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Abstract

Persistent homology is a powerful tool for characterizing the topology of a data set at various 

geometric scales. When applied to the description of molecular structures, persistent homology 

can capture the multiscale geometric features and reveal certain interaction patterns in terms of 

topological invariants. However, in addition to the geometric information, there is a wide variety 

of nongeometric information of molecular structures, such as element types, atomic partial 

charges, atomic pairwise interactions, and electrostatic potential functions, that is not described by 

persistent homology. Although element-specific homology and electrostatic persistent homology 

can encode some nongeometric information into geometry based topological invariants, it is 

desirable to have a mathematical paradigm to systematically embed both geometric and 

nongeometric information, i.e., multicomponent heterogeneous information, into unified 

topological representations. To this end, we propose a persistent cohomology based framework for 

the enriched representation of data. In our framework, nongeometric information can either be 

distributed globally or reside locally on the datasets in the geometric sense and can be properly 

defined on topological spaces, i.e., simplicial complexes. Using the proposed persistent 

cohomology based framework, enriched barcodes are extracted from datasets to represent 

heterogeneous information. We consider a variety of datasets to validate the present formulation 

and illustrate the usefulness of the proposed method based on persistent cohomology. It is found 

that the proposed framework outperforms or at least matches the state-of-the-art methods in the 

protein-ligand binding affinity prediction from massive biomolecular datasets without resorting to 

any deep learning formulation.
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1. Introduction.

With the advancements in sensor hardware, data collection software, data organization, and 

storage frameworks, various databases are expanding at an unprecedented speed where a 

large part of the newly accumulated data is high-dimensional, highly complex, diverse, and 

often noisy. The rapid growth of databases demands robust and automatic data analysis 

tools. Currently, many widely used data analysis methods make assumptions of data 

complexity and the underlying dimensionality. Other methods require knowledge from 

domain experts. An emerging family of data analysis methods, topological data analysis 

(TDA), answers these demands by combining ideas from algebraic topology with multiscale 

analysis [13]. Making minimal assumptions of data, TDA characterizes the shapes of data in 

various dimensions, scans over a wide range of scales, and is often robust against noise.

Computational homology represents the topological structures of various dimensions by 

algebraic structures, usually based on a fixed discrete topological space of interest. A 

discrete topological representation can be derived by building a simplicial complex upon a 

point cloud with a chosen scale parameter determining the topology or by building a cubical 

complex upon volumetric data with a chosen isovalue. Continuous topological spaces can 

also be approximated by discrete representations, e.g., a tessellation of a manifold. 

Homology groups contain generators associated with the holes of certain dimensions in the 

topological space. While computational homology captures the shape characteristics of a 

fixed structure, such characteristics are insufficient to cover a wide range of scales. A great 

variety of other structures might share the same characteristics. In mathematics, it is 

common to eliminate degeneracy by introducing an extra dimension. Therefore, instead of 

examining the data at a fixed scale, persistent homology scans a sequence of topological 

spaces associated with a varying parameter that determines the topologies built upon the 

data.

Persistence describes the shapes and the corresponding scales of data by representing the 

data as a continuum of topological spaces, which is called a filtration, and tracking 

homology features along this course of varying spaces. Via filtration, a collection of 

topological spaces is built on the data associated with different values of a scale parameter. 

Persistent homology tracks at what stage of the filtration homology generators appear and 

how they persist along the subsequent course of the filtration. The persistent homology 

theory was formulated along with practical algorithms by Edelsbrunner, Letscher, and 

Zomorodian [25]. A formal mathematical foundation was later established by Zomorodian 

and Carlsson [57]. An earlier work, size function [26], examines the connected components 

of topological spaces and can be regarded as a version of 0th dimensional persistent 

homology. Persistent homology has found applications in many fields–for example, image 

processing [7], biology [19, 16, 53, 55, 54, 47, 28, 10], and fields in mathematics such as 

dynamical systems [37]. Theoretical development has flourished since persistent homology 

was proposed; examples are zigzag persistence [14] and multidimensional persistence [15]. 

