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Abstract

Despite bariatric surgery being the most effective treatment for obesity, a proportion of subjects have suboptimal weight
loss post-surgery. Therefore, it is necessary to understand the mechanisms behind the variance in weight loss and identify
specific baseline biomarkers to predict optimal weight loss. Here, we employed functional magnetic resonance imaging
(fMRI) with baseline whole-brain resting-state functional connectivity (RSFC) and a multivariate prediction framework
integrating feature selection, feature transformation, and classification to prospectively identify obese patients that
exhibited optimal weight loss at 6 months post-surgery. Siamese network, which is a multivariate machine learning
method suitable for small sample analysis, and K-nearest neighbor (KNN) were cascaded as the classifier (Siamese-KNN). In
the leave-one-out cross-validation, the Siamese-KNN achieved an accuracy of 83.78%, which was substantially higher than
results from traditional classifiers. RSFC patterns contributing to the prediction consisted of brain networks related to
salience, reward, self-referential, and cognitive processing. Further RSFC feature analysis indicated that the connection
strength between frontal and parietal cortices was stronger in the optimal versus the suboptimal weight loss group. These
findings show that specific RSFC patterns could be used as neuroimaging biomarkers to predict individual weight loss
post-surgery and assist in personalized diagnosis for treatment of obesity.
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Introduction
Bariatric surgery (BS) is the most effective treatment for obesity
and related metabolic diseases (Gloy et al. 2013). Although signif-
icant weight loss typically results from BS (Sjostrom et al. 2004),
a proportion of patients have suboptimal weight loss (Karlsson
et al. 2007). The variability in the percentage of total weight
loss (%TWL) ranges from 5% to 55% at 3 years post-surgery
(Courcoulas et al. 2013). Therefore, it is important to understand
the mechanisms behind the variance in weight loss and identify
baseline biomarkers to predict optimal weight loss with BS.

Previous studies have identified that lower body mass index
(BMI), larger waist circumference, younger age, and white race
were associated with greater weight loss after BS (Carlin et al.
2008). However, investigators in the largest multicenter study on
BS, the Longitudinal Assessment of Bariatric Surgery, examined
the association between over 100 baseline variables and weight
loss post-surgery, and results showed that few factors had signif-
icant predictive value (Courcoulas et al. 2015). Other studies also
indicated that abnormal eating behavior (i.e., loss of control over
eating) (White et al. 2010) and psychosocial factors (e.g., social
support and psychiatric disorders) at baseline were not reliable
predictors (Schrader et al. 1990; Herpertz et al. 2004). These
reports concluded that these baseline behavioral measures were
not effective predictors for future weight loss.

Growing evidence indicates that obesity is associated with
impairment of executive control, reward evaluation, and home-
ostatic regulation of food intake, and these impairments are
accompanied by disruptions of functional connections and brain
networks that support cognitive control, reward, and homeo-
static processing (Farr et al. 2016; Donofry et al. 2019; Li et al.
2020). For instance, obese individuals showed increased RSFC
between regions involved in cognitive control (dorsolateral pre-
frontal cortex (DLPFC), medial prefrontal cortex (MPFC)), and
reward processing (striatum) (Dietrich et al. 2016; Contreras-Ro-
driguez et al. 2017) and increased RSFC between region involved
in homeostatic processing (hypothalamus) and regions involved
in cognitive control and reward processing (Le et al. 2020a; Li
et al. 2020; Lips et al. 2014). In addition, obesity is associated
with disruptions of various resting-state networks including the
default-mode network (DMN) (Tregellas et al. 2011; Kullmann
et al. 2012), salience network (SN) (Garcia-Garcia et al. 2013;
McFadden et al. 2013), frontoparietal network (FPN) (Ding et al.
2020), and basal ganglia network (BG) (Doornweerd et al. 2017).
Specifically, DMN is thought to reflect a baseline state of brain
function in which individuals are focused on their internal men-
tal state. Disrupted RSFC strength within DMN in obese patients
is associated with abnormal awareness of internal states such
as appetite (Tregellas et al. 2011; Kullmann et al. 2012; Ding et al.
2020). SN is a paralimbic network that processes internal and
external stimuli, including food stimuli and feeding behavior
(McFadden et al. 2013). FPN is involved in inhibitory control in
response to food cue. Increased functional network correlation
between SN and FPN in obese patients is thought to reflect
an imbalance between executive control and food stimulus
processing (Ding et al. 2020). The abnormal RSFC strength in
BG reflects the dysfunction of reward system and may result
in higher intake of palatable high-fat foods (Doornweerd et al.
2017). In conclusion, RSFCs and brain networks play an impor-
tant role in food intake and body weight regulation. BS is one of
the most effective weight loss interventions for obesity, and it
may work by ameliorating these aberrant patterns of network
communication. In support, BS significantly decreased RSFC
within the DMN comprising the anterior cingulate cortex (ACC),

frontal superior gyrus, and orbitofrontal cortex (OFC) (Frank et al.
2014) and RSFC between insula and left precuneus (Lepping et al.
2015) and increased RSFC between hippocampus and insula
and between posterior cingulate cortex (PCC) and DLPFC (Zhang
et al. 2019). Although these studies have undoubtedly offered
significant insights into brain RSFC abnormalities in obesity
and BS-induced alterations, few studies have employed baseline
brain RSFC to predict optimal post-surgery weight loss.

