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Abstract

We present the design, implementation, and evaluation of a multi-sensor, low-power necklace, 

NeckSense, for automatically and unobtrusively capturing fine-grained information about an 

individual’s eating activity and eating episodes, across an entire waking day in a naturalistic 

setting. NeckSense fuses and classifies the proximity of the necklace from the chin, the ambient 

light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building 

block of the eating activity. It then clusters the identified chewing sequences to determine eating 

episodes. We tested NeckSense on 11 participants with and 9 participants without obesity, across 

two studies, where we collected more than 470 hours of data in a naturalistic setting. Our results 

demonstrate that NeckSense enables reliable eating detection for individuals with diverse body 

mass index (BMI) profiles, across an entire waking day, even in free-living environments. Overall, 

our system achieves an F1-score of 81.6% in detecting eating episodes in an exploratory study. 

Moreover, our system can achieve an F1-score of 77.1% for episodes even in an all-day-long free-

living setting. With more than 15.8 hours of battery life, NeckSense will allow researchers and 

dietitians to better understand natural chewing and eating behaviors. In the future, researchers and 

dietitians can use NeckSense to provide appropriate real-time interventions when an eating 

episode is detected or when problematic eating is identified.

shibo.zhang@northwestern.edu. 
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1 INTRODUCTION

Automatically and unobtrusively monitoring an individual’s eating activity in free-living 

settings has been a long-standing objective of the research community [11]. The possibility 

of monitoring eating activity automatically will allow individuals, researchers, and 

ultimately clinicians to support various wellness goals in the form of interventions. For 

example, clinicians can design a system to trigger real-time interventions when people spend 

too much time eating [51], or a researcher can request for timely information about energy 

consumption in an individual’s diet [12]. It has been well established that such interventions 

can help treat eating disorders in the long term and improve the quality of life [16]. 

However, it is difficult to provide eating-related interventions without automatically 

detecting the eating activity and fine-grained actions associated with it. Thus, it is extremely 

important for any eating activity monitoring system to detect the eating activity that occurs 

every day, with diverse food choices, at varying times and contexts during the waking day, 

and a myriad of environments.

The current gold-standard techniques for monitoring an individual’s dietary habits are either 

asking the individual to maintain a food journal or for dietitians to perform 24-hour dietary 

recalls to record food items that were consumed by the individual in the previous 24 hours. 

As participants often record all their meals at the end of the day, such techniques are subject 

to user bias and forgetfulness [5, 25]. To complement 24-hour dietary recalls and enable 

more timely feedback, a large body of work around automatic dietary monitoring has 

emerged, with wearable sensors showing promise in automatically detecting eating 

behaviors and linking them to eating episodes [5, 27]. Researchers have explored the 

possibility of detecting eating activity using wrist-based inertial sensor data [18, 55, 61], on-

ear- or on-throat-based audio sensor data [8, 13, 45], image-based information [41, 46, 56], 

or a combination of one or more of these techniques [33, 35, 50]. There is existing support 

among behavioral researchers, social scientists, and clinicians for mobile adaptive 

interventions such as ecological momentary interventions (EMIs) and just-in-time adaptive 

interventions (JITAIs) [29]. These interventions use contextual inputs, such as detection of 

an eating episode or number of mouthfuls consumed, to adapt the content and timing of 

interventions to participants. The behavioral researchers, or social scientists can use the fine-

grained output of the automatic dietary monitoring systems to provide necessary 

interventions (e.g., providing intervention when they detect poor chewing habits [53]).

However, many of the existing automated eating detection systems are either obtrusive, or 

they have not been tested in a completely free-living setting with diverse BMI populations 

(the people most likely to benefit from such a technology) or have not been tested in 

longitudinal studies beyond a few days. Indeed, many of the existing dietary monitory 

studies have been validated on a student population and in a university environment. This 
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population might not be representative of a population that could benefit from real-time 

interventions intended to prevent problematic eating behaviors. It is currently unknown 

whether a model developed on people with a normal BMI will likely succeed when tested on 

people with obesity, a population most likely to benefit from such adaptive interventions. In 

our study, we recruited people with varying BMI levels and found that automatic dietary 

monitoring system models trained on participants without obesity have a worse performance 

when tested on individuals with obesity (details in Section 6). It is therefore necessary to 

build systems and models that can support real-time eating detection in various demographic 

groups.

To bridge this gap, in this paper, we present the design and evaluation of NeckSense, a 

multi-sensor necklace for automatically detecting an eating episode. The goal of NeckSense 
is to ensure that it can accurately, automatically, and unobtrusively monitor its wearer’s 

eating activities that occur at any time during the day, in any setting, while ensuring that the 

device has at least an entire waking day of battery life. However, most importantly, we want 

to ensure that NeckSense generalizes and detects eating accurately for a demographically 

diverse population, including people with and without obesity.

In this work, we assume that the combination of an individual’s leaning forward action, 

performing the feeding gestures, and then periodicity of chewing behavior together 

constitutes an in-moment eating activity. We design and develop NeckSense, a necklace with 

an embedded proximity sensor, an ambient light sensor, and an Inertial Measurement Unit 

(IMU) sensor that can capture these aforementioned actions. Although researchers have 

previously explored using the proximity sensor to detect the eating activity by monitoring 

the jaw movement [15], in this work we demonstrate that we can detect the eating activity 

more accurately if we augment the proximity sensor data with the ambient light and IMU 

sensor data. To detect the eating activity, NeckSense fuses and classifies features extracted 

from these sensors. It then clusters the predicted eating activity to determine an eating 

episode. Figure 1 provides an overview of NeckSense. We evaluate the feasibility of 

NeckSense by conducting two user studies: a longer, intermittently-monitored free-living 

Exploratory Study (semi-free-living) and another completely Free-Living Study. The 

Exploratory Study allowed us to identify sensors that were useful in detecting the eating 

activity. It also allowed us to identify usability concerns with the necklace. The findings of 

the Exploratory Study allowed us to improve NeckSense. We evaluated the improved 

necklace on a diverse non-student population recruited for two full days in a completely 

free-living scenario, while participants carried out their everyday activities. While designing, 

developing, and evaluating NeckSense to address practical challenges in free-living studies 

pertaining to (a) accurately monitoring the eating activity that occurs in diverse settings and 

with participants within varied BMI range, (b) usability and comfort of wearing the device, 

and (c) collecting the sensor data energy efficiently, we make the following key 
contributions:

1. We describe the design and implementation of a multi-sensor necklace for 

detecting eating episodes. The necklace utilizes sensor data from its proximity, 

ambient light, and IMU sensors to determine eating activity. We utilize 

periodicity in chewing to apply a longest periodic subsequence algorithm on the 
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proximity sensor signal, and then show the benefits of adding ambient light, 

IMU, and hour-of-day to improve proximity-based detection of eating episodes.

2. We evaluate the system in two studies: an exploratory semi-free-living and 

another completely free-living study to determine the possibility of detecting 

eating episodes in naturalistic settings. The studies involved participants with 

varied BMIs. The participants consumed 117 meals during this study period. 

Overall, we found that in a semi-free-living setting, the necklace could identify 

eating episodes at an ambitious fine-grained per-second level with an average F1-

score of 76.2% and at a coarse-grained per-episode level of 81.6%. This is an 8% 

improvement over using only data from the proximity sensor for eating episode 

detection. As expected, the fine-grained performance drops to 73.7% and the 

coarse-grained performance to 77.1% in a completely free-living setting. We also 

show improvement when comparing our algorithm to a prior system’s algorithm 

that uses solely proximity sensing for eating detection.

3. We evaluate the energy performance of the system during these studies and 

observed that on average the battery life of the device during the Exploratory 

Study was 13 hours, while the battery life improved to 15.8 hours in the Free-

Living Study.