There has been continuous advancement in algorithm development such as Perseus [39], 

PHAT [5], and Ripser [4], paving the way for the analysis of complex and large datasets.
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A point cloud dataset in the Euclidean space allows the usage of radius filtration associated 

with alpha complex [24]. A more general distance filtration associated with a Vietoris–Rips 

complex [31] or a Čech complex can be used to allow a predefined distance function suitable 

for specific applications [53, 55]. It is also possible to use a more flexible construction by 

directly assigning filtration values to simplices in a complex which is considered as the final 

structure at the end of the filtration. In many applications, persistent homology is used to 

analyze the topological structures of datasets with generalized but homogeneous 

information. For example, once the genetic distance between genes is defined by the number 

of mutations, persistent homology can be used to analyze the topological properties of a 

gene evolution dataset. When the information of a dataset is heterogeneous, i.e., 

multicomponent information is involved, special treatments are needed. For example, 

vineyards [18, 41] are used to study spatiotemporal data.

In dealing with chemical and biological datasets, persistent homology was found to neglect 

crucial chemical and biological information during the topological simplification of the 

geometric complexity. Element-specific persistent homology was introduced to retain some 

chemical and biological information of the molecular datasets in the topological invariants 

[9, 11, 10, 8]. In fact, retaining some information of element types while using persistent 

homology to characterize the geometric point cloud representing the molecules can already 

deliver top predictions in worldwide drug design competitions [42]. However, in addition to 

the point cloud in the Euclidean space representing the coordinates of atoms, there is a lot of 

other valuable physical and chemical information such as atomic partial charges, Coulomb 

and van der Waals interactions between atoms, and hydrophobic interactions among carbon 

atoms. A pressing need is to encode the physical and chemical information into the 

topological representations. This need is common in practical data analysis, where the data 

has multiple dimensions with heterogeneous meanings. It is questionable to consider such a 

dataset as one single high-dimensional point cloud and directly apply persistent homology 

analysis. Consequently, there is a broad need to integrate the multicomponent nongeometric 

information into topological representations of the geometric information. To this end, we 

utilize the cohomology theory to assign functions on the persistence barcodes that depict the 

nongeometric information.

Cohomology provides a richer algebraic structure for a topological space. Cohomology 

theory has been applied in both mathematics and the field of data analysis. One well-known 

cohomology theory is de Rham cohomology, which studies the topological features of 

smooth manifolds using differential forms. The de Rham cohomology has led to further 

theoretical developments such as Hodge theory. Recently, a discrete exterior calculus 

framework has been established [32] where manifolds are approximated by mesh-like 

simplicial complexes and the discrete counterparts of the continuous concepts such as 

differential forms are defined thereafter. This framework has many applications. For 

example, the harmonic component of the discrete Hodge decomposition has been used in 

sensor network coverage problems to localize holes in a sensor network [6]. Cohomology 

theory has also been applied to topological data analysis. A 1-dimensional cohomology was 

used to assign circular values to the input data associated with a homology generator [21], 

which further led to applications in several fields including the analysis of neural data [48] 

and the study of periodic motion [50]. Persistent cohomology in higher dimensions has been 
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used to produce coordinate representations that reduce dimensionality while retaining the 

topological property of data [46]. Generalized weighted (co)homology and the weighted 

Laplacian were introduced with applications to graphs [52]. Computationally, the duality 

between homology and cohomology [20] has set the basis for constructing more efficient 

algorithms that utilize cohomology to compute persistent homology barcodes. Several code 

implementations, such as Dionysus [40] and Ripser [4], drastically speed up the persistent 

homology computation by utilizing this property.

In this work, we introduce an enriched representation of data. We seek a formulation that 

organizes geometric information into a simplicial complex while encoding chemical, 

physical, and biological properties into functions fully or partially defined on simplicial 

complexes locally associated with the cohomology generators. To this end, we need a 

representation that can locate homology generators. When manifold-like simplicial 

complexes are available, we can look for harmonic (in the sense of the Laplace–de Rham 

operator) cohomologous cocycles under the framework of discrete exterior calculus [33]. A 

discrete version of the Hodge–de Rham theorem guarantees the uniqueness of the harmonic 

cocycle if certain conditions are satisfied [33]. However, this method requires the proper 

construction of the Hodge star operator, which usually relies on a well-defined dual 

