly, the ground truth of ROIs 1–

3 are three uniform rectangles with values of 1.0, 1.0, 0.997. The iodine contrast agent 

concentration of ROIs 4–5 are 5mg/mL and 10mg/mL, respectively. Table II demonstrates 

the DI always obtains the highest RMSE with smallest PSNR and SSIM values. Again, the 

difference between material decomposed images using DI and ground truth is the biggest 

than those obtained by the DLIMD and GDLIMD methods. Compared with the previous 

DLIMD method, the proposed GDLIMD can obtain smaller RMSEs and higher SSIM and 

FSIM values of all decomposed materials.

As for the computational cost, similar to our previous DLIMD method, the proposed 

GDLIMD algorithm can also be divided into two parts: dictionary training and material 

decomposition. All material decomposition techniques are implemented on a PC (i7–6700, 

8.0 GB memory) with Matlab (version 2014b). Since the DI contains no regularization 

constraint, it has the smallest computational costs than DLIMD and GDLIMD methods. 

Compared with the DLIMD method performing dictionary representation on material 

images one by one, the GDLIMD perform the dictionary representation on the mode-1 

unfolding of material tensor at one time. In fact, the DI, DLIMD and GDLIMD consume 

22.79, 44.17 and 44.30 seconds, respectively. Obviously, compared with the DI method, the 

DLIMD and GDLIMD algorithms can consume comparable computational costs.

B. Tissue-synthetic phantom experiment

The specimen consists of chicken feet and 5 mg/mL iodine solution cylinder to imitate the 

clinical application, as shown in Fig. 4(a). In this study, the PILATUS3 PCD from DECTRIS 

has 4 energy-channels (i.e., [13.0, 22.0], (22.0, 30.8], (30.8, 48.5] and (48.5, 137], unit:KeV) 

to obtain multi-energy projections. The PCD has 515 cells and each of which covers a length 

of 0.15 mm. The projections are acquired from 720 views within one full scan. As for fan-

beam scanning geometry, the distances between X-ray source and rotational center is 35.27 

cm, and the distance between X-ray source and detector is 43.58 cm. The reconstructed 

spectral CT image by FBP contains 512 × 512 × 4 pixels and each of them is 0.122 × 

0.122mm2 as shown in Fig. 4(b)-(e).

To evaluate the performance of the proposed GDLIMD method, three basis material 

decomposition (i.e., bone, soft tissue and 5mg/mL iodine contrast agent) results by the DI, 

DLIMD and GDLIMD methods are given in Fig. 5. From Fig. 5, one can see the iodine 

images from all methods contain some non-uniform regions. This is because the 
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reconstructed channel-wise images contain ring artifacts because the detector responses of 

this new PCD are not consistent, which can be observed in Fig. 4. In fact, the ring artifacts in 

the reconstructed images already have been significantly suppressed.

Regarding the bone, the image edge of bony structure is obviously blurred in the DI results. 

Compared with the DI method, the DLIMD and GDLIMD methods can provide clear image 

edges. Furthermore, to make a comparison between the DLIMD and GDLIMD, the ROI “A” 

is extracted and magnified in Fig. 6. From the structure marked with arrow “1”, it can be 

seen that the gap of two small bones can be clearly observed in the GDLIMD. However, it is 

difficult to discriminate the gap in the DLIMD and DI results. For decomposition results of 

soft tissue, compared with the DLIMD method, the developed GDLIMD can provide more 

image features and complete image structures. Two soft tissue ROIs “B” and “C” are 

extracted and magnified in Fig. 6. It can be observed that the accuracy of soft tissue by 

DLIMD and GDLIMD is much better than that obtained by the DI method. Besides, the 

image features indicated by arrows “2” and “3” recovered by GDLIMD method are more 

clear than those by the DLIMD method. In terms of the iodine contrast agent, compared with 

the DLIMD results, many pixels are wrongly classified as iodine contrast agent. This issue 

can be avoided in the following NLCTF case, which will be discussed in next section. The 

iodine concentration is 5.0mg/mL, which can be treated as the ground truth. Here, the 

RMSEs and mean value of extracted ROI “D” are calculated in Table III. Table III 

demonstrates the GDLIMD can obtain the largest mean value of iodine and the smallest 

RMSE in FBP reconstruction case.

To validate the outperformance of GDLIMD method using advanced reconstruction results, 

the NLCTF [31] results are also decomposed into three basis materials and their 

decomposition results are further shown in Fig. 7. Four ROIs marked with “E” ,“F” and “G” 

are extracted and also magnified in 2nd-3rd rows of Fig. 8. It can be seen from Figs. 7-8 that 

the GDLIMD results have much more image features, especially for image features marked 

with arrows “4”, “5”, “6” and “7”.

