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Abstract

Most cancer chemotherapeutic agents are ineffective in a subset of patients; thus, it is important to consider the role of
genetic variation in drug response. Lymphoblastoid cell lines (LCLs) in 1000 Genomes Project populations of diverse
ancestries are a useful model for determining how genetic factors impact the variation in cytotoxicity. In our study, LCLs
from three 1000 Genomes Project populations of diverse ancestries were previously treated with increasing concentrations
of eight chemotherapeutic drugs, and cell growth inhibition was measured at each dose with half-maximal inhibitory
concentration (IC50) or area under the dose–response curve (AUC) as our phenotype for each drug. We conducted both
genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) within and across ancestral
populations. We identified four unique loci in GWAS and three genes in TWAS to be significantly associated with the
chemotherapy-induced cytotoxicity within and across ancestral populations. In the etoposide TWAS, increased STARD5
predicted expression associated with decreased etoposide IC50 (P = 8.5 × 10−8). Functional studies in A549, a lung cancer cell
line, revealed that knockdown of STARD5 expression resulted in the decreased sensitivity to etoposide following exposure
for 72 (P = 0.033) and 96 h (P = 0.0001). By identifying loci and genes associated with cytotoxicity across ancestral
populations, we strive to understand the genetic factors impacting the effectiveness of chemotherapy drugs and to
contribute to the development of future cancer treatment.

Introduction
Cancer is a complex disease with genetic-, environmental- and
lifestyle-based risk factors, and in recent years, it has become
a leading cause of death globally (1). The most common cancer
types worldwide are prostate and lung cancers in men and
breast cancer in women (1). Chemotherapeutics, while a widely
effective treatment for various cancer types, have limitations, as
patient responses are varied and a subset of patients’ tumors
develop drug resistance, causing them to require combination
chemotherapy or other treatment types, which have varying

†Heather E. Wheeler, http://orcid.org/0000-0003-1365-9667
Received: September 3, 2020. Revised: January 12, 2021. Accepted: January 19, 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

degrees of success depending on the tumor progression (2–4).
Metastatic cancers have remained more challenging to treat
despite recent developments in cancer immunology and tar-
geted therapies; thus, there is a need for more personalized
approaches to cancer medicine, which requires the identifi-
cation of genetic variants and biological mechanisms impact-
ing drug response (2,5,6). Lymphoblastoid cell lines (LCLs) from
International HapMap and 1000 Genomes Project serve as one
effective model for determining the genetic factors contributing
to chemotherapeutic cytotoxicity because they have extensive
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genetic information, are derived from related individuals and, as
with all cell cultures, environmental factors can be controlled (7).
There are also LCLs derived from a multitude of ancestral pop-
ulations making them particularly useful for studying how drug
response varies across ancestral populations (7–9). In addition,
genetic variation acting through its effect on gene expression is
known to impact chemotherapeutic drug response (10–18).

As of 2018, more than 3000 genome-wide association studies
(GWAS) have been published; however, more than 80% of individ-
uals studied have been of European ancestries (19). To develop a
deeper understanding of how genetic differences impact disease
and treatment, studies must be conducted on more diverse
populations, as many common variants in the human genome
have been demonstrated to be population-specific (19,20). In
addition to the lack of representation of individuals of non-
European ancestries in past studies, GWAS also have limitations
in and of themselves. While GWAS identify associations on a
genomic level, they do not provide insight into the underlying
biological mechanisms that regulate traits (21). Transcriptome-
wide association studies (TWAS) are another method for ana-
lyzing the factors impacting phenotype, as they employ statis-
tical modeling to predict the transcript expression levels from
genotypes and to determine the associations between predicted
gene expression and phenotype (21–24). This aids in implicating
GWAS results in gene regulation because the direction of effect
for each association is provided (21–24).

In this study, we conducted both GWAS and TWAS on drug-
response phenotypes from eight chemotherapeutics measured
in HapMap LCLs derived from three ancestral populations
consisting of individuals with African, Asian and European
ancestries. By including individuals of diverse backgrounds in
this study, we identified associations both within and across
ancestral populations. Previous GWAS were conducted on the
subsets of these individuals before the 1000 Genomes Project
was complete, and thus at that time, many individuals had
been genotyped through the HapMap Project but were not
sequenced (8,9,11–18,25–27). In this study, all individuals were
either sequenced or imputed to 1000 Genomes, allowing more
single nucleotide polymorphisms (SNPs) to be analyzed. We
also performed TWAS on these data for the first time to
discover gene-based associations and gained further insight
into the underlying mechanisms involved in regulating drug
response. Moreover, for the most significant gene identified,
STARD5, we validated our results by performing knockdown
experiments in a lung cancer cell line treated with the associated
chemotherapeutic, etoposide. By conducting GWAS and TWAS,
confirming our results experimentally and incorporating diverse
ancestral populations, we aimed to cultivate a deeper under-
standing of the genomic factors and biological mechanisms
impacting chemotherapy drug response and to contribute to the
development of future precision cancer treatment. All scripts
used can be found on GitHub: https://github.com/ashleymulfo
rd/chemotherapy_toxicity.

Results
Population chemotherapy phenotypes

In order to investigate the genetic and transcriptomic effects
on chemotherapeutic toxicity, we gathered previously published
dose–response data from LCLs in diverse ancestral populations
(11–18,25–27). The LCLs were derived from individuals from the
Yoruba population in Ibadan, Nigeria (YRI), individuals with
European ancestries from Utah, USA (CEU) and individuals from

a combined population of Han Chinese from Beijing, China,
and Japanese from Tokyo, Japan (ASN). Both the YRI and CEU
populations included parent–child trios. We used phenotypes
from eight chemotherapy drugs in our study. Depending on the
drug, the cytotoxicity phenotype from each individual’s LCL was
calculated either with the half-maximal inhibitory concentra-
tion (IC50) or the area under the dose–response curve (AUC)
(Table 1). We rank-normalized (RN) these measurements for use
in our genetic analyses. The total counts for individuals with
both genotype and phenotype data varied for each drug and
ancestral population (Table 1). An overview of the data analysis
can be seen in Figure 1.