complex, while in general applications this is not always feasible. For example, when a user-

defined dissimilarity matrix is used with the Rips complex, the dissimilarity measurement 

may not satisfy to be a distance. Therefore, we relax our requirement on geometric accuracy 

and use a combinatorial Laplacian on simplicial complexes. Then, the smoothness of a 

cocycle can be measured by the Laplacian. Specifically, given a representative cocycle of a 

homology generator, we look for a cohomologous cocycle that minimizes the norm of the 

output under the Laplacian. We can then consider such smoothed cocycles which distribute 

smoothly around the holes of certain dimensions as measures on simplicial complexes and 

describe the input functions defined on the simplicial complexes by integrating with respect 

to these measures. The present formulation also utilizes a filtration process to assign a 

function over the filtration interval associated with each bar in the barcode representation to 

deliver an enriched barcode representation of persistent homology. A weighted Wasserstein 

distance is defined and implemented subsequently to facilitate the comparison of these 

enriched barcodes generated from datasets.

In the rest of this paper, the background of persistent homology and cohomology is given in 

section 3, and persistent cohomology enriched barcodes with the accompanying data 

analysis tools are developed in section 4. In section 5, we illustrate the proposed method by 

simple examples, example datasets, and the characterization of molecules. Finally, we also 

demonstrate the utility of the proposed persistent cohomology by the prediction of protein-

ligand binding affinities from large datasets.

2. Motivation.

The development of the method in this work is for a scenario in topological data analysis, 

specifically persistent homology where the data has multiple heterogeneous dimensions 

while it is not appropriate to compute geometry/topology with all the dimensions together. 

However, the dimensions that are not considered for topological characterization may carry 
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useful information. This work reacquires this additional information by building maps upon 

the persistent homology results using cohomology.

More precisely, consider a dataset X ∈ ℝN × l containing N data points each having a 

description vector of size l. An example can be a set of N atoms from a molecule with l = 3
recording the Cartesian coordinates of the atoms, where persistent homology computation 

can be directly applied by considering the dataset as a point cloud in ℝ3. However, there can 

be more information in the dataset. For example, in addition to the coordinates, there can be 

partial charges on the atoms in a dataset. In this case, it is not appropriate to directly 

compute persistent homology by considering the dataset as a point cloud in ℝ4. A more 

general situation is that the l elements in the description vector contain both geometric 

information and nongeometric information. For simplicity, we assume the elements are 

already sorted such that the first m are for geometry and the following n elements are for 

nongeometric features. We can compute a certain dimensional persistent homology for the 

submatrix X(1, … , N; 1, … , m) and obtain a barcode PH(X) = {[bi, di)}i∈I which is 

basically a collection of half-open intervals. Then, the method in this work derives a function 

f*:PH(X) × ℝ ℝn on the intervals reflecting the information given in 

X(1, …, N; m + 1, …, l). For a bar [bi, di) in the barcode and a filtration value (which is a 

parameter in persistent homology related to scale) ϵ ∈ [bi, di), f*([bi, di), ϵ) describes the 

information carried by X(1, …, N; m + 1, …, l) associating with this particular bar at the 

specific filtration value. In the earlier example with 1-dimensional persistent homology, this 

reflects the average charge of atoms distributing on the loop or the tunnel associated with the 

bar.

3. Theoretical background.

3.1. Simplex and simplicial complex.

For point clouds, their topological analysis and characterization can be carried out via 

simplices and simplicial complexes. The convex hull of a set of k + 1 affinely independent 

points in ℝn is a (geometric) k-simplex denoted σ which can be represented by [v0, … , vk], 

and each vi is called a vertex of the simplex. A simplex τ is a face of σ if the vertices of τ 
are a subset of the vertices of σ and this relationship is denoted τ ≤ σ. A simplicial complex 

is a finite collection of simplices X = {σi}i satisfying that the intersection of any two 

simplices in X is either an empty set or a common face of the two and all the faces of a 

simplex in X are also in X. The collection of all k-simplices in X is denoted Xk. The 

dimension of a simplicial complex is the highest dimension of its simplices.