4. We will anonymize and make both our datasets, the source code, and the design 

files for the NeckSense hardware available for use by the community.1 The 

dataset contains the sensor traces collected from 20 participants, tagged with 

ground truth labels generated from video and clinical standard labeling practices.

Overall, the necklace provides a practical solution for automatically monitoring eating 

activity in completely free-living settings. The system has been validated in both individuals 

with and without obesity, improving reliability of the eating detection system and laying the 

ground work for future mobile adaptive interventions to gain further insight on dietary 

habits. In the near future we anticipate that other researchers will use our dataset to validate 

their own methods for chewing sequence and eating episode detection.

2 RELATED WORK

Large-scale, whole-population interventions [34], such as advertising campaigns targeted 

towards curtailing eating-related disorders, have had little or no success in addressing the 

obesity epidemic [38, 39, 43, 58]. Instead, researchers are proposing just-in-time 

interventions [19, 28, 36, 37] to test personalized interventions that are tailored to person-

specific needs [47, 54]. Detecting eating automatically is the first step towards testing these 

personalized just-in-time interventions. However, several factors make automated eating 

detection challenging to implement. These factors range from identifying the right device, 

signals, or form-factor to validating eating activity using visual confirmation in real-world 

settings.

1The dataset and code can be found at http://doi.org/10.5281/zenodo.3774395

ZHANG et al. Page 4

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1 Eating Detection Techniques

Researchers have proposed several techniques to automatically detect the eating activity. We 

detail some of the proposed techniques, grouped based on signal type.

Audio and Video: Automated sensing platforms using image- and audio-based techniques 

with sensors placed around the throat or ear have shown promise in detecting eating [7, 13, 

35, 40, 45, 56, 57]. However, the utility of these sensors is limited by short battery life 

(reducing autonomy) and security or privacy concerns. Eating detection systems designed 

without camera or audio components (as in this work) reduce privacy concerns and enable 

longer battery life [3].

Physiological: Various techniques have been used to indirectly detect chewing, which 

involve electromyography (EMG) [60] sensors on an eye-glass frame, in-the-ear 

microphones combined with photoplethysmography (PPG) sensors [42], and 

mechanoelectrical sensors placed directly around the neck [7], among others [30, 31]. While 

these sensors have shown promise in controlled environments, they have not been tested in 

free-living populations or over significant periods of time, and many need direct skin 

contact, which can be uncomfortable and affect adherence, thereby limiting their potential 

utility in longitudinal studies.

Inertial or Proximity: Several researchers have proposed techniques to automatically 

detect eating using inertial sensors embedded in wrist-worn devices and phones [18, 35, 50, 

55]. However, wrist-worn sensors are limited by several confounding gestures [61]. More 

recently, researchers have explored the possibility of detecting chewing bouts and eating 

episodes using only an on-neck proximity sensor, combined with a threshold-based 

algorithm [15]. We show that our multi-sensor method outperforms such a threshold-based 

method in recalling chewing sequences, even in a naturalistic setting.

Our method re-imagines inertial or proximity sensing modality by fusing them with data 

from an ambient light sensor, chewing-related periodic subsequence features, and time of 

day. We present an eating detection framework that uses this fusion and is tested in free-

living settings.

2.2 Eating Detection in Naturalistic Setting

Researchers have explored the use of various sensors for detecting the eating activity outside 

laboratory settings [9, 10, 20–22, 42, 60], but the length of continuously recorded 

experimentation rarely exceeds more than few hours in a day, limiting its potential for 

longitudinal eating-related studies. Table 1 lists some existing research that utilizes various 

sensing modalities to detect the eating activity. Overall, we identified some key factors that 

have made these free-living studies hard to execute:

Validation Requirement: A straightforward validation technique that researchers 

commonly adopt is self-reporting; that is, the researchers requested participants to note 

down the start and end time of every meal that the participant consumes [17, 48, 49] or 

create a food journal [42, 60]. However, manually noting details about every meal can be 
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burdensome and error-prone [25]. To reduce the burden on participants, several researchers 

have proposed the use of a front-, upward-, or downward-facing camera [9, 13, 26, 55, 56, 

59] for validating their system’s performance. Researchers have tested various on-body 

camera positions and found that the shoulder camera is the best for privacy and easiest to 

wear [2]. This placement was also found to be best at capturing eating-related activities [4]. 

We thus use a shoulder-mounted camera for validating our device’s performance.

Diverse Population Requirement: While several sensing systems have shown promise 

in the wild, they have predominantly been validated within the student population [13, 15]. 

Before such systems can be truly generalizable, additional data are needed from a diverse 

population sample (especially including people belonging to various body mass ranges) that 

are not only student based or focused on people without obesity. People with varied body 

shapes may experience varied comfort levels and accuracy of any eating detection system, 

potentially confounding the system, but enabling deeper insight and translation of research 

to practice. To the best of our knowledge, we are among the few to explicitly validate an 

automated eating detection system with a population of people with obesity.

3 SYSTEM DESIGN & IMPLEMENTATION

While keeping the challenges of free-living data collection in mind, we present our multi-

sensor neck-worn device that is tolerant of varying sensor positions as captured in real-world 

settings, comfortable to wear, semi- autonomous (only requiring users to turn on/off and 

charge the device at the end of the day), and validated using a custom-designed ground truth 

camera with full-day battery life (allowing uninterrupted ground truth monitoring). We next 

present the design of the multi-sensor eating detection system and also describe the camera 

used for ground truth validation. These devices were used in two user studies: a semi-free 

living Exploratory Study and a completely Free-Living Study.

3.1 Defining Eating

We consider the act of mastication (i.e., the act of periodically bringing the jaw together to 

grind food) as a chewing sequence. In this paper, we define an eating episode as an 

aggregate of chewing sequences that occur within a short duration of time, and these 

chewing sequences are separated from other chewing sequences by a large time gap. An 

eating episode can represent either a snack or a meal. Figure 2 pictorially represents a 

chewing sequence and an eating episode.

Chewing Sequence: We define a chewing sequence as a combination of chews that occur 

together with breaks no greater than 3 seconds between subsequent chews. In this work we 

determine chews (detailed in Section 4) by applying a prominent-peak detection algorithm 

on the proximity sensor data, followed by running a longest period subsequencing algorithm, 

and finally extracting and classifying features from proximity, IMU, and ambient light 

sensors.

Eating Episode: We define an eating episode as a group of chewing sequences with inter-

chewing sequence breaks no larger than δ seconds. Two adjacent chewing sequences with a 

gap longer than δ seconds are identified as two separate eating episodes. We use a data-
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driven approach to determine the value of δ. Figure 3 presents the cumulative distribution 

function (CDF) of the interval between subsequent chewing sequences. From the figure we 

can observe that a value for δ between 540 and 1100 seconds provides a clear boundary 

between eating episodes. We decided to use δ = 900 seconds in our evaluation. This choice 

of δ empirically validates the inter-episode interval reported or used by researchers 

previously [13, 32]. Applying this rule allowed us to turn chewing sequence labels to eating 

episode labels with exemption from ambiguity when evaluating eating episode prediction.

Our definition of eating episodes as well as the choice of δ is similar to the definition 

presented by Bi et al. [13]. However, Bi et al. do not provide a definition of the chewing 

sequence. On the other hand, Chun et al. propose the idea of sub-dividing the chewing action 

into both chewing and chewing bouts, where chewing was described as an uninterrupted 

sequence of chews that lasted for 5 seconds; chewing that occurred within 30 seconds of 

another chewing was part of the same chewing bout. Unlike prior works, our choice of 

grouping chewing sequences into episodes is from a data-driven approach.