GWAS reveals four new loci associated
with chemotherapy-induced cytotoxicity

We conducted GWAS using 1000 Genomes Project sequenced
and imputed genotypes to identify genome-wide significant
associations between SNPs and the cytotoxicity of each drug for
each ancestral population and in all three ancestral populations
combined (ALL) (9). We used GEMMA to perform univariate linear
mixed model GWAS while accounting for relatedness in each
ancestral population and population stratification in the ALL
population using covariates generated with principal compo-
nents analysis (PCA) (28). PCA plots can be found in the sup-
plement (Supplementary Material, Fig. S1). We used a threshold
P-value = 5 × 10−8 to determine genome-wide significance. We
found 12 unique SNPs at four independent loci to be significantly
associated with the cytotoxicity of four distinct chemotherapeu-
tics, all of which were not previously implicated in any other
GWAS as they do not appear in the GWAS catalog (29).

We found two SNPs located in a non-coding region of chro-
mosome 4, rs61079639 (P = 2.3 × 10−9) and rs60507300 (P = 2.3
× 10−9), to be associated with daunorubicin cytotoxicity in the
YRI population (Fig. 2). We found three SNPs on chromosome 9,
rs2100011 (P = 4.7 × 10−9), rs2254812 (P = 4.7 × 10−9) and rs2254813
(P = 4.7 × 10−9), to be associated with carboplatin cytotoxicity
in the ASN population (Fig. 3). These SNPs are located in the
gene PPP1R26; rs2100011 is an intron variant and rs2254812 and
rs2254813 are 5′ untranslated region variants. Additionally, we
found six SNPs located in a non-coding region of chromosome
12, led by rs7971310 (P = 1.1 × 10−8), to be associated with etopo-
side cytotoxicity in the YRI population (Table 2). Two of these
SNPs, rs2711729 (P = 4.9 × 10−8) and rs2711728 (P = 4.9 × 10−8),
were also found to be associated with etoposide cytotoxicity
in the ALL population (Fig. 4). We found one SNP located on
chromosome 3, rs10510241 (P = 4.7 × 10−8), to be associated with
cisplatin cytotoxicity in the YRI population. This SNP is an intron
variant in the gene CNTN4 (Supplementary Material, Fig. S2).
No genome-wide significant associations were found for CEU.
Through conditional analysis, we found that the SNPs in each
chromosomal region were not independent; thus, each set of
SNPs represents one association between the corresponding
cytotoxicity phenotype and locus. None of the significant SNPs
identified in one ancestral population replicated in another
ancestral population (Supplementary Material, Table S1).

TWAS predicts expression levels for three genes to be
associated with chemotherapy-induced cytotoxicity

Following GWAS, we conducted TWAS using both PrediXcan
and MultiXcan to identify significant associations between
predicted gene expression levels and the cytotoxicity of
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Table 1. Number of individuals with both genotype and phenotype data in each ancestral population for each drug

Pop. Ara-C (RN
AUC)

Capecitabine
(RN AUC)

Carboplatin
(RN IC50)

Cisplatin (RN
IC50)

Daunorubicin
(RN IC50)

Etoposide
(RN IC50)

Paclitaxel
(RN AUC)

Pemetrexed
(RN AUC)

CEU 165 165 168 166 86 84 77 84
YRI 177 175 172 175 173 171 87 176
ASN 90 84 90 90 0 0 0 0
ALL 432 424 430 431 259 255 164 260

Populations: Yoruba from Ibadan, Nigeria (YRI); individuals with European ancestries from Utah, USA (CEU); Japanese from Tokyo, Japan, and Han Chinese from Beijing,
China (ASN) and a combined population with all individuals from YRI, CEU and ASN (ALL). Drugs: measured with either half-maximal inhibitory concentration (IC50)
or the area under the dose-response curve (AUC), all rank-normalized (RN).

Figure 1. Overview of data and analysis methods. Genotype dosages are from three ancestral populations: Yoruba individuals from Nigeria (YRI), individuals with

European ancestries from Utah (CEU), and Japanese individuals from Tokyo and Han Chinese individuals from Beijing (ASN). Sample sizes and parent–child trio counts

are listed in parentheses. Drug concentration measurements were taken as either IC50 or AUC. GWAS were conducted with GEMMA for all ancestral populations and drug

response phenotypes. TWAS were conducted with PrediXcan and MultiXcan for all ancestral populations and drug response phenotypes; GTEx v7 and MESA prediction

models were used. Gene set enrichment analyses, which utilized significant gene results, were conducted with FUMA. Knockdown experiments were performed in the

A549 lung cancer cell line to validate the most significant gene-based association.

each drug for each ancestral population (21,22). PrediXcan
and MultiXcan utilize prediction models to calculate the
predicted expression levels for various genes and to identify

the associations between the predicted gene expression levels
and phenotype (21,22). Both PrediXcan and MultiXcan calculate
the predicted gene expression levels for each gene using each
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Figure 2. GWAS results for the YRI population and Daunorubicin cytotoxicity phenotype. QQ plot of GWAS results showing expected versus observed P-values, red

line at x = y. Manhattan plot of GWAS results, red line at genome-wide significance threshold. LocusZoom plot of rs61079639 (P = 2.3 × 10−9), the blue line measures

the recombination rate at a certain position and each point is colored to indicate linkage disequilibrium (r2) with rs61079639 in the 1000 Genomes November 2014 AFR

population. AFR, African; UNC5C, Unc-5 Netrin Receptor C; PDHA2, Pyruvate Dehydrogenase E1 Subunit Alpha 2.

model individually, but while PrediXcan then finds model-
specific associations between the predicted gene expression and
phenotype, MultiXcan aggregates the expression to find overall
associations and identifies models with the best and worst per-
formances (21,22). We used the 48 GTEx version 7 tissue-based
prediction models, which each contain approximately 10 000
genes, to run PrediXcan and MultiXcan (21,22). Additionally,
for PrediXcan only, we used the five MESA population-based
prediction models, which each contain approximately 8000
genes (23). To obtain the PrediXcan results, we used PrediXcan
to calculate the predicted gene expression levels and GEMMA to

conduct the association tests, as this accounted for relatedness
within each ancestral population (21,28). To obtain the MultiXcan
results, we used the same predicted gene expression levels
and conducted the association tests with MultiXcan, as this
produced aggregate associations (22). For the ALL population, we
accounted for population stratification with the same covariates
as in GWAS.