3.2. Homology and cohomology.

Given a simplicial complex X, a k-chain on it is a finite formal sum of all simplices in Xk, c 
= Σiaiσi where ai are coefficients. The set of all k-chains in X with the addition given by the 

addition of coefficients forms a group called the kth chain group denoted Ck(X). The 

orientation of a simplex is given by the ordering of its vertices, and two orderings give the 

same orientation if and only if they differ by an even number of permutations. For example, 

[v0, v1] = −[v0, v1] and [v0, v1, v2] = [v1, v2, v0]. The boundary operator ∂k : Ck(X) → 
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Ck−1(X) is a linear mapping that maps a k-simplex to the alternating sum of its 

codimension-1 faces,

∂k v0, …, vk = ∑
i = 0

k
( − 1)i v0, …, vi, …, vk ,

where vi denotes the absence of vi. When there is no ambiguity, we simply denote ∂k by ∂. 

We say that a k-chain is a boundary if it is in the image of ∂k+1. A k-chain is a k-cycle if its 

image under ∂k is 0, the chain with all coefficients equal to 0. The kth homology group is the 

quotient group Hk(X) = Ker(∂k)/Im(∂k+1) containing equivalence classes of k-cycles. 

Im(∂k+1) is a subgroup of Ker(∂k) following that ∂k ∘ ∂k+1 = 0. Two k-cycles are in the same 

equivalence class in Hk(X) if they differ by the boundary of a (k+1)-chain and they are 

called homologous.

Cohomology is also a sequence of abelian groups associated to the topological space X and 

is defined from cochain groups. Specifically, a k-cochain is a function α : Xk → R where R 
is a commutative ring. The set of all k-cochains following the addition in R is called the kth 

cochain group denoted Ck(X, R). The coboundary operator dk: Ck−1(X, R) → Ck(X, R) 

maps a cochain to a cochain of one dimension higher and is the counterpart of boundary 

operators for chains, namely

dk(α) v0, …, vk = ∑
i = 0

k
( − 1)iα v0, …, vi, …, vk

for a (k − 1)-cochain α. It should be noted that in the matrix representation of the two 

operators, dk and ∂k are transposes of each other provided we take the natural basis for the 

chain group and the natural corresponding basis for the cochain group. When there is no 

ambiguity, we simply refer to dk using d. A k-cochain is called a coboundary if it is in the 

image of dk. A k-cochain is called a cocycle if its image under dk+1 is 0. The coboundary 

operators have the property that dk+1 ∘ dk = 0 following that 

dk + 1 ∘ dk = ∂k + 1
T ∘ ∂k

T = ∂k ∘ ∂k + 1
T . The kth cohomology group is defined to be the 

quotient group Hk(X, R) = Ker(dk+1)/Im(dk). Two cocycles are called cohomologous if they 

differ by a coboundary.

In practice, some finite field is usually used for the efficient computation of persistent 

(co)homology. From now on, we consider finite fields ℤp with some prime p.

3.3. Persistence.

We are interested in the evolution of a simplicial complex and hope to track how the 

topological feature changes as the simplicial complex changes. Given a simplicial complex 

X and a function g:X ℝ, for any x ∈ ℝ, a sublevel set of X is defined as

X(x) = σ ∈ X ∣ g(σ) ≤ x .

Cang and Wei Page 6

SIAM J Math Data Sci. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The function g is required to satisfy that g(τ) ≤ g(σ) for any σ and any τ ≤ σ. Since X is a 

finite collection of simplices, we can have a finite sorted range of g as xi i = 0
l  where xi < xj 

if i < j. The filtration of X associated with g is an ordered sequence of subcomplexes of X,

0 ⊂ X x0 ⊂ X x1 ⊂ ⋯ ⊂ X xl = X . (3.1)

Let ℤp be the coefficient field for the chain groups. Persistent homology keeps track of the 

appearance and disappearance of homology classes along the filtration, which also includes 

the information of the homology of each fixed simplicial complex in filtration {X(xi)}i. 

Since we are working over a field, the homology groups Hk(X(xi)) can be represented as 

vector spaces. The inclusion map connecting the groups induces a sequence of linear 

transformations on the vector spaces as

Hk X x0 Hk X x1 ⋯ Hk X xl . (3.2)

A persistence module {Vi, ϕi} is a collection of a sequence of vector spaces Vi and linear 

transformations connecting them ϕi : Vi → Vi+1. An interval module I[b, d) is a persistence 

module where V i = ℤp  and 0 otherwise; and fi is the identify when possible and 0 otherwise. 