3.2 Necklace Design

To evaluate the feasibility of using a neck-worn method for eating and chewing detection, 

we designed and developed a multi-sensor necklace prototype, NGen1, that was used in the 

Exploratory Study. Lessons learned from the study helped in designing and developing the 

NGen2 prototype necklace that was used in the Free-Living Study (Section 5 presents the 

study details). Figure 4 presents the overview and hardware architecture of the necklace. The 

NGen2 device is still a prototype, and the form-factor of a finished NeckSense product is 

beyond the scope of our research and will likely result in a much smaller prototype than the 

NGen2.

Signal and Sensors: Our proposed system design is based on observation and validation 

of eating activities in laboratory settings. We observed numerous eating activities and 

noticed that during most eating activity an individual leans forward to reach for the food; the 

hand feeds the food to the mouth; and the jaw continuously grinds to perform the repetitive 

chewing action. To capture these eating related signatures, we evaluated several sensors and 

finally chose an IMU sensor, a proximity sensor, and an ambient light sensor, all of which 

were embedded into a neck-worn device. The IMU sensor facilitates determining leaning 
forward movement (i.e., the Lean Forward Angle [LFA]). The proximity sensor on the 

necklace is directed towards the chin and allows monitoring the variation in signal while an 

individual is chewing. The on-necklace ambient light sensor’s reading drops when the 

individual’s hand moves towards the mouth during a feeding gesture, thus allowing detecting 

of the feeding gesture. We observed (described in Section 6) that although each sensor can 

individually detect the eating action, fusing the signals from these sensors improves the 

overall detection performance. We thus use all the sensors in the final NeckSense’s design.

Hardware Design: Both NGen1 and NGen2 are centered around a Nordic NRF52832 SiP 

that has an ARM Cortex M4 CPU and a Bluetooth Low Energy (BLE) communication 

interface. Two sensors chips, VCNL4040 and BN0080, are embedded onto the necklace. 

The VCNL4040 is a combination of proximity and ambient light sensor. We intend to 
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capture the chewing action using this sensor, and thus it faces upward, toward the user’s 

chin. The BN0080 is an IMU sensor that is utilized for computing the Lean Forward Angle 

(LFA). All sensors were sampled at 20 Hz. The proximity, ambient light, and IMU sensors 

sequentially write to a memory buffer. When the buffer reaches its capacity, the data are 

written to a local micro SD (μSD) card. The buffer helps in increasing the writing 

throughput and reducing the power consumption by writing periodically. The whole device 

is powered by a 350 mAh Li-ion battery, which guarantees more than 14 hours of battery 

life, making it possible to monitor eating activities during an entire waking day.

Time Keeping and Synchronization: Each chewing gesture is a short-lived action, and 

thus to ensure synchronization it is important to maintain a highly accurate time keeping 

system. The necklace has to ensure that it always records an accurate timestamp without any 

manual calibration and time setting. NGen1 did not have a real-time clock (RTC) module 

with a backup battery, and so when the main battery failed, the data had invalid timestamps, 

making synchronization of the necklace data and camera video challenging. As an 

improvement, we introduce an RTC in the NGen2 necklace so that it maintains time at a 2-

ppm accuracy. With its rechargeable backup battery, it can keep time for more than 1 year 

after the main power source is dead. The accurate RTC timestamp ensures that the system’s 

clock does not drift substantially. Additionally, whenever the necklace connects with a hub 

device (e.g., a smartphone), it automatically fetches the current time from a time server by 

calling the Current Time Service via BLE; the service helps to correct the time and keep it 

during a long period of study. We empirically observed that this feature eliminates the 

inevitable time drift of <180 msec per day.

Mechanical Design: We designed the necklace along with a case and a strap, as shown in 

Figure 4. This design has evolved over multiple iterations (with feedback from the 

Exploratory Study) to ensure that, in addition to being functional, it is comfortable to wear. 

The necklace’s band is a sports-style porous silicone band that wraps around the neck. This 

was an improvement in NGen2 over NGen1 where we used a leather band. The case housing 

the printed circuit board (PCB) and sensors is connected to this band. The silicone material 

and carefully balanced weight of the case ensures that the sensor’s position is stationary, 

even during vigorous activities. This property guarantees that we can collect quality data, 

even in noisy free-living environments. The resin material used for manufacturing the case 

(commonly used in wearable jewelry) is smooth and skin friendly. One face of the case in 

NGen2 was curved to ensure that it was comfortable on the neck; this was an improvement 

based on feedback from NGen1. Based on user feedback, we also add breathable holes to the 

band to increase user comfort. Recent research indicates that a participant will adhere to 

wearing a device if the participant can decide on the device from a collection of devices with 

varied designs [1]. We thus manufactured devices with diverse designs and colors. We 

anecdotally observed that when participants chose their own device, they wore it for a longer 

duration.

3.3 Ground Truth Video Camera

We used a fish-eye lens fitted wearable camera (that captured both audio and video) to 

continuously record participant behavior including fine-grained eating related activities. This 
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recording provided the ground truth labels for learning models and validating free-living 

studies [2]. Once the neck-worn sensor is validated, we envision that the necklace’s user will 

not use this camera. Figure 5 illustrates the various components of the wearable camera 

system. The system comprises of a Qcam QSD-722 camera, a fish-eye lens, a shoulder strap, 

and an ID card to conceal the device. The camera is positioned around the shoulder with the 

lens facing the participant’s dominant hand rather than pointing outward (e.g., as in 

SenseCam [26]). This minimizes privacy concerns of bystanders, although bystanders to the 

side of the participant are noticeable. At this angle, the wearable camera can capture the 

mouth, the jaw, the neck, and the utensil and foods consumed (see Fig. 5A). As privacy is a 

significant concern for the participant, we provided participants with the option of deleting 

segments of video data they did not want study supervisors to see.

4 EATING DETECTION FRAMEWORK

We next present our method of predicting the chewing sequences and eating episodes from 

the signals generated by the sensors. The entire processing pipeline is presented in Figure 6. 

The pipeline consists of five steps that we next describe.

4.1 Signal Pre-processing

The signals extracted or calculated from the necklace’s sensors include (i) proximity to chin, 

(ii) ambient light value, (iii) LFA, and (iv) energy signal defined as the sum of squares of tri-

axial accelerometer values.

i. Proximity to chin: We extract the proximity to the chin from the necklace’s 

proximity sensor. The sensitivity range of the proximity sensor is set between 5 

and 250 mm. Since the average neck length of a human being varies between 100 

and 120 mm, this setting should sufficiently capture the chewing action. Figure 7 

shows representative signals when the participant was walking, resting, 

utensiling (using utensils, but not eating), and eating. During the eating activity, 

smaller peaks in the proximity sensor’s signal signify chews, while the larger 

peaks signify bites.

ii. Ambient light value: The necklace’s ambient light sensor provides the ambient 

light value. The ambient light value is highest when the users turn their heads 

right or left, since the sensor is not obstructed by the head. The value is lowest 

when the users lower their heads and move their hands toward their mouths 

during a feeding gesture. We can see the periodic drop in ambient light values 

during the eating activity in Figure 7.

iii. LFA: We obtained the necklace’s absolute orientation in the form of quaternions 

from the on-necklace IMU sensor. The quaternion is a 4D vector q representing 

the rotation axis and the angle of rotation around that axis. q can be projected 

into different planes to gain physical angles and infer activities, such as leaning 

forward and to the side, and to determine the orientation of the wearer. However, 

not all of these angles are related to the eating process. The most informative 

angle is the LFA, the angle between the IMU and the Earth’s surface. When the 
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wearer sits straight, the LFA is close to 90°. LFA is calculated by applying the 

dot product of the normal vectors of two planes:

LFA = acos < n1, n2 >

where the normal vector of the Earth’s surface is the z-axis, and the normal 

vector of the IMU is obtained through the quaternion transformation:

n1 = 0,0, 1 n2 = qn1q−1

where q is a unit quaternion that rotates n1 to obtain the normal vector of the 

IMU. It is worthwhile to note that while LFA does not always occur in the field, 

particularly when snacking while sitting on a couch, features from LFA can 

enhance detection of bites.

iv. Accelerometer’s energy value: The on-necklace IMU also provides the tri-axial 

accelerometer data (ax, ay, az) capturing acceleration from the three axes. We 

calculate the energy signal as the sum of squares of the tri-axial acceleration 

components, E = ax2 + ay2 + az2. Features computed from E help reduce false 

positive rates generated during physical activities. From Figure 7 we can see that 

during the eating gesture there are peaks in the energy signal. However, unlike 

the peaks observed in the signal during the walking activity, the peaks observed 

during eating are sparse.