We found three significant associations (Bonferroni adjusted
P-value < 0.05) between gene expression and cytotoxic-
ity, two from PrediXcan and one from MultiXcan. Using
PrediXcan, we determined increased predicted expression
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Figure 3. GWAS results for the ASN population and carboplatin cytotoxicity phenotype. QQ plot of GWAS results showing expected versus observed P-values, red line

at x = y. Manhattan plot of GWAS results, red line at genome-wide significance threshold. LocusZoom plot of rs2100011 (P = 4.7 × 10−9), the blue line measures the

recombination rate at a certain position and each point is colored to indicate linkage disequilibrium (r2) with rs2100011 in the 1000 Genomes November 2014 ASN

population. ASN, Asian; C9orf62, Chromosome 9 Open Reading Frame 62; PPP1R26-AS1, PPP1R26 Antisense RNA 1; PPP1R26, Protein Phosphatase 1 Regulatory Subunit

26; C9orf116, Chromosome 9 Open Reading Frame 116; MRPS2, Mitochondrial Ribosomal Protein S2; LOC101928525, Uncharacterized LOC101928525; LCN1, Lipocalin 1;

OBP2A, Odorant Binding Protein 2A; PAEP, Progestagen Associated Endometrial Protein; LOC100130954, Uncharacterized LOC100130954; GLT6D1, Glycosyltransferase 6

Domain Containing 1; LCN9, Lipocalin 9.

of STARD5 in the brain cortex tissue to be associated with
a decrease in the concentration of etoposide required for
cytotoxicity (IC50) in the ALL population (P = 8.5 × 10−8)
(Fig. 5A). Additionally, we found increased predicted expres-
sion of USF1 in the liver tissue to be associated with an
increase in the concentration of capecitabine required for

cytotoxicity (AUC) in the ALL population (P = 8.7 × 10−8)
(Fig. 5B). Using MultiXcan, we found increased predicted
expression of CCAR1 to be associated with a decrease in the
concentration of capecitabine required for cytotoxicity (AUC) in
the YRI population (P = 4.2 × 10−6) (Fig. 5C). We examined the
STARD5 results for the YRI population and etoposide phenotype
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Table 2. Genome-wide significant SNPs (Genome Build 37) from all GWAS performed

Pop. Drug SNP Chr. Position Non-effect allele Effect allele P-value Beta

YRI Daunorubicin rs61079639 4 96611494 T A 2.3 × 10−9 0.79
YRI Daunorubicin rs60507300 4 96611493 T G 2.3 × 10−9 0.79
ASN Carboplatin rs2100011 9 138376145 A G 4.7 × 10−9 0.77
ASN Carboplatin rs2254812 9 138375872 C G 4.7 × 10−9 0.77
ASN Carboplatin rs2254813 9 138375861 G A 4.7 × 10−9 0.77
YRI Etoposide rs7971310 12 47428174 G A 1.1 × 10−8 −0.85
YRI Etoposide rs7960974 12 47424034 A G 1.1 × 10−8 −0.85
YRI Etoposide rs7979399 12 47424033 G T 1.3 × 10−8 −0.85
YRI Etoposide rs2711729 12 47409824 A G 1.5 × 10−8 0.88
YRI Etoposide rs2711728 12 47411926 C A 1.5 × 10−8 0.88
YRI Etoposide rs11183699 12 47426533 A G 2.6 × 10−8 −0.79
YRI Cisplatin rs10510241 3 2907097 A G 4.7 × 10−8 0.65
ALL Etoposide rs2711729 12 47409824 A G 4.9 × 10−8 0.80
ALL Etoposide rs2711728 12 47411926 C A 4.9 × 10−8 0.80

Chr, chromosome.

derived from the other GTEx version 7 and MESA models
and found consistent negative directions of effect across all
nominally associated tissue models (P < 0.05, Supplementary
Material, Table S2).

FUMA identifies enrichment in oncogenic signatures

We performed functional mapping and annotation (FUMA) gene
set enrichment analysis on top PrediXcan results for each ances-
tral population and drug and found 12 significant gene sets (Sup-
plementary Material, Table S3) (30). For the CEU population and
cisplatin, we identified one significant gene set WNT_UP.V1_UP
(P = 1.2 × 10−5). This gene set is an oncogenic signature, denoting
upregulation of the listed genes as a result of the overexpression
of WNT1 in mammary epithelial cells (31). The genes making
up this set were all found to have predicted expression lev-
els associated with cisplatin IC50. Cisplatin is often used to
treat a variety of cancers, including lung, colon, testicular and
ovarian cancers (32,33). Additionally, for the CEU population
and cytarabine arabinoside (ara-C), we identified the gene set
P53_DN.V1_DN to be significant (P = 1.1 × 10−4). This is another
oncogenic signature, characterized by the downregulation of the
genes listed in cancer cell lines with mutated TP53 from the NCI-
60 collection (34). The genes in the set are impacted by mutations
in TP53, a known tumor suppressor gene that, when mutated,
can lead to malignancy (34). The predicted expression levels of
these genes are associated with ara-C AUC. We also performed
FUMA gene set enrichment analysis on top MultiXcan results for
each ancestral population and drug, the results of which can be
found in the supplement (Supplementary Material, Table S4).