A special case of a theorem of Gabriel [27] implies that a nice enough persistence module 

can be decomposed uniquely as a direct sum of interval modules, ⊕[b, d) ∈ B I[b, d). The 

collection of half-open intervals B can be visualized as barcodes, which represent 

topological invariants as horizontal line segments, or persistence diagrams, which use points 

in a 2-dimensional plot to describe topological events.

Similarly, persistent cohomology can be derived with the following relationship:

Hk X x0 , ℤp Hk X x1 , ℤp ⋯ Hk X xl , ℤp .

The universal coefficient theorem for cohomology [30, Theorem 3.2] implies that there is a 

natural isomorphism Hk X, ℤp ≡ Homℤp Hk X, ℤp , ℤp  so that the cohomology group can 

be considered as the dual space of the homology group. This property further implies that 

rank Hk X, ℤp = rank Hk X, ℤp  and thus persistent homology and persistent cohomology 

have identical barcodes [20]. For the computation of persistent (co)homology, we refer the 

reader to [44, 20]. Though we are not aware of any general guidance for the choice of the 

coefficient set, that is, the choice of p in ℤp, a recent study suggests that in practice a 

persistence diagram rarely changes when p changes if we consider a filtration in ℝ3 [43].

4. Method.

4.1. Smoothed cocycle.

Some representative cocycles in persistent cohomology may not reflect the overall location 

and structure associated with their cohomology generators. To better embed the additional 

information in the data into cohomology generators, we look for a smoothed representative 
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cocycle in each cohomology class. The smoothness of functions can be measured by using a 

Laplacian. We then construct smoothed representative cocycles with this Laplacian. There 

can be many choices for the Laplacian operator such as the discrete Hodge Laplacian [22] 

for manifold-like complexes and the graph Laplacian [17] or its higher-order generalizations 

[22] for graphs. In this work, our object of study is typically a simplicial complex with 

simplices of different dimensions glued together. Moreover, we may work with abstract 

simplicial complexes in certain applications. Therefore, we choose the combinatorial 

Laplacian [29, 34] in this work for its general applicability.

A Laplacian for cochains can be defined by first defining an inner product and using the 

induced adjoint operator. Here, we consider the case of real coefficients. The adjoint 

dk*:Ck(X, ℝ) Ck − 1(X, ℝ) of the operator dk with respect to this inner product can be 

defined by

dkα, β k = α, dk*β k − 1 for α ∈ Ck − 1(X, ℝ), β ∈ Ck(X, ℝ) . (4.1)

Then, a Laplacian on Ck(X, ℝ) can be defined by

Δk = dk + 1* dk + 1 + dkdk* . (4.2)

For a cochain group, α1, α2 ∈ Ck(X, ℝ), the inner product can be defined as

α1, α2
k

= ∑
σ ∈ Xk

α1(σ)α2(σ), (4.3)

or with some weights,

α1, α2
k

w

= ∑
σ ∈ Xk

w(σ)α1(σ)α2(σ), (4.4)

where ω(σ) is the weight of σ.

Under the inner product defined in (4.3), the boundary operator ∂k is the adjoint of the 

coboundary operator dk leading to the combinatorial Laplacian Δk
C = ∂k + 1dk + 1 + dk∂k. The 

matrix representation of this operator can be constructed as

ℒk
C = Bk + 1Bk + 1

T + Bk
TBk, (4.5)

where Bk is the kth boundary matrix. The two terms respectively capture upper adjacency 

(two k-simplices being faces of a common (k + 1)-simplex) and lower adjacency (two 

simplices sharing a common nonempty codimension-1 face) among the k-simplices.

Consider a real weight function on the simplices w:K ℝ+ in (4.4); the weighted boundary 

operator can be defined as
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∂k
W (σ) = ∑

i = 0

k w(σ)
w σi

( − 1)iσi, (4.6)

where σi is a face of σ omitting vertex i [34, 52]. Based on this, the weighted combinatorial 

Laplacian can be constructed as

ℒk
CW = Ak + 1Ak + 1

T + Ak
TAk, (4.7)

where Ak is the matrix representation of the weighted boundary operator ∂k
W .