Recently, a growing number of studies using multivariate
machine learning methods have demonstrated the capacity of
RSFC in predicting treatment outcomes for major depressive
disorder (Leaver et al. 2018), social anxiety (Whitfield-Gabrieli
et al. 2016), epilepsy (Tomlinson et al. 2017), drug addiction
(Steele et al. 2018), and behavioral lifestyle weight loss programs
in obesity (Mokhtari et al. 2016; Mokhtari et al. 2018). Thus, these
previous studies raise the possibility of using baseline RSFC to
predict optimal weight loss after BS.

In contrast to group-level statistical methods, multivariate
machine learning classification algorithms are capable of cap-
turing complex multivariate discriminatory patterns in a way
not possible using pairwise statistical analysis (Richiardi et al.
2013). Moreover, this methodology allows for personalized anal-
yses where each participant can be classified rather than relying
on group-level statistical outcomes (Plis et al. 2014; Mokhtari
et al. 2018; Ju et al. 2019). Deep neural network methods have
attracted interest in various fields including their use for the
classification of brain disorders (Plis et al. 2014; Ju et al. 2019).
However, a challenge for the application of deep neural network
in neuroimaging classification or prediction is the overfitting
problem since a large number of parameters need to be esti-
mated in the deep neural network model while the number
of samples for training is relatively small. Therefore, Siamese
neural network (Chopra et al. 2005), which is a few-shot leaning
method and has the ability to learn from few labeled samples,
was introduced in the current study. During the training process
of the Siamese network, the samples are pairwise fed into the
network and the number of available training samples can be
greatly augmented to avoid overfitting to some extent (Chu et al.
2018). Therefore, this method can be applied to classification
problems where the number of training samples is small and
hence is suitable for the current study.

Although weight loss after BS is a long-term process, previous
studies have shown that the short-term weight loss after BS
(i.e., 3 months and 6 months) was positively correlated with
long-term weight loss (i.e., 12 months) (Nikolic et al. 2015) and
was the strongest predictive factor of optimal weight loss up to
24 months post-surgery (Hindle et al. 2017). Here we selected
weight loss at 6 months post-BS as the predicted variable and
aimed to examine if baseline brain RSFC would be effective in
predicting optimal post-surgical weight loss. We hypothesized
that baseline brain RSFC patterns could serve as biomarkers for
classifying obese patient with optimal and suboptimal weight
loss at 6 months post-BS, and the associated RSFC patterns
would be in key brain networks governing cognitive control,
reward, self-referential processing, and saliency processing.

Materials and Methods
Participants

Forty obese patients were recruited for laparoscopic sleeve gas-
trectomy at Xijing Gastrointestinal Hospital affiliated to the
Fourth Military Medical University in Xi’an, China. Patients with
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psychiatric or neurological diseases, previous intestinal surgery,
inflammatory intestinal disease, organ dysfunction, or any cur-
rent medication that could affect the brain were excluded. Obese
patients had a waist circumference greater than the interior
diameter of the scanner were also excluded (Li et al. 2018; Li
et al. 2019b; Liu et al. 2019; Zhang et al. 2019; Zhang et al.
2016). Given the criteria, three individuals were disqualified for
the magnetic resonance imaging (MRI) scan. Thus, 37 partici-
pants were used in this study. The experimental protocol was
approved by the Institutional Review Board of Xijing Hospital
and registered in the Chinese Clinical Trial Registry Center under
number: ChiCTR-OOB-15006346 (http://www.chictr.org.cn). The
study was conducted in accordance with the Declaration of
Helsinki. All participants were informed of the nature of the
research and provided written informed consent.

Participants underwent 12-hour overnight fasting, and MRI
scans were performed at 9 AM to 10 AM. A trained clinician
rated severity of subjects’ anxiety using the Hamilton Anxiety
Rating Scale (HAMA) (Hamilton 1959) and depression using the
Hamilton Depression Rating Scale (HAMD) (Hamilton 1960). All
clinical measurements were identically conducted before (base-
line, Pre) and 6 months after surgery (Post). Surgical procedures
were performed by the same surgeon in all patients.

The sample set was split into suboptimal- (SOWL) and
optimal-weight loss (OWL) groups by using the median of the
percentage of total weight loss (%TWL) (Mokhtari et al. 2016;
Mokhtari et al. 2018). The two-sample t-test was used to examine
the difference between SOWL and OWL groups at baseline.