Knockdown experiments validate reduced STARD5
expression is associated with reduced
etoposide-induced cytotoxicity

After conducting GWAS and TWAS, we followed up on our results
by performing functional experiments for STARD5, as this gene
had the most significant predicted expression levels from the
TWAS results. The predicted expression plot for STARD5 showed
a negative correlation between STARD5 predicted expression and
etoposide IC50. Therefore, for our functional experiments, we
hypothesized that the knockdown of STARD5 expression levels
would result in a higher etoposide IC50, which corresponds to the

lower cellular sensitivity to etoposide. We selected the lung can-
cer cell line A549 for the knockdown experiments, as etoposide
is often used to treat lung cancer (35).

After knocking down STARD5 with siRNA, we treated A549
cells with increasing concentrations of etoposide and then mea-
sured relative viability at 72 and 96 h after treatment (Fig. 6A).
siRNA reduced STARD5 expression to less than 25% of control
at 0, 72 and 96 h (Fig. 6B). At both 72 and 96 h, reduced STARD5
expression significantly increased cell viability (Fig. 6C and D;
P = 0.034 for 72 h, P = 0.0001 for 96 h), validating our TWAS results
that higher expression of STARD5 is correlated with greater
sensitivity to etoposide.

Discussion
We conducted GWAS and TWAS for eight chemotherapeutic
cytotoxicity phenotypes measured in LCLs from individuals in
three ancestral populations (YRI, CEU and ASN) and one com-
bined population (ALL). We identified 12 SNPs at four unique
loci and three novel genes to be significantly associated with
the chemotherapy-induced cytotoxicity. For the most significant
gene, STARD5, we performed knockdown experiments to follow
up on our finding that increased STARD5 expression associates
with decreased etoposide IC50. These functional experiments
validated this result, as knockdown of STARD5 increased the
viability of A549 lung cancer cell lines treated with etoposide,
demonstrating the positive correlation between STARD5 expres-
sion and cellular sensitivity to etoposide.

The TWAS we conducted identified an association between
increased predicted expression of STARD5 and decreased etopo-
side IC50, implying a greater cellular sensitivity to etoposide. This
finding was then validated through the knockdown experiments
we performed, which demonstrated that a reduction of STARD5
expression to 25% of that of unaltered expression results in
increased viability in A549 lung cancer cell lines treated with
etoposide. Etoposide is a chemotherapeutic and antineoplastic
drug that targets topoisomerase II, an enzyme that plays an
essential role in DNA replication, recombination and transcrip-
tion, by cutting and pasting double-stranded DNA (36). By inter-
fering in topoisomerase II function in malignant cells, etopo-
side disrupts the necessary biological processes, leading to an
increase in DNA breakage that ultimately induces apoptosis (36).
Etoposide is commonly used to treat lung cancer; this informed

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab029#supplementary-data
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Figure 4. GWAS results for the ALL population and etoposide cytotoxicity phenotype. QQ plot of GWAS results showing expected versus observed P-values, red line

at x = y. Manhattan plot of GWAS results, red line at genome-wide significance threshold. LocusZoom plot of rs2711729 (P = 4.9 × 10−8), the blue line measures the

recombination rate at a certain position and each point is colored to indicate linkage disequilibrium (r2) with rs2711729 in the 1000 Genomes November 2014 AFR

population. SLC38A4, Solute Carrier Family 38 Member 4; AMIGO2, Adhesion Molecule With Ig Like Domain 2; PCED1B, PC-Esterase Domain Containing 1B; MIR4698,

MicroRNA 4698; PCED1B-AS1, PCED1B Antisense RNA 1.

our selection of the A549 lung cancer cell line for use in the
knockdown experiments to test how etoposide IC50 would be
impacted by a reduction in STARD5 expression (37). Additionally,
previous projects have used A549 cell lines to study factors
contributing to etoposide-induced cell death (38,39).

STARD5 encodes a steroidogenic acute regulatory related lipid
transfer domain protein (40). Studies have found STARD5 to

become more highly expressed as a response to endoplasmic
reticulum (ER) stress, which leads to the relocation of the pro-
tein encoded by STARD5 from the nucleus to the cytosol and
cell membrane (41). Etoposide, while disrupting normal topoi-
somerase II function, often induces ER stress in the process (42).
This could contribute to increased STARD5 expression in cancer
cells. Additionally, increased STARD5 expression in hepatocytes
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Figure 5. Predicted Expression of significant TWAS gene hits versus drug measured drug cytotoxicity levels. (A) Predicted expression of STARD5 in the ALL population

as determined by PrediXcan using the GTEx v7 Brain Cortex prediction model plotted against RN etoposide IC50 levels as measured in LCLs from the ALL population. (B)

Predicted expression of USF1 in the ALL population as determined by PrediXcan using the GTEx v7 Liver prediction model plotted against RN Capecitabine AUC levels as

measured in LCLs from the ALL population. (C) Predicted expression of CCAR1 in the YRI population as determined by MultiXcan plotted against RN Capecitabine AUC

levels as measured in LCLs from the YRI population. CCAR1 expression was best predicted by the GTEx v7 Esophagus Mucosa prediction model. Each point represents

an individual, the curved gray lines convey density in regard to the distribution of the black points and the straight black line is the best fit determined by linear

regression, which shows the direction of effect.

Figure 6. Evaluation of the effect of STARD5 knockdown on sensitivity of A549 lung cancer cells to etoposide. (A) Experimental scheme for knockdown of STARD5 in

A549 and treatment with etoposide. (B) STARD5 expression was reduced <25% for cells treated with siSTARD5 (gray bars) compared with expression in siSCR (black

bars) at time of drug treatment (0 h) and at 72 and 96 h as determined by qRT-PCR. (C, D) Relative viability, determined by CellTiter-Glo 2.0 assay, for A549 cells treated

with increasing concentrations of etoposide at (C) 72 h and (D) 96 h after treatment with siSTARD5 (open circle) or siSCR control (closed circle). Data represent two

independent experiments, including at least three replicates analyzed by two-way ANOVA showing the SEM.

has been linked to increased cholesterol levels (40). STARD5 pro-
tein binds and transports cholesterol and other sterol-derived
molecules in the liver and thus helps regulate lipid homeostasis
and metabolism (40). The mechanisms for cholesterol home-
ostasis and drug metabolism have been found to rely on the
same cellular receptors, including pregnane X receptor (PXR)
(43). PXR binds etoposide as well as other chemotherapeutics

to activate CYP3A4, a key enzyme involved in drug metabolism
(44). The role of STARD5 in regulating metabolism and other
liver functions could be one explanation for the association
between etoposide-induced cytotoxicity and increased STARD5
expression. Etoposide metabolism occurs primarily in the liver,
where STARD5 is highly expressed (40,45). Overall, increased
expression of STARD5, whether preexisting or prompted by ER

CYP3A4
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stress, may facilitate etoposide metabolism in the liver, in turn,
promoting etoposide-induced cytotoxicity.