4.2 Labeling

The process of labeling the data allows establishing the ground truth. Annotators labeled the 

start and end of every chewing sequence by visually and acoustically confirming the 

information using the video captured by the camera. If a participant continuously chewed 

during her entire meal, the entire episode was labeled as one chewing sequence. Annotators 

marked the end of a chewing sequence when the participant stopped chewing for at least 3 

seconds. For example, if the participant took four breaks that were each at least 3 seconds 

long during the meal, there were five chewing sequence labels in that meal.

From the labeled chewing sequences, the annotators identified the eating episodes. As 

discussed in Section 3.1, we define an eating episode as a group of chewing sequences with 

chewing sequence breaks no longer than 900 seconds. Any two adjacent chewing sequences 

with a gap longer than 900 seconds were regarded as two separate eating episodes. Applying 

this rule allowed the annotators to establish eating episode labels from the chewing sequence 

labels.

4.3 Segmentation

We employed time-based methods on the necklace’s proximity signals to detect periodic 

chewing patterns. The proximity sensor was selected for the segmentation step as it provides 

the right balance between identifying most periodic chewing patterns, which are considered 

eating segments (high recall), and not introducing many false positives (acceptable 
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precision). As described in Section 4.3.1, to detect the candidate chewing subsequence, we 

used a peak-finding algorithm followed by a periodic subsequence algorithm in the 

segmentation step. Overall, we observed that both the proximity sensor and the IMU sensor 

could independently capture all eating episodes (recall = 1) for certain parameter value 

combinations. However, if we considered all sensor combinations and parameter choices that 

yielded a recall of over 85% in detecting eating episodes, the F1-score of detecting eating 

episodes using the proximity sensor was 17.2%, as compared with an F1-score of 8.8% 

when using the IMU sensor. This was almost a 2x improvement, and it indicated that more 

data could be safely discarded in the segmentation step if the proximity sensor data were 

used for the segmentation, as compared with using the IMU. Compared with proximity and 

IMU, the light sensor had a much lower recall during the segmentation step, indicating that 

we would miss several eating episodes if the ambient light sensor was used for the 

segmentation step. Thus it was not considered useful for the segmentation step.

4.3.1 Prominence-based Peak-finding Algorithm.—The first step in detecting 

periodic sequences is to identify peaks in the proximity signal. We applied a typical peak-

finding algorithm that returned both prominent and non-prominent peaks (non-prominent 

peaks may be associated with noise and other activities). Chewing peaks are often prominent 

peaks that stand out due to their intrinsic height and location relative to other nearby peaks. 

For example, in Figure 8 we observe several local maximum, yet non-prominent, peaks that 

are identified during the resting period. However, more prominent peaks are apparent during 

the eating (chewing action) period.

4.3.2 Longest Periodic Subsequence Algorithm.—We adapted the longest periodic 

subsequence algorithm to identify chewing peaks that were ϵ-periodic [24]. The time points 

of the peaks from the prominence algorithm generated a sequence of timestamps for each 

peak. In this section we explain the significance of ϵ-periodic, define the periodic 

subsequence problem, and present a dynamic programming solution for the problem.

DEFINITION 1.

ϵ-periodic: Given a sequence of increasing timestamps ti, where i ∈ 1 …N , the difference 

between consecutive numbers is pi = ti + 1 − ti, ∀i = 1… N − 1  if pmin and pmax are the 

smallest and largest values of these differences, respectively, then the sequence is defined to 

be ϵ-periodic if:

pmax
pmin

< 1 + ∈

PROBLEM 1.

Relative error periodic subsequence: Given a sequence of increasing numbers ti, find all 

longest subsequences that are ϵ-periodic.

ZHANG et al. Page 11

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PROBLEM 2.

Absolute error periodic subsequence: Given a sequence of increasing numbers ti, find all 

longest subsequences such that consecutive differences are bounded by pmin and pmax.

During chewing activity, periodic peaks are generated in the proximity signal. In terms of ϵ-

periodic subsequence, the value ϵ determines to what extent the frequency of these peaks is 

changing over time. A smaller ϵ indicates less change in the frequency during the periodic 

subsequence (i.e., candidate chewing activity). We empirically investigate and set ϵ = 0.1 to 

remove periodic subsequences with high variability in the frequency, which are most likely 

generated by non-chewing activity. We empirically set the range of the number of peaks for 

a periodic subsequence to be between 4 and 100.

Problem 1 is not trivial when the lower pmin and upper bound pmax are not known. However, 

given that the chewing frequency range is known [44], these bounds can be estimated. The 

problem can then be solved by evoking multiple calls to a function that implements the 

absolute error periodic subsequence problem. Each time a function call is made by passing a 

new pmin and pmax starting from the smallest inter-chew distance min all the way until the 

largest inter-chew distance max (incrementing pmin by multiples of [1 + ϵ]. Chewing activity 

has been shown to mainly occur in the range of 0.94 Hz (5th percentile) to 2.17 Hz (95th 

percentile); as a result we set min = 0.4 seconds and max = 1.5 seconds. We solve the 

absolute error periodic subsequence problem using dynamic programming, by defining the 

following recurrence:

OPT i = max
L

OPT j , ∀j ∋ pmin < ti − tj < pmax

The absolute error periodic subsequence algorithm is called by passing the entire array of 

timestamps t[i], a value for pmin and pmax. It then iterates through the entire array, and for 

every index i it calculates the longest subsequence that ends at index i, searching only the 

previous indices in the array that satisfy the inter-chew distance pmin and pmax. Figure 9 

shows an example where prominence peaks are detected at times 0, 0.8, 0.9, and 1.9 

seconds. If pmin is 0.9 and pmax is 1.1 seconds, then the optimal subsequence is of length 2 at 

timestamps (0, 0.9, 1.9) seconds. Sequence (0, 0.8) is not valid because the difference 

between 0.8 and 0 is 0.8 which is <pmin, the same as sequence (0.8, 0.9).

The time complexity analysis of the absolute error periodic subsequence algorithm is O(N), 
assuming the valid number of predecessors is constant. If the distance between pmin and pmax
is a function of N, then this assumption does not hold. However, in practice, the difference 

between the smallest inter-chew distance min, and the longest inter-chew distance max is a 

small constant.

4.4 Feature Extraction

We extracted features from all the identified periodic subsequences to classify and validate 

whether the candidate subsequence identified in the Segmentation step (Section 4.3) was 
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truly a chewing sequence. We extracted statistical-based features which are known to be 

useful in detecting physical activity [6] and eating [55], including maximum, minimum, 

mean, median, variance, root mean square (RMS), correlation, skewness, kurtosis, 1st and 

3rd quartile values, and interquartile range. We plotted the spectrogram of the proximity 

signal for the dominant chewing frequencies (refer to Figure 10) and observed that the 

dominant frequencies during chewing occur between 1 and 2 Hz. As a comprehensive 

measure, we captured the amplitude of the dominant frequencies from 0.25 to 2.5 Hz.