MRI Acquisition

The experiment was carried out using a 3.0-T Signa Excite HD
(GE, Milwaukee, WI, USA) scanner. A standard head coil was
used with foam padding to reduce head motion. Subjects were
instructed to view a fixation cross and try to stay relaxed with
their eyes open, not to think of anything particular during the
scanning procedure.

First, a high-resolution structural image for each subject was
acquired, using a three-dimensional magnetization-prepared
rapid acquisition gradient-echo sequence with voxel size of
1 mm3 and with an axial fast spoiled gradient-echo sequence
(TR = 7.8 ms, TE = 3.0 ms, matrix size = 256 × 256, field of
view = 256 × 256 mm2, slice thickness = 1 mm and 166 slices).
Then, a gradient-echo T2∗-weighted echo planar imaging
sequence was used for acquiring resting-state functional images
with the following parameters: TR = 2000 ms, TE = 30 ms, matrix
size = 64 × 64, FOV = 256 × 256 mm2, flip angle = 90 degrees, in-
plane resolution of 4 mm2, slice thickness = 4 mm, and 32 axial
slices. The scan for RS-fMRI lasted 360 s.

Image Processing

Imaging data were preprocessed using Statistical Parametric
Mapping 12 (SPM12, https://www.fil.ion.ucl.ac.uk/spm/). The
first five time points were removed to minimize nonequilibrium
effects in the fMRI signal and then slice-timing and head
movement correction were performed using default settings.
In addition, head motion differences between the two groups
were compared using the mean frame-wise displacement
(FD) resulting from time derivatives of head translations and
rotations (Power et al. 2012), and there was no significant group
difference (P > 0.05) on mean FD (OWL, 0.19 ± 0.16 mm, SOWL,
0.22 ± 0.19 mm). Functional scans of each study participant

were registered with the participant’s T1 structural scan and
normalized (voxel size of 3 × 3 × 3 mm3) to the stereotactic
space of the Montreal Neurological Institute (MNI) (Zhang
et al. 2015b). Demeaning and detrending was performed, and
time-varying head-motion parameters, white-matter signals,
cerebrospinal-fluid signals, and global signals were regressed
out as nuisance covariates (Power et al. 2014). fMRI time points
that were severely affected by motion were removed using a
“scrubbing method” (FD value > 0.5 mm, and root mean square
variance of blood oxygenation level-dependent (BOLD) signal
intensity, i.e., delta variation signal (DVARS) > 0.5% between
consecutive time points) (Power et al. 2014), and <5% of time
points were scrubbed per subject. Finally, band-pass temporal
filtering (0.01–0.1 Hz) was used to remove effects of very low-
frequency drift/high-frequency noise using REST toolkit (http://
resting-fmri.sourceforge.net).

Resting-State Functional Connectivity Analysis

The functional MRI volumes were divided into 246 regions of
interests (ROIs) according to the Brainnetome Atlas (Fan et al.
2016). Regional mean time series were obtained by averaging the
fMRI time series in each ROI. Pearson correlation coefficients
of time series between each ROI pair were calculated and nor-
malized to Z scores using Fisher transformation, resulting in a
246 × 246 symmetric RSFC matrix for each subject. After remov-
ing 246 diagonal elements, the upper triangle elements of the
RSFC matrix were extracted as features for subsequent analysis,
and each subject had a feature vector with the dimension of
30 135 ((246 × 245)/2).

Outlier Removal

With a limited sample size, the data could be skewed due to
the presence of outliers (Mohanty et al. 2018). Therefore, the
median absolute deviation (MAD) (Leys et al. 2013) method was
used to detect and remove features with outlier values (Mohanty
et al. 2018). This method was performed for OWL and SOWL
groups respectively. The features containing these outliers were
eliminated, and only common retained features across the two
groups were kept for further analysis (Supplementary Informa-
tion-SI provides detailed information).

Feature Selection and Transformation

With regards to the small sample size for training compared
to the dimensionality of feature vectors, an overfitting problem
would occur if all RSFCs were used as features in a classifier.
Therefore, it is necessary to conduct a feature selection step
to retain only the most discriminating features and eliminate
redundancy. First, a two-sample t test was applied to examine
significant differences in RSFC between the two groups and a
reduced number of RSFCs were retained by applying a statistical
P threshold (Anderson et al. 2011). Then, the retained features
obtained from the previous step were transformed to a lower-
dimensional space using principal component analysis (PCA)
(Jolliffe 1986) to eliminate correlations between features, and
a set of orthogonal principal components (PCs) were extracted
from the original dataset. Here all principle components were
reserved and the constructed dimension-reduced subspace was
only a change of the coordinate system without loss of informa-
tion (Wang et al. 2012a).

http://www.chictr.org.cn
https://www.fil.ion.ucl.ac.uk/spm/
http://resting-fmri.sourceforge.net
http://resting-fmri.sourceforge.net
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa374#supplementary-data
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Figure 1. The Siamese network architecture and Siamese-KNN classifier. (A) The Siamese network architecture, which was made up of two BP networks with identical
architecture and weights. The inputs to this network are two samples, and the output is the distance between two input samples in target space. (B) The Siamese-KNN
classifier used in this study. The subnetwork in the trained Siamese network and KNN classifier was cascaded as the final classifier. Abbreviation: KNN, K-nearest
neighbor.