To further evaluate the accuracy of iodine contrast agent, the representative profile of the 

yellow line indicated by “1” in Fig. 7 from NLCTF cases are shown in Fig. 9. It can be seen 

that the profile from GDLIMD is approach to the theoretical truth of iodine contrast 

concentration by comparing with the DI and DLIMD methods. It can further be confirmed 

the outperformance of GDLIMD method.

IV. Discussions and Conclusions

To further optimize material decomposition results and avoid the parameters selection 

dilemma of the DLIMD method, the generalized version of DLIMD, i.e., GDLIMD, is 

developed in this study. Compared with the DLIMD method [51], the contribution of 

GDLIMD are threefold. First, to overcome the data inconsistency from contrast component, 

the range of all material components are normalized to [0, 1], which is beneficial to 

parameters selection. Second, in the GDLIMD model, the decomposed materials are 

unfolded as mode-1 format to enhance the capability of dictionary representation by 

exploring the correlation of materials. Because the unified dictionary is trained from the 
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normalized material maps rather than single material by unfolding the decomposed 

materials, one material can borrow the dictionary atoms from other materials to enhance the 

sparse representation in some cases. Third, except that the constraints of volume 

conservation [58] and the bound of each material pixel value are introduced into GDLIMD, 

the constraint on the basis of preclinical applications (i.e., the concentration of contrast is no 

more than 5%) is also considered in the model to further improve the decomposition 

accuracy. Two real datasets, including the physical phantom and tissue-synthetic datasets, 

are utilized to assess and evaluate the proposed GDLIMD method, and the results 

demonstrate the advantages of GDLIMD.

Although the GDLIMD method can obtain higher accuracy of material decomposition in 

image-domain than the DLIMD method, there are still some rooms for improvement. First, 

different from many parameters in previous DLIMD method, the GDLIMD mainly contains 

three parameters to be selected. Here, these parameters are only empirically optimized by 

comparing three indexes in physical phantom and visual evaluation in tissue-synthetic 

phantom experiments. However, how to select a series of parameters in practical application 

is still open. Fortunately, the channel-wise spectral CT images can be reconstructed in 

advance. From these reconstructed channel-wise images, we can observe some details of the 

imaging object, which could be good for parameters estimation and selection for the 

followup material decomposition. Of course, if there exists strong noise, it would be a good 

strategy to perform denoising operation material decomposition. Second, both physical 

phantom and tissue-synthetic phantom datasets consist of three different basis materials, 

which reduce the complexity of normalization strategy. Again, a simple normalization 

method is employed in this study. To further improve the performance of GDLIMD method 

in multiple material decomposition (greater than 3), we will optimize the design of 

normalization method in our further plan.

In conclusion, based on the idea of previous DLIMD model, we develop a generalized 

DLIMD (GDLIMD) method for image-domain material decomposition with spectral CT. 

Both physical phantom and tissue-synthetic phantom experiments highlight the advantages 

of GDLIMD technique. This will be of significance to improve accuracy of material 

decomposition for spectral CT.
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APPENDIX

Substituting the Eq. (23) into Eq. (25), we can obtain Eq. (A.1).
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min
U, β, z

θ
2 ∑

i = 1

I
‖Ei(K(U, z)(1)) − Dβi‖F

2 + vi‖βi‖0

+ 1
2‖X(3) − wU(3)‖F

2 , st 0 ≤ U

≤ 1, ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1,

(A.1)

Similar to the DLIMD model, Eq. (A.1) equals to the following constrained problem of Eq. 

(A.2) by introducing d

min
U, β, z, d

θ
2 ∑

i = 1

I
‖Ei(K(d, z)(1)) − Dβi‖F

2 + vi‖βi‖0

+ 1
2‖X(3) − wU(3)‖F

2

s . t . ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1, d = U,

(A.2)

Eq. (A.2) can be further divided into three sub-problems Eqs. (A.3)-(A.5).

min
U

1
2‖X(3) − wU(3)‖F

2 + γ
2‖ U − d(k)‖F

2 ,

s . t . ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1, 0 ≤ U ≤ 1,

(A.3)

min
d, β

γ
2 d(3) − K(U(k + 1), z(k)) (3) F

2

+ θ
2 ∑

i = 1

I Ei K(d, z(k))(1) − Dβi F
2

+vi‖βi‖0

, (A.4)

min
z

γ
2 d(3)

(k + 1) − K(U(k + 1), z(k)) (3) F
2

+ θ
2 ∑

i = 1

I
Ei K(d, z(k))(1) − Dβi F

2
. (A.5)

Eq. (A.3) is a constrained convex programmable optimization problem. Following the same 

procedures of DLIMD method, it can be simplified as the following expression

min
Uiwiℎ#

1
2 X#iwiℎ − wUiwiℎ# F

2 + γ
2 diwiℎ#

(k) − Uiwiℎ# F
2 ,

∀ iw, iℎ, s . t . ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1, 0 ≤ U ≤ 1 .