Given a candidate sequence with start and end time [c1, c2], the features listed in Table 2 are 

calculated from two window lengths. The first window is CW = [c1 − 2sec, c2 + 2sec], 

referred to as the ChewingWindow. The second window is BW = [c1 − 2sec, c1 + 2sec], 

referred to as the BiteWindow. Features from both these windows were concatenated into a 

single feature vector. CW is useful in capturing information related to the chewing segment, 

while BW captures bite-related features that occur at the beginning and end of the chewing 

sequence. Overall, we extracted 257 features for every sequence.

4.5 Classification

We used a gradient boosting classifier based on Friedman’s Gradient Boosting Model 

(GBM), which is an ensemble classifier comprising multiple weak learners (high bias, low 

variance) [23] to train a model that classifies each subsequence as belonging to a chewing 

sequence or not. We employed an open source software package, XGBoost [14], for 

classification. Gradient boosting uses regularized model formalization that controls over-

fitting the training data, providing more generalizable performance.

Gradient boosting has several parameters that can be tuned to optimize its performance 

including general, booster, and learning task parameters. For the general parameters, we 

used the gbtree model. For the booster parameters, we optimized the learning rate (eta), the 

maximum depth of the a tree (max_depth), the minimum loss reduction required to make a 

further partition on a leaf node of a the tree (gamma), the minimum sum of instance weight 

needed in a child (min_child_weight), and the subsample ratio of the training instance 

(subsample). We performed binary classification (chewing vs others) using a softmax 

objective.

Every positively detected chewing subsequence is then combined to generate a time-point 

distribution of predicted chewing sequences (at the per-second level). This distribution is a 

type of confidence weighting to estimate the likelihood of the duration belonging to a 

chewing sequence. Each second is then converted into a score according to the number of 

overlapping predicted chews. We then apply the DBSCAN algorithm to cluster the data. The 

sequences with low weights and sparse positioning are filtered during the clustering step. We 

then perform eating episode evaluation at the coarse-grained event level and fine-grained 

per-second level. Figure 11 provides an overview of the processing pipeline.

5 STUDY DESIGN & DATA COLLECTION

Demonstrating usefulness of our eating activity monitoring system necessitates that we test 

the system on a representative population, throughout the day while participants carry out 
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their daily routine. Prior work has demonstrated that systems that are evaluated only in 

laboratory settings often perform poorly in naturalistic settings. This performance 

degradation is quite pronounced in eating- and behavior-tracking devices, as the behavior 

and habits of participants can easily be influenced by the in-lab setting, and the short 

duration of sessions rarely capture numerous real-life situations.

With this context, we conducted an Exploratory Study for optimizing various system 

parameters. Using the learning outcome from the Exploratory Study, we conducted a Free-
Living Study to determine the system’s performance in a completely free-living condition. 

Both studies were conducted in naturalistic settings, while the participants performed their 

everyday activities. We recruited 20 participants (10 for the Exploratory Study and 10 for the 

Free-Living Study) from an urban Midwestern city in the United States using paper flyers 

and via ResearchMatch. The inclusion criteria were: 18–63 years of age and BMI above 18. 

The exclusion criteria included anyone unwilling to wear the study devices (due to a history 

of skin irritations or device sizing limitations) and anyone who did not own a smartphone. 

None of the participants were members of our research team. Overall, we used 134.2 hours 

of data from the Exploratory Study to fine-tune our system and 137.1 hours of data from the 

Free-Living Study to evaluate our system. Specific details about data collection are 

presented in Table 3. We plan to anonymize and release this dataset for use by clinicians and 

researchers for evaluating their own devices and approaches to eating detection.

During their first laboratory visit (for both the Exploratory Study and Free-Living Study), 

we trained the participants about how to wear and charge their devices. After the final day of 

the study, participants returned the devices and completed a post-study survey. During this 

visit, participants were given the option to review captured video and remove segments they 

felt uneasy about sharing.

5.1 Exploratory Study

To determine the eating sensing system’s feasibility, we recruited 10 participants (4 males, 6 

females; between 19 and 54 years old) and instructed them to wear the prototype device, 

including the NGen1 necklace for 2 weeks. Participants were free to wear the device for as 

many or as few hours as they wanted during this study. However, we instructed them to wear 

the prototype device during as many meals as possible. Since we are interested in ensuring 

that our system performs reliably across a varied BMI range, we allocated participants so 

that 50% of the participants in this study were categorized as obese (BMI >30 kg/m2). The 

BMI of the 10 participants ranged between 21 and 46 kg/m2. Participants were compensated 

monetarily for their time (smartwatch and $100; total value of $300). Overall, we collected 

277.1 hours of data during the Exploratory Study. However, after removing data that had 

synchronization issues or raised privacy concerns, we acquired 134.2 hours of usable data 

from the Exploratory Study for our analysis.

5.2 Free-Living Study

After optimizing reliability and usability of the neck-worn sensor, we designed the newer 

necklace, NGen2. To test this device, we recruited 10 participants (5 obese, 5 non-obese) to 

participate in a 2-day Free-Living Study. None of these participants had participated in the 
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previous Exploratory Study. Participants were between 24 and 60 years old, and their BMI 

ranged from 20.1 to 38.1 kg/m2. Table 3 summarizes the device usage for each participant. 

Unlike the Exploratory Study, for this study we instructed the participants to wear the device 

during the entire waking day, removing the device only when it was completely discharged 

or when they had privacy or other concerns. Participants did not delete any data in this study. 

Overall, after removing data segments with synchronization issues, we extracted 137.1 hours 

of usable data. We provided $50 compensation to participants for their time participating in 

the study.

6 EVALUATION AND RESULTS

As stated in Section 1, the overall goal of NeckSense is to detect eating activity, while 

ensuring that the device has acceptable battery life. We thus evaluated NeckSense using the 

Exploratory Study and Free-Living Study data, while answering the following questions:

• Q1: Can NeckSense effectively detect eating activity? How does the system 

perform as compared with other similar techniques?

• Q2: How do factors such as sensor choice, device position, and classification 

features affect the detection performance?

• Q3: Can NeckSense’s battery support monitoring an individual’s eating activities 

throughout the waking day?

Before answering the questions, we describe the evaluation metric used to evaluate 

NeckSense.

6.1 Evaluation Criteria and Metric

Eating Activity detection: We evaluate the eating activity detection at two levels: (1) the 

possibility of detecting eating at a per-second level and (2) the possibility of detecting the 

overall eating at a per-episode level. Figure 12 pictorially describes the two levels. For each 

level we compute the precision, recall, and F1-score. A high precision value indicates that 

the seconds (or episodes) identified by NeckSense as eating were actually seconds (or 

episodes) when eating occurred, whereas a high recall indicates that NeckSense could find 

most of the moments (either per-second level or per-episode level) when a participant 

performed an eating action. The F1-score presents the harmonic mean between the precision 

and recall. We evaluated NeckSense by performing a leave-one-subject-out cross validation 

(LOSOCV) and reporting the average performance of NeckSense, which is the average of 

every participant’s precision, recall, or F1-score. The output of the GBM classifier, after 

sparse segment removal, is utilized for the per-second level evaluation, while the output after 

merging adjacent chewing segments is utilized for the per-episode level evaluation. If there 

was 50% overlap between the time of the predicted episode and the actual episode, we 

considered the episode as a true positive episode.

Battery Lifetime: Since the necklace operates in several modes (e.g., time-keeping mode, 

data collection mode, data logging mode), it is necessary to monitor the power consumption 

in each mode. Additionally, since our goal is to ensure that the necklace can operate without 

frequent charging, it is necessary to understand the average battery lifetime. We measure the 
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power consumption of each mode of operation in milliWatts and the average battery lifetime 

in terms of number of hours for which the device can operate after it is fully charged, until it 

is completely discharged.

Now that we have established the evaluation criteria and metric, we next evaluate the 

performance of NeckSense.