Siamese-KNN classifier

The Siamese network comprises two identical neural networks
and measures the similarity between the input paired sam-
ples through mapping input features into a target space where
the sample distance (i.e., Euclidean distance) is small if two
samples belong to the same category, otherwise the distance
is large (Supplementary Figure S1). In our implementation, the
subnetwork in the Siamese architecture was a four-layer back-
propagation (BP) neural network (Fig. 1A) (Rumelhart et al. 1986).
The number of neurons included in the input layer and two
hidden layers were 36, 16, and 8 respectively, and the number of
neurons in the output layer is 2. The hyperbolic tangent function
(tanh) was adopted as the activation function in hidden layers.
The loss function is
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where Y is a binary label of the input paired subjects, Y = 0 if
the pair subjects belong to the same group (OWL or SOWL),
and Y = 1 otherwise. X1 and X2 are the features of input paired
subjects and are sent into the sub-networks and yield two
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is the loss function when two

subjects belong to the same group, and LI
(
EW

)
corresponds to the

loss function when two subjects belong to the different group
(Chopra et al. 2005). Before the training of the Siamese network,
the weights in the network were initialized from a Gaussian
distribution with μ = 0, σ = 0.01 (Lecun et al. 1998) and biases
were initialized to 0. Then, the samples in the training set were
pairwise fed into the network and the model was trained for
minimizing the above loss function using the Adam optimizer
(Kingma and Ba 2015). The batch size was 32, and the learning

rate (lr) was initialed from 0.0001 and decayed over each update
as follows:

1rdecayed = 1rinit × decay_rate
(
global_step/decay_steps

)

where decay_rate was 0.9, decay_steps was 500, and the maxi-
mum iteration step was 10 000.

The Siamese network maps input features into a target space,
but it does not classify samples. Thus, the simplest classifier
K-nearest neighbor (KNN) (Cover 1967), which is a distance-
based classifier, was employed to do the classification. When the
Siamese network training was completed, subnetworks in the
Siamese network and KNN classifier were cascaded as the final
classifier (Siamese-KNN) (Fig. 1B) to predict the label of testing
subjects. The Siamese network and KNN were implemented
in python (version 3.5.6) using TensorFlow (version 1.10.0)
and Scikit-learn library (version 0.21.3) (Pedregosa et al. 2011),
respectively.

Prediction and Evaluation

The prediction framework integrating feature selection, fea-
ture transformation, and classification was adopted to predict
optimal weight loss. As shown in Fig. 2, we implemented a
leave-one-out cross validation (LOOCV) to estimate classifier
performance as it provides an approximation of the test error
with lower bias and is more suitable for a dataset with a small
sample size (Mohanty et al. 2018). Specifically, for each LOOCV
iteration, one subject was left out as testing subject and the
remaining 36 subjects were used as training set. The above
feature selection and transformation process was wrapped in
the LOOCV to avoid overfitting. In the training step, the training
set (n = 36) was used for feature selection and to train the feature
transformation model. Then the training data and testing data

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa374#supplementary-data
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Figure 2. The leave-one-out cross-validation classification flowchart. MAD was employed to eliminate RSFC features with outlier values. On the training loop, the

LOOCV split dataset into a training set and testing set. The training set was used for feature selection and transformation (the dash line), and to train the Siamese-
KNN classifier (the dash-dotted line). Next, the built classifier was used to predict the label of the testing subject. After all loops, the average accuracy for all subjects was
then calculated. Abbreviations: MAD, median absolute deviation; LOOCV, leave-one-out cross-validation; PCA, principal component analysis; KNN, K-nearest neighbor.

were transformed to a new reduced feature space using the
trained feature transformation model. The optimal P threshold
in the feature selection was determined by a grid search (i.e.,
among 0.01 to 0.1 with stride 0.01). Then, the training data after
the feature selection and transformation process were used to
train the Siamese-KNN classifier. In the training of the Siamese
network, we put subjects in the training set (n = 36) into 630
sample pairs

(
C2

36 = 630
)
, and the number of samples available

for training was greatly augmented. In the testing step, the left-
out subject for testing was evaluated with the trained classifier
and the label of this sample was predicted. The above loop
was repeated 37 times to predict the labels of all subjects. The
accuracy, specificity, sensitivity, receiver operating characteristic
(ROC) curve, and area under the ROC curve (AUC) were used to
quantify the performance of the classifier.