The GWAS we conducted revealed four unique loci asso-
ciated with cellular sensitivity to either carboplatin, cisplatin,
daunorubicin or etoposide. In the ASN population, we found
three SNPs on chromosome 9 located within PPP1R26 to be
associated with carboplatin-induced toxicity. PPP1R26 has been
associated with tumor formation and is upregulated in breast
carcinomas, promoting metastasis through the degradation of
retinoblastoma protein, a tumor suppressor protein (46,47). In
the YRI population, we found one SNP on chromosome 3 located
within CNTN4 to be associated with cisplatin-induced toxicity.
CNTN4 encodes a contactin 4, an immunoglobulin that regulates
cellular interactions and axonal growth in the nervous system
(48,49). Overexpression of CNTN4 has been found to be associ-
ated with malignancy in nerve tissue and with cisplatin-induced
nephrotoxicity (48,49). In the ALL population, we found two SNPs
on chromosome 12 in proximity to AMIGO2 to be associated
with etoposide-induced toxicity. AMIGO2 is a scaffold protein
that binds to PDK1 to regulate the phosphoinositide 3-kinase–
Akt signaling pathway, which plays a role in many biological
mechanisms, including cell proliferation and metabolism (50).
Overexpression of AMIGO2 has been found to induce abnormal
Akt signaling, which contributes to the onset and progression
of various cancers (50). Additionally, AMIGO2 overexpression is
a common characteristic of metastatic tissue, particularly when
metastasis occurs in the liver, as AMIGO2 regulates cell adhesion
in liver cells (51).

Additionally, we performed FUMA gene set enrichment anal-
ysis on the top genes identified with TWAS (30). For CEU and
ara-C, we identified enrichment in the oncogenic signature gene
set P53_DN.V1_DN, which consists of genes that are downreg-
ulated in cell lines with mutated TP53 (34). Mutations in TP53,
which encodes a tumor suppressor protein, are linked to various
cancer types, and the genes in this set are often downregulated
in cancers where TP53 is also mutated (34). TP53 mutations
are known to confer resistance to ara-C (52,53). We also found
enrichment in the oncogenic signature WNT_UP.V1_UP for CEU
and cisplatin. This gene set consists of upregulated genes in
the Wnt signaling pathway, which is involved in cell prolif-
eration (31). Abnormal activation of this pathway can result
in tumor formation and progression (54). For CEU and pacli-
taxel, enrichment was found in a GWAS Catalog Reported gene
set, containing genes associated with liver enzyme levels. GGT1
encodes gamma-glutamyl transferase, the main enzyme fea-
tured in this set, which cleaves extracellular glutathione and
transfers its components—glutamic acid, cysteine and glycine—
for intracellular use (55). Upregulation of GGT1 is a feature of a
variety of cancer types, including kidney and ovarian carcinomas
(3,55). Ovarian carcinomas often are treated with combination
chemotherapy using cisplatin and paclitaxel, as these drugs use
different mechanisms to induce cell death; however, a subset
of patients develop resistance to one or both of these drugs (3).
Upregulation of GGT1 was found to be associated with pacli-
taxel resistance in ovarian cancer cell lines already resistant to
cisplatin (3). Thus, the enrichment of genes in this set, which
are associated with paclitaxel, and the association with GGT1 in
particular, may be understood in the context of this prior finding.

This study has limitations, as the functional follow-up to
the TWAS we conducted utilized the lung cancer cell line A549
rather than patients with lung cancer or another replication
population. However, the functional studies we performed vali-
dated the association between increased STARD5 expression and
increased etoposide-induced cytotoxicity which we ascertained

through TWAS. To fully understand how STARD5 expression
impacts the mechanisms through which etoposide induces cell
death, further mechanistic studies are required. Association
studies conducted with proteomic data could enhance these
findings further, as well as additional functional studies that
explore links between STARD5 and drug metabolism. Moreover,
if strides toward precision medicine are to continue, studies
must promote greater diversity within participating popula-
tions, as currently the majority of human genome-wide studies
are conducted on individuals of European ancestries (19,56). By
studying diseases and drug response in populations with diverse
ancestries, data will become more representative of the global
population and the knowledge of genetic variants and their role
in disease and drug response will be expanded (56). In sum-
mary, this project successfully identified novel genetic variants
involved in chemotherapy-induced cytotoxicity in diverse ances-
tral populations through GWAS, TWAS, gene set enrichment
analysis and functional gene knockdown experiments.

Materials and Methods
Chemotherapy cytotoxicity phenotypes

We procured cytotoxicity phenotypes measured in HapMap LCLs
from previous studies of eight chemotherapy drugs, including
ara-C, capecitabine, carboplatin, cisplatin, daunorubicin, etopo-
side, paclitaxel and pemetrexed (11–18,25–27). These LCLs were
derived from 178 individuals from the Yoruba population in
Ibadan, Nigeria (YRI), 178 individuals with European ancestries
from Utah, USA (CEU), and 90 individuals from a combined pop-
ulation of Han Chinese from Beijing, China, and Japanese from
Tokyo, Japan (ASN). The YRI population contained 58 parent–
child trios and the CEU population contained 52 parent–child
trios, which we accounted for when conducting our genetic
analyses. The numbers of LCLs with measured phenotypes var-
ied for each drug (Table 1). Cellular sensitivity to each drug
was recorded as the AUC for ara-C, capecitabine, paclitaxel and
pemetrexed, and as the IC50 for carboplatin, cisplatin, daunoru-
bicin and etoposide. These concentrations were all measured
after 72 h of exposure to the corresponding chemotherapeutic.
We rank-normalized the AUC or IC50 for use in our subsequent
genetic analyses. Additionally, once phenotypic data were col-
lected for each ancestral population and drug, genotypic data
were imputed using BEAGLE; all genotypes were in Genome Build
37 and only autosomal variants were analyzed.