(A.6)
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Eq. (A.6) can be furtherly rewritten as

min
Uiwiℎ#

1
2 X#iwiℎ − wUiwiℎ# F

2 + γ
2 diwiℎ#

(k) − Uiwiℎ# F
2 ,

∀ iw, iℎ, s . t . ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1, 0 ≤ U ≤ 1 .

(A.7)

Furtherly, Eq. (A.7) equals to

min
U

1
2 (wTw + γ)Uiwiℎ# − wTx#iwiℎ + γdiwiℎ#

(k)
F
2 ,

∀ iw, iℎ, s . t . ∑
n = 1

N
Uiwiℎn + Aiwiℎ = 1, 0 ≤ U ≤ 1,

(A.8)

where X#iwiℎ = x1iwiℎ, …, xCiwiℎ
T , Uiwiℎ# = Uiwiℎ1, …, UiwiℎN

T  and 

diwiℎ#
(k) = diwiℎ1

(k) , …, diwiℎN
(k) T

. diag(z) is the diagonalization of weight vector z. Considering 

Eq. (22), the problem of Eq. (A.5) can be updated as

zn(k + 1) = 1
max(Un

(k + 1))
. (A.9)
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Fig. 1. 
Physical phantom and the used x-ray spectrum in experiments. Left is physical phantom and 

right represents the x-ray emitted spectrum.
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Fig. 2. 
Image reconstruction results of the physical phantom from FBP. The 1st- 4th columns 

represent 1st -4th energy bins and their display window is [0 1.3]cm−1.
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Fig. 3. 
Three basis material decomposition results of FBP images. The 1st- 3rd columns represent 

aluminum, water and iodine, and their display windows are [0.5 1], [0.8 1] and [0 0.003]. 

The 1st- 3rd rows represent DI, DLIMD and GDLIMD methods, respectively.
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Fig. 4. 
Tissue-synthetic specimen and the corresponding reconstructed images by FBP. (a) is the 

specimen photo and (b)-(e) are FBP results from 1st-4th energy channels with a display 

window [0 0.5] cm−1.
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Fig. 5. 
Material decomposition results of the FBP images with preclinical datasets. 1st-3rd columns 

represent the DI, DLIMD and GDLIMD methods, and 1st-3rd rows represent the bone, soft 

tissue and iodine with the display windows [0.25 0.5], [0.85 0.95] and [0.0004 0.001], 

respectively.
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Fig. 6. 
The magnified ROIs of “A”, “B” and “C”. The 1st-3rd columns are the DI, TVMD and 

DLIMD methods. The 1st-3rd rows represent the ROIs “A”, “B” and “C”, where the display 

windows are [0.29 0.33], [0.70 0.72] and [0.68 0.72], respectively.
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Fig. 7. 
Material decomposition of the NLCTF reconstruction results. 1st -3rd columns represent the 

bone, soft tissue and iodine contrast, where the display windows [0.25 0.5], [0.90 0.92] and 

[0.0004 0.001], respectively. The 1st-2nd rows represent DLIMD and GDLIMD methods.
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Fig. 8. 
The magnified ROIs marked with “E”, “F” and “G” and the corresponding display windows 

are [0.29 0.33], [0.85 0.95] and [0.89 0.94], respectively.
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Fig. 9. 
The representative profile of yellow line 1 in Fig.7.
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Table I.

The parameter setting for the developed GDLIMD technique.

Parameters θ L ε

Physical Phantom 0.00168 14 0.080

Tissue-synthetic phantom (FBP case) 0.0030 12 0.010

Tissue-synthetic phantom (NLCTF case) 0.0030 16 0.00015
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Table II.

Quantitative evaluation results of ROIs 1-5.

DI DLIMD GDLIMD

ROI-1

RMSE(10−4) 889.0 828.4 808.1

PSNR 21.026 21.635 21.851

SSIM 0.9560 0.9925 0.9930

ROI-2

RMSE(10−4) 324.0 271.4 267.1

PSNR 29.793 31.329 31.467

SSIM 0.9732 0.9977 0.9979

ROI-3

RMSE(10−4) 594.16 269.82 255.58

PSNR 24.522 31.379 31.850

SSIM 0.6689 0.9515 0.9577

ROI-4

RMSE(10−4) 5.2525 1.8115 1.7582

PSNR 65.593 74.839 75.100

SSIM 0.4118 0.8483 0.9333

ROI-5

RMSE(10−4) 6.8538 2.3989 2.3163

PSNR 63.281 72.400 72.704

SSIM 0.6200 0.9165 0.9474
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Table III.

Quantitative evaluation of ROI “D” (unit: mg/mL).

DI DLIMD GDLIMD

FBP Mean 1.908 2.3551 2.8938

RMSE 3.372 2.6889 2.4217
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