6.2 Q1 : Eating Activity Detection

Although several previous studies have demonstrated the feasibility of automatically 

detecting eating in laboratory settings, very few researchers have explored the possibility of 

detecting eating over multiple days in free-living conditions and evaluating their system at a 

per-second level. We thus conducted the Exploratory Study to evaluate this possibility. We 

performed an LOSOCV to generate the classification model, as well as to determine the 

DBSCAN clustering parameters.

Analyzing the performance of NeckSense in the Exploratory Study: At a per-

second level analysis, the system attained an F1-score of 76.2%. At per-episode level 

analysis, we observed that among the 76 meals that participants consumed in the 

Exploratory Study, we could correctly detect 63 meals. The system’s average precision, 

recall, and F1-score across the participants during this Exploratory Study were 80.8%, 

86.8%, and 81.6%, respectively. These results indicated that it was indeed possible to detect 

most meals that the individual consumes, even in naturalistic settings.

Importance of each sensor in NeckSense: To understand how each sensor assisted in 

the detection of meals in the Exploratory Study, we segmented the signal from all the 

participants’ data using the proximity sensor data and the longest subsequence algorithm. 

For each segment, we used each sensor either independently or in combination with other 

sensors. Overall we observed that we could identify eating episodes with an F1-score of 

73.4% when we used only the proximity sensor, whereas including other sensors with the 

proximity sensor helped in improving the overall F1-score by more than 8%, demonstrating 

that the other sensors were useful, as compared with using the proximity sensor in isolation. 

Table 4 shows the performance of various sensors in detecting the eating episodes in the 

Exploratory Study and Free-Living Study. To determine significant difference between 

sensor combinations, we combined participants’ results from both the Exploratory and Free-

Living study (both studies used the same algorithm and sensor combinations). A one-way 

repeated measures ANOVA (used to determine whether three or more group means are 

different when the participants are the same in each group) determined that the mean F1-

score differed significantly between the four groups: Proximity only, Proximity+IMU, 

Proximity+ambient light, and All Sensors (F[3,57]=8.555, P<.0001). Post hoc tests using a 

paired sample t-test with Bonferroni correction revealed that Proximity+IMU and All 

Sensors exhibited significant improvement in mean F1-Score (P<.05) compared to Proximity 

only, while Proximity only was not significantly different from Proximity+ambient light 

(P>.05). Therefore, we conclude that there is statistically significant improvement when the 

proximity sensor is used either in conjunction with the IMU, or when using all signals, 

compared to using the proximity sensor only. This indicates that the eating activity generates 
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some specific movement pattern, which the IMU sensor can capture. Orthogonally, it is 

interesting to note that in both studies, the system performs poorly when only the light and 

proximity sensor data are used for the classification. However, light sensor data augmented 

with the IMU data helps improve the system’s overall performance, indicating that 

additional features from the light sensor might contribute toward improving performance. 

While annotating the dataset we observed that several participants consumed their meal 

while watching television and sitting in a dark location. Understandably, the light sensor was 

not useful for these episodes.

Analyzing the performance of NeckSense in the Free-Living Study: Through the 

Exploratory Study we demonstrated that the necklace could indeed determine eating in a 

semi-free-living condition. To understand the system’s performance in a completely 

uncontrolled setting, we analyzed the data from the Free-Living Study. Overall, we found 

that at a per-second level, our system could detect eating with an average F1-score of 73.7% 

(average precision = 80.5%, average recall = 73.4%), while at a per-episode level, the F1-

score was 77.1% (average precision = 86.6%, average recall = 78.3%). This was an 

improvement of over 10% as compared with using only data from the proximity sensor. 

Figure 13 presents the per-participant performance of NeckSense. It is interesting to note 

here that every sensor combination provided a better F1-score as compared with using only 

the proximity data. Overall, the system could identify 35 of the 40 meals when using either 

the proximity and IMU data or when using all sensor data. Although our system performed 

well in semi-free-living settings, the performance degrades while evaluating in an 

uncontrolled free-living setting. This observation should motivate researchers to evaluate 

their systems not only in semi-controlled free-living conditions, but also in truly free-living 

conditions to identify their system’s actual performance.

Exploring BMI-based models: To evaluate whether models trained on participants with 

obesity perform reliably when tested on participants without obesity and vice-versa, we 

generated two models, one trained with data only from participants without obesity (MN-O) 

and the other with data from only the participants with obesity (MO). When we tested MN-O 

with the data from people with obesity, we observed that the F1-score for detecting eating 

episodes dropped to 66.75%. This is substantially lower than the generalized model trained 

on multiple body types and tested in participants with obesity. Table 5 presents the results 

for different combinations of the training and test sets. The system performs fairly 

consistently when tested in people without obesity, independent of the BMI of the training 

set. However, the performance is lower when tested in participants with obesity. Several 

factors can be attributed to this discrepancy. These included factors such as differences in 

movement patterns while eating, change in the distance of the proximity sensor from the 

neck, and difference in posture during the eating activity. In the future, to ensure 

generalizability, researchers developing automatic dietary monitoring systems should 

consider testing their wearable system in participants that are recruited from a population 

with different BMI profiles and refrain from solely testing in a single, homogeneous 

population to prove efficacy of their system.
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6.3 Q2 : Effect of Various Factors

Performance of various sensors: To understand the usefulness of each sensor in 

determining the chewing sequence and the eating activity, we analyzed the Exploratory 

Study’s data and observed that for the per-episode level evaluation, we could achieve an 

average precision of 77.2%, recall of 74.0%, and F1-score of 73.4% across participants 

when we use only the proximity sensor’s signal, as compared with an average precision, 

recall, and F1-score of 80.8%, 86.8%, and 81.6%, respectively, when we use all sensors. 

This improvement in performance validates the usefulness of employing multi-sensor 

modalities over using a single sensing modality, proximity, for eating detection.

Feature importance: Since the number of instances for each feature in the gradient 

boosting tree is proportional to the feature’s contribution among all the features, we ranked 

the features accordingly. In Section 4.4 we described the features were extracted from either 

the bite window (BW) or the chewing window (CW). We observed that the top five features 

that aided in classification, as selected by the gradient boosting algorithm, were: (1) 

Frequency: FFT 2.5 Hz of energy signal (BW), (2) Time-series: first location of minimum of 

energy signal (CW), (3) Time-series: first location of maximum of energy signal (CW), (4) 

Frequency: FFT 0.5 Hz of ambient signal (CW), and (5) Time-series: count above mean of 

ambient signal (CW). All top five features were extracted from both the ambient light and 

energy signals. Two of the five features were FFT-based features, while three were time-

series-based features. Four features were extracted from the CW, and one was from the BW.

Effect of various necklace positions: The necklace form factor, worn loosely around the 

neck, lets participants adjust and move the necklace closer or farther from their mouths. To 

investigate the effect of positioning of the necklace on the body, we conducted a small in-

laboratory investigatory study where two participants (one male, one female) wore the 

necklace in multiple positions and orientations and consumed a meal. We present the five 

different positions in Figure 14. Overall, each participant wore the necklace at five positions: 

(i) above the laryngeal prominence, where the necklace was less than 2 cm from the chin, 

(ii) on the laryngeal prominence, where the necklace was between 3 and 5 cm from the chin, 

(iii) loose placement, where the necklace was more than 5 cm from the chin, (iv) left of the 

laryngeal prominence, where the necklace was rotated 2.5 cm to the left of the laryngeal 

prominence, and (v) right of the laryngeal prominence, where the necklace was rotated 2.5 

cm to the right of the laryngeal prominence. Figure 15 presents the result for the average 

(with standard deviation) of actual and predicted number of chews for every mouthful during 

these episodes. The periodic subsequence algorithm could detect chews with an average 

difference of less than 4 chews when the necklace is placed on the laryngeal prominence, 

and the prediction was not affected when the necklace rotated a couple of centimeters toward 

the left or right of the laryngeal prominence. Our algorithm is designed to detect a chewing 

sequence even when some of the periodic peaks (or chews) are detected during a chewing 

event. Thus, even for loose or high placement, we can still detect the occurrence of a 

chewing sequence. This indicates that the necklace’s eating activity detection performance is 

robust to various on-neck positions. Figure 16 presents a signal trace collected from various 

on-neck positions during the study. We have also indicated the time points when the chewing 
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action occurred, along with our periodic subsequence algorithm’s output. Most chewing 

gestures were captured by the periodic subsequence algorithm.