GWAS with ancestral populations

Some individuals with HapMap LCLs used in this study were
sequenced in the 1000 Genomes Project and some had genotypes
only. Individuals genotyped in HapMap r28, but not sequenced,
were previously imputed to 1000 Genomes (25). Phased genotype
data of the 186 ASN, 85 CEU and 88 YRI samples sequenced
in the 1000 Genomes Project phase I version 3 were down-
loaded from the BEAGLE website (http://faculty.Washington.e
du/browning/beagle/beagle.html). An additional 15 ASN, 93 CEU
and 90 YRI samples genotyped in HapMap r28 were imputed
to 1000 Genomes using BEAGLE version 3.3.2, which considers
the relatedness of the trios in the imputation (57,58). We used
SNPs with imputation r2 > 0.8, population minor allele frequency
(MAF) > 0.05 and in Hardy–Weinberg equilibrium (P > 1 × 10−6) in
our studies.

Prior to conducting GWAS, we created a relatedness matrix
for each of the ancestral populations, YRI, CEU and ASN, using
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GEMMA. For each ancestral population we used the genotype
dosages, with a minimum MAF of 0.05, to calculate the centered
relatedness matrix. We then used GEMMA version 0.98.1 to
conduct GWAS using the linear mixed model Wald test for each
ancestral population and corresponding phenotypes (Table 1)
(28). After conducting GWAS, we created QQ, Manhattan and
LocusZoom plots to aid in visualizing our results. We made the
QQ and Manhattan plots in R using the package qqman and
created the LocusZoom plots with the single plot service on
http://locuszoom.org/ (59,60). We made LocusZoom plots for all
SNPs with genome-wide significance (P < 5 × 10−8), and we used
the corresponding 1000 Genomes November 2014 ancestral pop-
ulation when generating the LocusZoom plots. Additionally, we
performed a conditional analysis of the genome-wide significant
loci using linear regression with the top SNP as a covariate to
determine independence for the SNPs that were identified at
each chromosomal region.

GWAS with combined population

To organize data for the ALL population, we combined the BIM-
BAM files for both the genotype and phenotype data from each
ancestral population into single files. We then used a subset of
100 000 SNPs to convert the BIMBAM files into PLINK files, which
we needed to conduct PCA with KING (61,62). We used the covari-
ates calculated by KING to account for population stratification
in the ALL population. We also plotted the first three principal
components to demonstrate that they accounted for population-
based variation. Once these covariates were obtained, we gen-
erated a relatedness matrix for ALL and then conducted GWAS
using the same methods as described for the ancestral popula-
tions, with the only difference being the inclusion of the covari-
ates generated with PCA when conducting GWAS. We generated
QQ, Manhattan and LocusZoom plots as well, using the same
methods. As the ALL population does not correspond to a single
1000 Genomes November 2014 population, we made multiple
LocusZoom plots for each genome-wide significant SNP, one
with each ancestral population included in the ALL population.

TWAS with ancestral and combined populations

We conducted TWAS with PrediXcan on both the ancestral and
combined populations for all applicable phenotypes, using the
GTEx v7 and MESA prediction models (21,23,24). PrediXcan was
used to calculate the predicted expression levels for each gene.
We then used GEMMA to perform a total of 7 487 956 associa-
tion tests, as this enabled us to account for relatedness within
the populations with the matrices created previously. To use
GEMMA for this purpose, we reformatted the predicted expres-
sion matrices outputted by PrediXcan into a readable format
for GEMMA, so the association tests could be performed. This
produced results specific to each prediction model for each pop-
ulation and phenotype combination. Additionally, we conducted
TWAS with MultiXcan for the same populations and phenotypes,
using the GTEx v7 prediction models only (22). We did not
use GEMMA to conduct these association tests, as MultiXcan
aggregates across prediction models to find overall associations
and GEMMA does not conduct the association tests in this man-
ner. Using MultiXcan, we performed 727 944 association tests
and produced a single set of results for each population and
phenotype combination, containing overall rather than model-
specific associations. For the ALL population, we included the
covariates generated from PCA when performing the associ-
ation tests with both GEMMA and MultiXcan to account for

population stratification. We then adjusted the P-values derived
from both GEMMA and MultiXcan using Bonferroni correction
to determine which genes had significant predicted expression
levels associated with drug cytotoxicity. For each significant
gene, we then created predicted expression plots in R using the
package ggplot2, which plot the gene’s predicted expression level
against the chemotherapy phenotype (either IC50 or AUC) for
each individual (63).

FUMA gene set enrichment analysis

After performing TWAS on each population and cytotoxicity
phenotype, we used the FUMA tool GENE2FUNC to perform
gene set enrichment analysis of the results from PrediXcan and
MultiXcan (30). One GENE2FUNC query was made for each ances-
tral population and phenotype combination. We submitted two
lists of genes for each query, one for background genes, which
contained all the genes analyzed during TWAS, and one for
genes of interest, which contained a significant subset of genes
based on either the PrediXcan or MultiXcan results we generated
previously. To achieve a subset of approximately 100 genes in
each genes of interest list, we used a significance threshold of
unadjusted P-value < 0.0005 for all the PrediXcan results and
unadjusted P-value < 0.005 for all the MultiXcan results. The
PrediXcan results, which were derived from multiple prediction
models, were combined so that the top genes across all models
were selected for each ancestral population and phenotype. For
the GENE2FUNC optional parameters, we used all the default
options except for gene expression data sets, for which we
selected GTEx v7: 53 tissue types and GTEx v7: 30 general tissue
types, as these correspond to the prediction models we used
when conducting TWAS. We report significant gene sets that
are enriched in each run of PrediXcan or MultiXcan for each
ancestral population and phenotype with adjusted P (Benjamini-
Hochberg FDR) < 0.05.