Significance Testing

A permutation test was conducted to estimate the statistical sig-
nificance of the classification accuracy (Golland and Fischl 2003;

Ojala and Garriga 2009). In the permutation test, the classifica-
tion process was the same as the aforementioned step except for
the samples’ label in the training set which was randomly per-
muted prior to training. The generalization rate (GR) is defined
as the classification accuracy obtained by the classifier trained
on the randomly re-labeled classification labels, and GR0 is the
classification accuracy obtained by the classifier trained on the
real class labels. This permutation procedure was repeated 1000
times, and the number of times the GR was higher than the GR0

which was recorded. A P value for the classification was then
calculated by dividing this number by 1000 (Li et al. 2019a). The
result was determined significant if P was < 5% (P < 0.05).

Consensus RSFCs

Since we applied a cross-validation strategy to predict subjects’
label, slightly different RSFCs were selected in each loop. By
selecting the RSFCs that were repeatedly selected across all
loops (i.e., with a 100% occurrence rate), we obtained the con-
sensus RSFCs (Dosenbach et al. 2010; Jiang et al. 2018). For better
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interpretation and visualization, we grouped the 246 ROIs into 24
relatively larger brain regions (macroscale brain regions—MBRs)
anatomically defined by the Brainnetome atlas (Fan et al. 2016;
Jiang et al. 2018). Then, we counted the occurrence number of
each MBR in the consensus functional connections. The impor-
tance of each MBR was evaluated according to its occurrence
number in the consensus functional connections (Zeng et al.
2012).

Each PC represents a connectivity pattern. With regards to
the limited sample size, only PCs with high consistency across
LOOCV iterations were selected for subsequent analysis. The
consistency was measured by the mean Pearson’s correlation
coefficient between PCs in LOOCV iterations and corresponding
PCs calculated from all the datasets. The strength of consensus
RSFCs was also compared between two groups. The mechanisms
of negative functional connectivity are still under debate (Fox
et al. 2005; Murphy et al. 2009), and therefore, we focused on
the functional connections which exhibited positive values (one
sample t test, P < 0.01) (Wang et al. 2012b).

Comparison with Traditional Classifiers

In order to compare the performance of the Siamese-KNN classi-
fier against traditional classification approaches, we performed
a machine learning analysis using logistic regression (LR) (Tolles
and Meurer 2016) and support vector machines (SVM) (Cortes
and Vapnik 1995) with linear and radial basis function (RBF)
kernel and BP neural network, respectively. The feature selection
and feature transformation procedures were identical to the
aforementioned analysis. The other two hyper-parameters (RBF
kernel width γ and misclassification cost weight C) in SVM were
fine-tuned by maximizing LOOCV accuracy via a grid search.
The configuration of the BP neural network was the same as the
subnetwork of the Siamese network implemented in the current
study. Finally, the accuracy, specificity, sensitivity, and AUC were
used as performance metrics and McNemar’s test was employed
to compare the classification performance of Siamese-KNN with
these four traditional classifiers (Everitt 1977; Dietterich 1998).
The implementation of the LR and SVM classifiers was per-
formed in Python using the Scikit-learn library (version 0.21.3)
(Pedregosa et al. 2011), and BPNN was performed using Tensor-
flow (version 1.10.0).

Performance Evaluation of Different Network
Configurations

To evaluate the effects of the number of hidden layers and
neurons per layer on classification performance, we tried dif-
ferent numbers of hidden layers (i.e., among one to three hid-
den layers) and neurons (i.e., among 8, 16, 32) in each hidden
layer. The performance of Siamese-KNN with different network
configurations was evaluated through LOOCV.

Results
Demographic Characteristics

At baseline, there was substantial and statistically significant
difference (P < 0.001, Table 1) in percentage of total weight loss
between OWL and SOWL groups. There were no significant dif-
ference in gender, age, waist circumference, BMI, weight, HAMA,
and HAMD based on group (P > 0.05, Table 1).

Prediction Performance

In the LOOCV experiment, the Siamese-KNN achieved a classifi-
cation accuracy of 83.78% (Supplementary Table S1), which was
significantly higher than LR (64.86%, P = 0.016), SVM with linear
(64.86%, P = 0.039) and RBF kernel function (67.56%, P = 0.031),
but not significantly higher than the BP neural network (72.97%,
P = 0.125) (Table 2). The ROC (Supplementary Figure S2) with
an AUC of 0.84 indicated that the classifier developed here
performed better compared to a random classifier. The P value
revealed by the permutation test was < 0.001 (Supplementary
Figure S3), suggesting that the classification results of the
Siamese-KNN classifier were statistically significant. Different
Siamese network configurations showed similar prediction per-
formance (Supplementary Table S2), indicating its insensitivity
to network configurations and robustness in small sample size
classification.