4.2. Persistent cohomology enriched barcode.

We describe the workflow in this section. Given a simplicial complex X of dimension n, and 

a function f:Xk ℝ with 0 ≤ k ≤ n, we seek a method to embed the information of f on the 

persistence barcodes obtained with a chosen filtration of X. In other words, we seek a 

representation of f on cohomology generators. To this end, smoothed representations are first 

computed for cohomology generators. One such smoothed representation induces a measure 

on the simplicial complex which allows us to integrate f on X. We describe the protocol of 

our approach below.

Dimension greater than 0.—Consider a filtration of X, ∅ = X(x0) ⊆ X(x1) ⊆ … ⊆ X(xl) 

= X, and an associated persistent cohomology with a prime p other than 2. We follow de 

Silva, Morozov, and Vejdemo-Johansson [21] for the construction of an initial representative 

integer cocycle. Let ω be a representative cocycle for a persistence interval [xi, xj) of 

dimension k > 0. A lifting of ω with integer coefficients ω′ is first constructed satisfying 

that ω(σ) ≠ ω′(σ) (mod p) and ω′(σ) ∈ i ∈ ℤ: − (p − 1)/2 ≤ i ≤ (p − 1)/2  for all σ ∈ Xk. It is 

possible that ω′ is not an integer (i.e., dω′ ≠ 0), and if this is the case, by writing dω′ = pη 
with η ∈ Ck + 1(X, ℤ), we can solve for η = dγ with γ ∈ Ck(X, ℤ). Then a valid integer 

cocycle ω′ − pγ can be obtained. This lifting fails when there is p-torsion in Hk + 1(X, ℤ)
which is very rare in real data [21]. In case it fails, another prime number is chosen, and the 

procedure is repeated. Now we assume that we have obtained an integer cocycle ω which is 

also a real cocycle.

Given a Laplacian on cochains ℒ to measure smoothness, a smooth cocycle ω can be 

obtained by solving a minimization problem,

α = argmin
α ∈ Ck − 1(X, ℝ)

‖ℒ(ω + dα)‖2
2, (4.8)

letting ω = ω + dα. This smoothed cocycle ω induces a measure μ on Xk by setting and

μ(σ) = ω(σ) . (4.9)

To obtain a sequence of such smoothed real k-cocycles for the cohomology generator along 

a persistence interval, we restrict the representative integer cocycle ω to subcomplexes of X 
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and repeat the smoothing computation. Consider the integer k-cocycle ω X(x) at filtration 

value x. The corresponding smoothed real k-cocycle ωx can be obtained by running the 

optimization problem for ω X(x) as (4.8) on Ck − 1(X(x), ℝ), and it induces a measure μx on 

Xk(x) as described in (4.9). It suffices to compute for all different filtration values in [xi, xj) 

because we have a finite filtration which gives μxl l = i
j − 1.

A function f*:[0, 1) ℝ can be defined for each persistence interval [xi, xj) as

f*(t) = ∫Xk(x)
fdμx/∫Xk(x)

dμx, x = (1 − t)xi + txj (4.10)

for t Ƞ [0, 1). We call each of the collection of persistence intervals being associated with 

one such function f* an enriched persistent barcode.

Dimension 0.—In the case of dimension 0, persistent homology tracks the appearance and 

merging of connected components. It is convenient to assign a smooth 0-cocycle to a 

persistence interval by assigning 1 to the nodes in the connected component associated with 

the interval right before the generator is killed due to merging with another connected 

component. This is implemented with a union-find algorithm.

4.3. Preprocessing of the input function.

When given the original input function associated with the input data, we first need to 

generate a cochain of the dimension of interest based on this input function. The procedures 

in several situations are discussed in the rest of this section.

Case 1.—When given a function f0:Xk0 ℝ, and we are interested in its behavior 

associated with a k-dimensional homology where k0 ≠ k, we need to interpolate or 

extrapolate f0 to a function f:Xk ℝ. We assume that f0 is unoriented, i.e., f0(σ) = f0(−σ). 