Cancer cell lines

We obtained non-small cell lung cancer line A549 (CCL-185)
from ATCC (Manassas, VA). IDEXX BioResearch (Columbia, MO)
performed authentication of the cancer cell line, Case # 12135-
2020 by using the Promega CELL ID System (Madison, WI) with
eight short tandem repeat markers (CSF1PO, D13S317, D16S539,
D5S818, D7S820, TH01, TPOX and vWA) and amelogenin (for sex).

Compound preparations

We dissolved etoposide (Sigma-Aldrich, St. Louis, MO) in DMSO
to obtain a stock solution of 10 mm and filtered using a 0.22 μm
solvent-resistant filter (EMD Millipore, Billerica, MA) for sterility.
We serially diluted the stock in media for final concentrations
of 5–100 μm for treatment of the A549 cancer cell line. Vehicle
control was 0.1% DMSO in media.

Cellular assay with STARD5 knockdown

We maintained A549 cells in F-12 K media (Life Technologies,
Carlsbad, CA) supplemented with 10% FBS (Hyclone, Fisher
Scientific, Hanover Park, IL) and 1% penicillin–streptomycin
(Life Technologies). We incubated cultures in a humidified
incubator at 37◦C with 5% CO2. We performed knockdown
of STARD5 using a modified reverse transfection method
(Thermo Fisher ‘Literature Code: 00189-08-C-01-U’). We mixed
ON-TARGETplus SMARTpool siSTARD5 or ON-TARGETplus

http://locuszoom.org/
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non-targeting pool (siSCR) purchased from Dharmacon Inc.
(Lafayette, CO) with DharmaFECT1 (Dharmacon Inc.) as per
manufacturer’s recommendations to create the transfection
mix. We added complete media siSTARD5 or siSCR complex to
produce 25 nm final concentrations of each, then added the
mixture to a cell pellet such that the final concentration of
cells was 6000 cells/100 μl volume and plated into the 96 well
flat bottom tissue culture plates (Cell Star; Quality Biologicals
Inc., Gaithersburg, MD). As a quality control check of the effect
of siRNA on cell growth rates, we assayed cell viability using
CellTiter-Glo 2.0 (Promega), which measures cellular ATP from 0
to 96 h in control wells. At 24 h, we replaced transfection media
with media containing increasing concentrations of etoposide
(5–100 μm). To determine cellular sensitivity to etoposide in the
presence of siSTARD5 or siSCR, we incubated cells with drug for
72 and 96 h, followed by cell viability assays using CellTiter-Glo
2.0.

Quantitative reverse transcription-PCR analysis

At 0, 72 and 96 h post-drug treatment, we added trypsin to
the wells of A549 cells (6000 cells/well) containing siSTARD5
or siSCR and combined, pelleted and stored the cells at −80◦C.
We extracted RNA using RNeasy Plus (Qiagen, Valencia, CA)
and prepared cDNA from 500 ng RNA/sample with the high-
capacity cDNA kit (Life Technologies). To determine STARD5
knockdown in A549 cells, we performed quantitative reverse
transcription-PCR (qRT-PCR) for STARD5, Hs01075234_m1 and a
control gene B2M, 4326319E (Life Technologies) using TaqMan
Fast Gene Expression mix (Applied Biosystems, Foster City, CA).
We ran each qRT-PCR in triplicate and determined gene expres-
sion levels using the relative standard curve method on the
Viia7 (Life Technologies). We calculated percent knockdown by
dividing the relative STARD5 expression levels in the siSTARD5
sample by the STARD5 expression in the non-targeting control
(siSCR).

Supplementary Material
Supplementary Material is available at HMG online.
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Grzanka, A. (2013) Low-dose etoposide-treatment induces
endoreplication and cell death accompanied by cytoskeletal
alterations in A549 cells: does the response involve senes-
cence? The possible role of vimentin. Cancer Cell Int., 13,
9.

39. Huang, Y., Chan, A.M., Liu, Y., Wang, X. and Holbrook, N.J.
(1997) Serum withdrawal and etoposide induce apoptosis in
human lung carcinoma cell line A549 via distinct pathways.
Apoptosis, 2, 199–206.

40. Rodriguez-Agudo, D., Ren, S., Hylemon, P.B., Redford, K.,
Natarajan, R., Del Castillo, A., Gil, G. and Pandak, W.M.
(2005) Human Star D5, a cytosolic StAR-related lipid binding
protein. J. Lipid Res., 46, 1615–1623.

41. Rodriguez-Agudo, D., Calderon-Dominguez, M., Medina,
M.A., Ren, S., Gil, G. and Pandak, W.M. (2012) ER stress
increases StarD5 expression by stabilizing its mRNA and
leads to relocalization of its protein from the nucleus to the
membranes. J. Lipid Res., 53, 2708–2715.

42. Wang, C., Zhang, F., Cao, Y., Zhang, M., Wang, A., Xu, M., Su, M.,
Zhang, M. and Zhuge, Y. (2016) Etoposide induces apoptosis
in activated human hepatic stellate cells via ER stress. Sci.
Rep., 6, 34330.

43. Rezen, T., Rozman, D., Pascussi, J.M. and Monostory, K. (2011)
Interplay between cholesterol and drug metabolism. Biochim.
Biophys. Acta, 1814, 146–160.

44. Schuetz, E., Lan, L., Yasuda, K., Kim, R., Kocarek, T.A.,
Schuetz, J. and Strom, S. (2002) Development of a real-
time in vivo transcription assay: application reveals preg-
nane X receptor-mediated induction of CYP3A4 by cancer
chemotherapeutic agents. Mol. Pharmacol., 62, 439–445.

45. Kawashiro, T., Yamashita, K., Zhao, X.J., Koyama, E., Tani, M.,
Chiba, K. and Ishizaki, T. (1998) A study on the metabolism
of etoposide and possible interactions with antitumor or
supporting agents by human liver microsomes. J. Pharmacol.
Exp. Ther., 286, 1294–1300.