Consensus RSFC Analysis

After removing features with outlier values, 3892 out of 30 135
RSFCs were retained (Supplementary Figure S4). The hyper-
parameter for P threshold in feature selection was determined
by the grid search method and the optimal P threshold was 0.06.
Since we applied a cross-validation strategy, slightly different
RSFCs were selected by statistical feature selection method in
each LOOCV iteration and there were 123 RSFCs (consensus
RSFCs) selected across all iterations (Supplementary Figure S5).
Then, we calculated the occurrence number of each MBR in
the consensus RSFCs to evaluate the importance of each MBR
(Supplementary Figure S6). Inferior parietal lobule, cingulate
gyrus, lateral occipital cortex, superior frontal gyrus, and insula
had the highest number of occurrences in the consensus RSFCs.
Direct comparison of RSFCs strength showed that the consen-
sus RSFCs between frontal and posterior parietal cortex were
stronger (P < 0.05) in OWL group compared with SOWL group
(Fig. 3).

Principal Components Representing Connectivity
Patterns That Differ Between OWL and SOWL Groups

The PC1, PC2, and PC3 in each LOOCV iteration were highly
correlated with the corresponding PCs calculated from the entire
dataset (mean r value > 0.90, Supplementary Figure S7). There-
fore, the first three PCs were consistent across each iteration
with great generalization and stability. To provide a clearer
visualization of the first three PCs, only 20 (∼10%) connections
with the highest principal component weight are shown in Fig. 4.
The PC1 connectivity pattern represents a network dominated
by interactions between regions including orbital gyrus (OFC),
cingulate gyrus (PCC), basal ganglia (caudate), insula, and visual
cortex (Fig. 4A). PC2 involves connectivity of the superior frontal
gyrus (MPFC), cingulate gyrus (ACC, PCC), basal ganglia (cau-
date), and precuneus (Fig. 4B). PC3 represents a network that
is dominated by connections between inferior parietal lobule
(IPL), precuneus, cingulate gyrus (PCC), and postcentral gyrus
(Fig. 4C). PC1 was negatively correlated with weight loss (Pre–
Post, P < 0.001) and �BMI (Pre–Post, P < 0.001); PC2 was positively
correlated with baseline weight (P = 0.001) and BMI (P = 0.010)
(Fig. 5).

Discussion
Here we show that baseline RSFC patterns were able to classify
obese patients with optimal and suboptimal weight loss at
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Table 1 Demographic and clinical information, mean ± SE, on entire sample and the two weight loss groups

Characteristics Entire sample (N = 37) OWL group (N = 19) SOWL group (N = 18) P

Age (years) 27.35 ± 1.2 29 ± 1.65 25.61 ± 1.71 0.162a

Gender 19M/18F 8M/11F 11M/7F 0.248b

WC (cm) 120.07 ± 1.84 118.97 ± 2.36 121.24 ± 3.04 0.558a

%TWL 25.03 ± 0.91 29.13 ± 0.84 20.71 ± 0.84 <0.001a

Baseline BMI (kg/m2) 38.69 ± 0.67 38.42 ± 0.94 38.97 ± 0.99 0.686a

Baseline weight (kg) 110.41 ± 2.77 107.14 ± 3.79 113.86 ± 4.00 0.230a

HAMA 9.30 ± 0.89 9.32 ± 1.13 9.28 ± 1.41 0.983a

HAMD 9.43 ± 0.98 9.53 ± 1.02 9.33 ± 1.33 0.923a

Notes: aTwo-sample t-test.
bChi-square test.
Abbreviations: OWL, optimal weight loss; SOWL, suboptimal weight loss; WC, waist circumference; %TWL, percentage of total weight loss; BMI, body mass index;
HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating Scale.

Table 2 The comparison of prediction performance between LR, SVM (linear kernel and RBF kernel), BP neural network, and Siamese-KNN

Methods

Metric LR SVM (linear) SVM (RBF) BPNN Siamese-KNN

LOOCV accuracy 64.86% 64.86% 67.56% 72.79% 83.78%
Sensitivity 57.89% 57.89% 63.16% 68.42% 84.21%
Specificity 72.22% 72.22% 72.22% 77.78% 83.33%
AUC 0.73 0.72 0.68 0.77 0.84
McNemar’s test (P) 0.016 0.039 0.031 0.125 —

Note: Abbreviations: LR, logistic regression; SVM, support vector machine; RBF, radial basis function; BPNN, back-propagation neural network; KNN, K-nearest neighbor;
LOOCV, leave-one-out cross-validation; AUC, area under the curve.