6.4 Q3 : Battery Lifetime

Now that we established that NeckSense can indeed detect eating activities in a naturalistic 

setting, we next analyse whether the device can collect sensor data continuously during an 

individual’s waking hours. The necklace is powered by a 350-mAh battery to ensure a 

relatively small size. To conserve power we implemented several power saving schemes. 

First, we selected the Nordic NRF52832 SiP, which includes a low-powered microcontroller 

and a BLE interface. Overall, this choice helped in reducing power consumption and size. 

Second, we identified that the SD card writes consumed substantial power. We thus 

implemented a batch-and-write approach for data logging. Third, we designed the super-

low-power time keeping mode with an extra-small battery so we maintain valid system time 

even if the main battery is off. The necklace can operate in four modes: timekeeping mode 

(only running the RTC), time syncing mode (communicating over BLE to synchronize time), 

data collecting mode (recording sensor reading), and data logging mode (writing data to SD 

card). We measured the average power for each mode using the STM32 Nucleo expansion 

board [52] for power measurement and tested the battery life time for a single charge. The 

power consumption for each mode, as shown in Figure 17, was 3.8μW, 36.8 mW, 56.6 mW, 

and 64.9 mW for timekeeping, time syncing, data collecting, and data logging mode, 

respectively. Overall, in the Exploratory Study the average battery life was 13 hours, and it 

improved to 15.8 hours in the Free-Living Study, which is sufficient to record data for most 

of the day and cover all meals that occur during a waking day. This lifetime allows for 

simplified deployments and little, if any, study coordinator oversight. The participants can 

charge the device once a day before sleeping.

6.5 Comfort and Usability

At the end of the Exploratory Study, we asked participants to indicate their feedback about 

NeckSense. Of the participants who completed the survey, 90% (9/10) claimed the device 

did not change how they performed their daily activities, how they socialized, or how they 

felt at home; 80% (8/10) claimed the device did not change how they ate or felt in public 

places. Two participants suggested that the velcro in the back of the necklace bothered them, 

suggesting a clasp or button may be more comfortable, and two other participants suggested 

that the device should be miniaturized to appear less obvious.

All the participants responded with agreement to the question, “I am willing to wear the 

necklace for 2 weeks continuously with compensation (if I am paid in cash)”. The 

compensation amount preference varied largely among participants. In general, a greater 

number of participants reported willingness to wear with increasing monetary value. 

Interestingly, on average, people with obesity were willing to wear the device for less 

monetary compensation, compared with people with a normal BMI, suggesting we may have 

improved adherence in future studies in a population group that feels they will benefit most 

from such a device or system. When we asked participants to select all the factors that 

motivated them to wear the necklace for 2 weeks; 9 participants selected monetary 

compensation, 5 selected health, and 8 selected contribution to research.
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6.6 Summary of Results

From these results we observe that: (i) It is indeed possible to detect the eating activity in a 

completely naturalistic setting at an extremely challenging per-second granularity with a F1-

score of 73.7% (76.2% in semi-free living conditions), thus presenting the possibility of 

performing real-time interventions. This is an improvement over similar existing techniques. 

(ii) It is possible to determine the eating episodes, even as individuals perform their everyday 

activities, with an F1-score of 77.1% (81.6% in semi-free living conditions). (iii) A 

combination of multi-sensor eating detection outperforms the eating detection by a single 

sensing modality by 8% to 12%. (iv) It is necessary to build eating activity detection models 

while using data from various demographic groups because we identified that models trained 

on participants without obesity fail to accurately detect eating episodes for participants with 

obesity. (v) NeckSense is robust to the on-neck position and can capture chewing sequences 

during an eating episode. (vi) Once NeckSense’s battery is completely charged, it can 

continuously monitor a participant’s eating activity in free-living conditions for over 15 

hours, thus making it possible to monitor individuals through an entire waking day. These 

results demonstrate that the necklace can be a promising avenue for identifying eating-

related activities through an individual’s entire waking day and for deploying and testing 

eating-related interventions in real time.

Overall, our results are promising. However, given that both the studies were conducted 

using a prototype device and in a truly free-living population setting, challenging eating 

postures and scenarios confounded some of our chewing and eating episode detection. For 

example, lying down while eating confounded our ability to capture the lean forward motion 

during eating and also chewing from the proximity sensor. Similarly, eating in total darkness 

confounded the classification model because the ambient light sensor gave readings far 

below the normal range, while eating during exercising resulted in several false chewing 

detection, although our aggregate filter successfully filtered out these isolated chewing 

sequences. Meals that included no chewing also presented a challenge; this was seen in one 

of our participants who had 50% of the labeled eating episodes as ice cream, yogurt, or other 

non-chewing foods. This issue has also been reported by other researchers exploring 

chewing-based activity detection [13]. In the future we will explore techniques to overcome 

these challenges.

7 CONCLUSION

In this paper we present the design, implementation, and evaluation of a necklace suite for 

detection and validation of chewing sequences and eating episodes in free-living conditions. 

We utilize sensor data from a proximity sensor, an ambient light sensor, and an IMU sensor 

to detect chewing activity. We performed two free-living studies using the necklace. In our 

exploratory study, where selective meals were captured and non-continuous wear time was 

observed, we were able to outperform other methods with an F1-score of 76.2% at the per-

second level and 81.6% at the per-episode level. Overall, our system achieved an F1-score of 

73.7% in detecting the chewing sequences at an extremely challenging per-second-level 

granularity in a truly free-living study. Additionally, our system could detect eating episodes 

with an F1-score of 77.1%. This is an improvement of over 10% as compared with using 
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only the neck-worn proximity sensor for eating detection. Moreover, our work showed that 

models trained on participants without obesity underperformed when tested on participants 

with obesity. To ensure generalizability, future automatic dietary monitoring researchers 

should ensure BMI diversity in their training set while developing the models. In terms of 

hours of battery life, the necklace could monitor the participants for 15.8 hours during the 

waking day, making it possible to monitor an individual’s eating activity occurring during an 

entire day.

Our dataset is unique in that it comprises a 2-week and 2-day study of eating detection 

collected from 20 participants in free-living conditions. These data are accompanied by 

videos that were validated and professionally labeled, marking the ground truth. This dataset 

includes many unique eating events and eating situations, including eating in cars, slouching, 

talking and eating, and eating a variety of soft foods. We hope this dataset, the associated 

code base, and the hardware design will provide useful information from which researchers 

can glean insights from the data and inform future studies. Understanding the effects of 

chewing speed and duration on overeating can help interventionists design and test improved 

treatments for monitoring eating behaviors. Our user survey showed that we may have 

improved adherence in future studies in a population that feels they will benefit most from 

such a system. NeckSense is the next step in enabling behaviorists to imagine, design, 

deploy, and test for effective interventions during and immediately after an eating episode.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CCS Concepts:

• Human-centered computing → Mobile devices; Ubiquitous and mobile computing; 