46. Zheng, T., Lu, M., Wang, T., Zhang, C. and Du, X. (2018) NRBE3
promotes metastasis of breast cancer by down-regulating E-
cadherin expression. Biochim. Biophys. Acta Mol. Cell Res., 1865,
1869–1877.



Human Molecular Genetics, 2021, Vol. 30, No. 3–4 317

47. Yang, L., Zhao, J., Lü, W., Li, Y., Du, X., Ning, T., Lu, G. and
Ke, Y. (2005) KIAA 0649, a 1A6/DRIM-interacting protein with
the oncogenic potential. Biochem. Biophys. Res. Commun., 334,
884–890.

48. Garcia, S.L., Lauritsen, J., Zhang, Z., Bandak, M., Dalgaard,
M.D., Nielsen, R.L., Daugaard, G. and Gupta, R. (2020) Pre-
diction of nephrotoxicity associated with cisplatin-based
chemotherapy in testicular cancer patients. JNCI Cancer
Spectr., 4, pkaa032.

49. Evenepoel, L., van Nederveen, F.H., Oudijk, L., Papathomas,
T.G., Restuccia, D.F., Belt, E.J.T., de Herder, W.W., Feelders,
R.A., Franssen, G.J.H., Hamoir, M. et al. (2018) Expression
of contactin 4 is associated with malignant behavior in
pheochromocytomas and paragangliomas. J. Clin. Endocrinol.
Metab., 103, 46–55.

50. Park, H., Lee, S., Shrestha, P., Kim, J., Park, J.A., Ko, Y., Ban,
Y.H., Park, D.Y., Ha, S.J., Koh, G.Y. et al. (2015) AMIGO2,
a novel membrane anchor of PDK1, controls cell sur-
vival and angiogenesis via Akt activation. J. Cell Biol., 211,
619–637.

51. Kanda, Y., Osaki, M., Onuma, K., Sonoda, A., Kobayashi,
M., Hamada, J., Nicolson, G.L., Ochiya, T. and Okada, F.
(2017) Amigo 2-upregulation in tumour cells facilitates their
attachment to liver endothelial cells resulting in liver metas-
tases. Sci. Rep., 7, 43567.

52. Goldberg, A.D., Talati, C., Desai, P., Famulare, C., Devlin, S.M.,
Farnoud, N., Sallman, D.A., Lancet, J.E., Roboz, G.J., Sweet,
K.L. and Tallman, M.S. (2018) TP53 mutations predict poorer
responses to CPX-351 in acute myeloid leukemia. Blood, 132,
1433–1433.

53. Ko, Y.C., Hu, C.Y., Liu, Z.H., Tien, H.F., Ou, D.L., Chien, H.F. and
Lin, L.I. (2019) Cytarabine-resistant FLT3-ITD leukemia cells
are associated with TP53 mutation and multiple pathway
alterations—possible therapeutic efficacy of cabozantinib.
Int. J. Mol. Sci., 20, 1230.

54. Giles, R.H., van Es, J.H. and Clevers, H. (2003) Caught up in a
Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta,
1653, 1–24.

55. Bansal, A., Sanchez, D.J., Nimgaonkar, V., Sanchez, D.,
Riscal, R., Skuli, N. and Simon, M.C. (2019) Gamma-
glutamyltransferase 1 promotes clear cell renal cell car-
cinoma initiation and progression. Mol. Cancer Res., 17,
1881–1892.

56. Landry, L.G., Ali, N., Williams, D.R., Rehm, H.L. and Bonham,
V.L. (2018) Lack of diversity in genomic databases is a bar-
rier to translating precision medicine research into practice.
Health Aff., 37, 780–785.

57. Browning, S.R. and Browning, B.L. (2007) Rapid and
accurate haplotype phasing and missing-data inference
for whole-genome association studies by use of
localized haplotype clustering. Am. J. Hum. Genet., 81,
1084–1097.

58. 1000 Genomes Project Consortium, Abecasis, G.R., Auton, A.,
Brooks, L.D., DePristo, M., Durbin, R.M., Handsaker, R.E., Kang,
H.M., Marth, G.T. and McVean, G. (2012) An integrated map of
genetic variation from 1,092 human genomes. Nature, 491,
56–65.

59. Turner, S.D. (2014) qqman: an R package for visualizing
GWAS results using QQ and manhattan plots. bioRxiv, doi:
10.1101/005165.

60. Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M.,
Chines, P.S., Gliedt, T.P., Boehnke, M., Abecasis, G.R. and
Willer, C.J. (2010) Locus zoom: regional visualization of
genome-wide association scan results. Bioinformatics, 26,
2336–2337.

61. Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K.,
Sale, M. and Chen, W.M. (2010) Robust relationship infer-
ence in genome-wide association studies. Bioinformatics, 26,
2867–2873.

62. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,
M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J.
and Sham, P.C. (2007) PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am. J.
Hum. Genet., 81, 559–575.

63. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis.
Springer, New York, NY.

https://doi.org/10.1101/005165

	Genetically regulated expression underlies cellular sensitivity to chemotherapy in diverse populations
	Introduction 
	Results
	Population chemotherapy phenotypes
	GWAS reveals four new loci associated with chemotherapy-induced cytotoxicity
	TWAS predicts expression levels for three genes to be associated with chemotherapy-induced cytotoxicity
	FUMA identifies enrichment in oncogenic signatures
	Knockdown experiments validate reduced STARD5 expression is associated with reduced etoposide-induced cytotoxicity

	Discussion
	Materials and Methods
	Chemotherapy cytotoxicity phenotypes
	GWAS with ancestral populations
	GWAS with combined population
	TWAS with ancestral and combined populations
	FUMA gene set enrichment analysis
	Cancer cell lines
	Compound preparations
	Cellular assay with STARD5 knockdown
	Quantitative reverse transcription-PCR analysis

	Supplementary Material
	Funding