6 months post BS with accuracy of 83.78% and AUC of 0.84. These
findings corroborate our hypothesis that RSFC has potential
to serve as a neuroimaging biomarker to help predict weight
loss following BS. To the best of our knowledge, this is the
first study to that has explored the potential for RSFC to serve
as a biomarker for identifying obese patients with optimal
weight loss post-surgery using a multivariate machine learning
method.

With the relatively small sample size and large number
of features, potential overfitting is a major challenge for the
current study and most of other studies of the similar type.
In order to avoid overfitting and ensure the generalization
of the prediction model, feature selection (two-sample t test),
and dimension reduction methods (PCA) were employed in the
current study. Further, the Siamese network, which is a few-shot
leaning method and has the ability to learn from few labeled
samples, was employed for supervised feature transformation
and resulted in a significantly higher classification accuracy of
Siamese-KNN than LR and SVM. The accuracy of Siamese-KNN
was not significantly higher than the BP neural network, which
may be due to the small sample size. The excellent classification
performance of the Siamese-KNN classifier in the current study
showed its potential in clinical applications with small sample
size.

Principal Components

As noted above, the prediction analyses combined PCA with
machine learning methods identified patterns of multivariate
connectivity that were effective in discriminating those who
exhibited optimal weight loss after BS. The first three PCs
with better generalization and stabilization contributed most

to the classification performance. Each component represents a
brain subnetwork that accounts for differences in connectivity
between the two groups. It is worth noting that these network
components cannot be dissected as individual brain regions
or individual connections (Mokhtari et al. 2018). It is the
entire connectivity pattern of the network component that
was essential to prediction, in contrast to classical statistical
approaches comparing one region at a time.

PC1 represents a network that is dominated by interactions
between OFC, PCC, caudate, insula, and visual cortex, and
weaker PC1 was associated with higher weight loss. OFC is an
important region for assigning saliency value to food stimuli
(including cues) and is implicated in compulsive food intake
behaviors (Zhang et al. 2016). Increased activity of the OFC in
obesity is associated with greater food reward sensitivity and
significantly influences food intake behavior (Balodis et al. 2015).
PCC is a midline cortical region implicated in self-referential
processing (Northoff et al. 2006). Previous studies found that
PCC activity was higher in obese/overweight compared to lean
individuals (Kullmann et al. 2012) and that activity in this
region was reduced following chronic exercise (Legget et al.
2016). The connection between OFC and PCC is associated with
self-referential processes (Perrotin et al. 2015). The caudate
modulates food reward processing, and the caudate response
to the sight of calorie-predictive cues is higher in obese
individuals compared to lean controls (Ng et al. 2011). The
insular cortex, which also shows higher activity compared to
lean control subjects in response to food cues (Scharmuller
et al. 2012), is a multisensory region that serves as a nexus
integrating interoceptive awareness, perception, emotion, and
the processing of food visual stimuli (Frank et al. 2013). Prior
work has demonstrated that visual imagery is a prime driver of
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Figure 3. The consensus RSFCs that were stronger in the OWL than in the SOWL group. The size of the edges reflects the difference of RSFC strength between the OWL
and the SOWL group.

food cravings (Kemps and Tiggemann 2010). Given this complex
pattern, PC1 may represent the interactions between the regions
from the reward (OFC, caudate), self-referential (PCC), salience
(insula), and visual networks. These network interactions may
play an important role in weight loss processes after BS.

PC2 was correlated with baseline weight and BMI and
involves connectivity of MPFC, ACC, PCC, caudate, and pre-
cuneus, which are all core brain regions of the DMN. Activity in
the DMN is thought to reflect a baseline state of brain function
in which subjects are focused on their internal mental state.
Several studies have reported that aberrant DMN activity may
result in increased focusing on internal states or sensations
such as appetite, food-related cognitive factors, or discomfort
(Tregellas et al. 2011). Specifically, the MPFC is a core brain region
in this network component and connects with many other
brain regions. MPFC plays a critical role in emotional/behavioral
functions that may affect appetitive behavior, and it is also a
key brain region for value-based decision-making (Li et al. 2018)
and reward-related behaviors (Vogt 2005). ACC is implicated in
executive control of internal/external stimuli-related, context-
dependent behaviors involving emotional information, and
modulation of emotional response (Bush et al. 2000; Li
et al. 2018). The abnormal activity of ACC may contribute to
the imbalance between cognitive/emotional processing and

increased risk to overeat (Kullmann et al. 2012; Meng et al.
2018). Precuneus and PCC play a critical role in self-referential
processes and appetite control such as evaluating benefits of
not eating compared with eating high-calorie foods (Yokum
and Stice 2013). In obese individuals, the precuneus has greater
activity at baseline (Zhang et al. 2015a) and higher functional
connectivity to the DMN than lean adults (Kullmann et al. 2012).
The caudate modulates reward processing and is implicated in
various cognitive functions including inhibitory control (Dalley
et al. 2011; Tschernegg et al. 2015) and goal-directed behavior
(Balleine and O’Doherty 2010), and it has also been shown to play
critical roles in ingestive behaviors (Nakamura and Ikuta 2017).
The caudate-PCC/precuneus connectivity is associated with the
success of body weight control (Nakamura and Ikuta 2017).
Therefore, PC2 can be considered as a network that reflects
the function of self-referential and executive control process,
which may play an important role in body weight control.