Empirical studies in ubiquitous and mobile computing; • Applied computing → Law, 

social and behavioral sciences.
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Fig. 1. 
Our non-contact, day-long battery life necklace, NeckSense, collects proximity, ambient 

light, and motion signals to detect chewing actions, feeding gestures, and lean forward 

motion, which allows detection of eating episodes occurring throughout the day. NeckSense 
enables long-term studies for monitoring eating behavior in free-living conditions.
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Fig. 2. 
Schematic of eating episodes that is composed of multiple chewing sequences. C1 and C2 

correspond to start and end, respectively, of each chewing sequences. We use an data-driven 

approach to determine minimum interval between chewing sequences to identify episode 

boundaries.
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Fig. 3. 
Cumulative distribution function representing an empirical approach to determine eating 

episode boundaries based on the time between the end of one chewing sequence and the start 

of the next chewing sequence. Our empirically determined inter-episode gap is similar to the 

inter-episode gap as suggested by Leech et al. [32].
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Fig. 4. 
Hardware architecture and overview of two generations of necklace. NGen1 was used in the 

Exploratory Study, while NGen2 was used in the Free-Living Study.
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Fig. 5. 
Participant wearing the devices during the Free-Living Study. (A) Representative still image 

of the ground truth camera output showing the chin, hand, food, and utensil. (B) Participant 

wearing the necklace and Ground Truth camera. (C) All devices for Free-Living Study.
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Fig. 6. 
Chewing and meal detection framework and vali- dating it with the labeled ground truth
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Fig. 7. 
Four signals (proximity, energy, LFA, and ambient light) captured while the wearer is 

walking, resting, utensiling, and eating.
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Fig. 8. 
Prominence-based peak finding algorithm (height=4.5) vs local maxima peaks (using 2 

samples before and after the time point.)
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Fig. 9. 
Dynamic programming solution for absolute error periodic subsequence of proximity signal.
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Fig. 10. 
Spectrogram of proximity signal for chewing, talking, walking, and resting.
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Fig. 11. 
After periodic subsequences are classified, DBSCAN filters out predicted single chewing 

subsequences and clusters the remainings into meals. If a ground truth eating episode 

overlaps with a predicted eating episode, then it is a true positive. If a predicted eating 

episode has no overlap with a ground truth eating episode, then it is a false positive.
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Fig. 12. 
Evaluation criteria for the eating activity detection at two levels: a commonly used per-

episode level evaluation approach and a challenging per-second level evaluation approach. If 

there is a 50% overlap at the per-episode level, we infer that the episode has been detected 

correctly.
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Fig. 13. 
Eating episode prediction evaluation for the Free-Living Study using LOSOCV method for 

per-second level and per-episode level analysis.
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Fig. 14. 
Five different positions for the necklace on the neck: above the laryngeal prominence, on the 

laryngeal prominence, loose placement, left of the laryngeal prominence, and right of the 

laryngeal prominence.
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Fig. 15. 
Performance in detecting the chewing activity when NeckSense is placed at different 

locations from the chin. It shows the actual and predicted average and standard deviation of 

the number of chews at various on-neck positions of NeckSense.
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Fig. 16. 
Sample proximity sensor signal captured from different positions. The orange dot indicates 

the time frame when a chewing action occurred, while the green dot indicates whether the 

time point was identified as a chew by NeckSense.
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Fig. 17. 
Power consumption for each active mode of NeckSense.
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Table 1.

Comparing the literature on in-wild eating detection to this work

Year Study Sensors
On body 
position

No. of 
participants

Avg hours 
per day

Validation
video

Non-
student Obese

2014 Fontana et al. [22] S1, S4, S6 Ear, wrist, 
chest

12 24.0 X ✓ ✓

2015 Thomaz et al. [55] S1 Wrist 7+1 5.7/13.6 X X X

2015 Bedri et al. [10] S2, S5 Ear, head 6 6.0 X ✓ X

2016 Farooq et al. [21] S4 Temple 8 3.0 X ✓ X

2017 Bedri et al. [9] S1–S3, S5, S7 Neck, ear 10 4.5 ✓ ✓ X

2017 Zhang et al. [60] S8 Ear 10 6.1 X X X

2017 Mirtchouk et al. [35] S1–S3, S7 Ear, wrist, head 11 11.7 X ✓ X

2018 Sen et al. [49] S1, S2, S10 Wrist 9 5.8 X ✓ X

2018 Chun et al. [15] S5 Neck 17 4.6 X X X

2018 Bi et al. [13] S7 Ear 14 2.3 ✓ X X

2020 This work S1-S3, S5, S9 Neck 10+10 4.9/9.5 ✓ ✓ ✓

S1 - accelerometer, S2 - gyroscope, S3 - magnetometer, S4 - piezo, S5 - proximity, S6 - radio frequency, S7 - microphone, S8 - electromyography, 
S9 - light, S10 - camera
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Table 2.

List of features extracted for classification

Category Features

Statistics Max, min, mean, median, std. dev., RMS, correlation, skewness, kurtosis, 1st & 3rd quartile, interquartile range

Frequency Frequency amplitude of 0.25 Hz, 0.5 Hz, 0.75 Hz, 1 Hz, 1.25 Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.25 Hz, 2.5 Hz

Statistics of frequency Skewness and kurtosis of spectrum from frequency features

Time-series Count below/above mean, first location of min/max, longest strike below/above mean, number of peaks

Periodic subsequence pmin, pmax, ϵ, length

Time Hour of day
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Table 3.

Number of hours of video and necklace data in the Exploratory Study and the Free-Living Study. Necklace 

valid hours exclude data with incorrect timestamp resulting from RTC going out of battery or when the 

necklace was not worn by the participant. Participants with obesity are highlighted in orange. Days are unique 

days in the data. Only data captured by both the camera and necklace were used in validation. From the 271.3 

hours analyzed in the Exploratory Study and the Free-Living Study, 14.3 hours correspond to eating, while 

257 hours are non-eating.

Exploratory Study Free-Living Study

Necklace Overlap w/ Videos Necklace Overlap w/ Videos

Participant
Total 
hours

Ave. 
Per 
Day

Total 
hours

Ave. 
Per 
Day Meal Participant

Total 
hours

Ave. 
Per 
Day

Total 
hours

Ave. 
Per Day Meal

PI 35.7 5.9 27.8 5.6 7 Pll 23.9 11.9 17.2 8.6 4

P2 8.7 1.7 3.5 0.9 7 P12 14.6 7.3 15.2 7.6 1

P3 74.6 6.8 31.6 2.9 15 P13 12.4 6.2 12.4 6.2 5

P4 20.3 3.4 10.1 3.3 5 P14 15.1 7.6 12.8 6.4 3

P5 40.4 10.1 33.3 8.3 11 P15 19.2 9.6 17.4 8.7 4

P6 19.3 3.9 4.9 1.6 9 P16 20.2 10.1 16.9 8.5 5

P7 23.0 7.7 14.0 7.0 3 P17 23.2 10.6 15.1 7.6 6

P8 20.1 2.5 5.2 0.7 11 P18 14.9 7.5 11.0 5.5 4

P9 20.0 10.0 0.7 0.4 2 P19 20.2 10.1 13.6 6.8 3

P10 15.0 2.5 3.1 0.8 6 P20 27.0 13.5 21.8 10.9 5

Total 277.1 - 134.2 - 76 Total 193.0 - 137.1 - 40
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Table 4.

Comparison of performance (F1-score) of various sensor combinations for eating episode detection. The 

proximity sensor is used for segmenting the chewing sequences, and various sensor combinations 

subsequently detect the eating episodes. One-way repeated measures ANOVA determined that the mean F1-

score differed significantly between the four sensor combinations.

Sensor(s) used Exploratory Study Free-Living Study

Proximity only (ref) 73.4% 66.4%

Proximity + IMU* 81.5% 78.7%

Proximity + ambient light 72.7% 70.3%

All Sensors* 81.6% 77.1%

*
Post hoc analyses with Bonferroni correction show statistically significant improvement of Proximity+IMU and All Sensors over Proximity only 

at the P<.05 level.
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Table 5.

Performance of NeckSense for different training and testing groups

Test

Obese Non-obese

Train Obese 71.21% 75.33%

Non-obese 66.75% 79.88%
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