PC3 is dominated by connections between IPL, precuneus,
PCC, and postcentral gyrus. IPL, precuneus, and PCC are
core components of the posterior DMN, which is involved in
mostly unconscious processes that include self-representation,
emotion, and salience detection (Knyazev 2012) as well as
episodic memory quality (Ritchey and Cooper 2020). The
postcentral gyrus is the primary somatosensory cortical area,
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Figure 4. The connectivity patterns revealed by PCA. (A) PC1 connectivity pattern, (B) PC2 connectivity pattern, and (C) PC3 connectivity pattern. The size of each node
in the left is directly related to its number of connections. Nodes from the same macroscale brain region are depicted in the same color. In the circular connectograms,
the size of edges reflects the number of connections.

involved in the integration of sensory stimuli with emotions,
memory, and the body’s internal state (Aviram-Friedman et al.
2018). Therefore, PC3 may represent a network involved in
unconscious processes of self-representation and somatosen-
sory signals.

Consensus RSFC Analysis

During the cross-validation process, there were 123 consen-
sus RSFCs selected across all loops for discriminating between

individuals with optimal versus suboptimal weight loss. Com-
paring connection strengths between the two groups revealed
that consensus RSFCs between the frontal cortex and parietal
cortex were stronger in the OWL group than in the SOWL group.
The frontoparietal control network regulates reward and cog-
nitive functions associated with appetite and eating behavior
(Park et al. 2016). Lower activation of frontoparietal brain regions
implicated in inhibitory control may lead to greater sensitivity
to the rewarding effects of highly palatable foods and disrupt
the balance between reward processing and inhibitory control
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Figure 5. Correlation analysis between behavioral measurements and PCs. Abbreviations: PC, principal component; BMI, body mass index.

(Val-Laillet et al. 2015; Park et al. 2016). The subjective sense
of loss of control over eating after BS has significant impact
on weight loss outcomes, independent of the amount of food
that is consumed (White et al. 2010). Therefore, the functional
connection strength within the frontoparietal control network
and the capacity for inhibitory control may influence weight loss
post-surgery.

Limitation and Future Directions

Although this study has demonstrated that RSFC at baseline
can be used to predict optimal weight loss, there are still
several limitations. First, the study was constrained by the small
sample size and the lack of an independent validation data
set. Therefore, it is important to confirm the results using large
multi-center datasets in the future. Second, the duration of
resting-sate fMRI scan plays an important role in estimating
RSFC. While many researchers use 5–7 min of resting-state
data, as in the incurrent study (6 min), some investigators have
found that the reliability and stability of RSFC estimates can
be improved by increasing resting-state imaging duration (Birn
et al. 2013). Therefore, it is important to replicate these results
with longer resting-state BOLD sessions. Third, other imaging
modalities including diffusion tensor imaging and T1-weighted
imaging, peripheral hormones and clinical indices capturing
complementary information could be included to improve the
prediction performance. Fourth, the hypothalamus plays an
important role in the regulation of eating behavior and body
weight (Le et al. 2020a; Li et al. 2014; Zhang et al. 2020). The
hypothalamus is not only the center of homeostatic control of
eating, but it also communicates with multiple brain regions
involved in reward (OFC, striatum) (Lips et al. 2014), interocep-
tion (posterior insula), motivation (thalamus), and inhibitory
control (frontal and parietal cortices) (Le et al. 2020a) to
determine food intake (Farr et al. 2016; Le et al. 2020b; Zhang
et al. 2018). However, the hypothalamus was not included in the
Brainnetome Atlas and some possibly important RSFCs of the

hypothalamus are therefore not included in the classification
scheme.

Conclusion
BS-induced weight loss varies among individuals, and differ-
ences in brain function between individuals are likely to influ-
ence long-term success in sustaining weight loss. Here we show
that resting-state functional connectivity at baseline can be
used to identify those obese patients with optimal weight loss
after BS with classification accuracy of 83.78%. Connectivity
patterns contributing to the prediction consisted of complex
multivariate network components in brain networks associated
with salience, reward, self-referential, and cognitive processing.
Specifically, functional connections between the frontal cortex
and parietal cortex were enhanced in the OWL group relative
to the SOWL group, indicating that the strength of inhibitory
control ability may influence weight loss after BS. These findings
deepen our understanding of the underlying neurobiological
mechanisms of variability in weight loss and demonstrate the
feasibility of RSFC-based individualized prediction of optimal
weight loss after BS.
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