A simple way is to take unweighted averages,

fa(σ) = 1
nσ

∑
i = 1

nσ
f0 σi′ , (4.11)

where each σi′ is a k0-simplex satisfying that σi′ < σ if k > k0 and σi′ > σ if k < k0 and nσ is the 

total number of such k0-simplices. A weighted version based on geometry can be defined as

fw(σ) = ∑
i = 1

nσ
wif0 σi′ / ∑

i = 1

nσ
wi, (4.12)

where wi is the reciprocal of the distance between the barycenters of σ and σi′.

An example of this situation is the pairwise interaction strengths between atoms of a 

molecule which are naturally defined on edges connecting the vertices representing the 
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atoms. Another example is the atomic partial charges defined on the vertices representing 

the atoms in a molecule or a molecular complex.

Case 2.—When given a function f0:ℝn ℝ with n ≥ k and a geometric simplicial 

complex, we can integrate it on every k-simplex in X to obtain a function fi:Xk ℝ. For 

simplicity, we require f0 to be bounded. Then, fi is defined as

fi(σ) = ∫
σ

f0dσ/∫
σ

dσ (4.13)

for a k-simplex σ and ∫σ dσ computes the k-dimensional volume of σ. In many cases, f0 is 

given as results of numerical simulations which are often defined on grid points. Then, the 

integrals can be computed by some chosen quadrature formula and by interpolating f0 to the 

collocation points.

4.4. Weighted Wasserstein distance for persistent cohomology enriched barcodes.

An enriched bar can be represented by three elements: birth value b, death value d, and 

function f* constructed by (4.10). Given two enriched barcodes of the same dimension 

represented by B = bi, di, fi* i ∈ I and B′ = bj′, dj′, fj′ * j ∈ J, we would like to quantify 

their difference. We first define two pairwise distances, i.e., Δb, which measures the distance 

between two persistence intervals

Δb [b, d), b′, d′ = max b − b′ , d − d′ , (4.14)

and Δf, which measures the difference between f* and f′*,

Δf f*, f′ * = ‖f* − f′ * ‖p . (4.15)

In the numerical examples, we use p = 1. In practice, it is sometimes is too costly to compute 

the output values of f* for all possible filtration values, and only a subset of possible 

filtration values is selected, such as only the middle value of a bar. In this case, we use the 

middle Riemann sum to approximate the integration in (4.15). For a bijection I J where I
and J are subsets of I and J, the associated penalties are defined as

Pb θ; q, B, B′ = ∑
i ∈ I

Δb bi, di , bθ(i)′ , dθ(i)′ q

+ ∑
i ∈ I\I

Δb bi, di , bi + di /2, bi + di /2 q

+ ∑
i ∈ J\J

Δb bi′, di′ , bi′ + di′ /2, bi′ + di′ /2 q

(4.16)

and
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Pf θ; q, B, B′ = ∑
i ∈ I

Δf fi*, fθ(i)′ * q

+ ∑
i ∈ I\I

Δf fi*, 0 q

+ ∑
i ∈ J\J

Δf fi′ * , 0 q .

(4.17)

The qth weighted Wasserstein distance is defined as

W q, γ B, B′ = inf
θ ∈ Θ

γPb θ; q, B, B′ + (1 − γ)Pf θ; q, B, B′
1
q , (4.18)

where γ is a weight parameter, Θ is the set of all valid mappings, and we denote the 

minimizer by θq,γ. Note that both Δb
q and Δf

q  are metrics, and thus the weighted Wasserstein 

distance also satisfies to be a metric.

Similar to the receiver operating characteristic curve, instead of fixing γ, we let it change 

from 0 to 1, which results in a function Wq: [0, 1] ℝ2 defined as

Wq(γ) = Pb θq, γ; q, B, B′
1
q , Pf θq, γ; q, B, B′

1
q , (4.19)

and we call it a Wasserstein characteristic curve.

4.5. Implementation.

We use the computational topology software Dionysus [40] to compute the persistent 

cohomology. Persistent cohomology not only provides useful representative cocycles but 

also speeds up the computation of persistence barcodes. Interested readers are referred to the 

literature [21, 20]. The (weighted) Laplacian is obtained from boundary matrices. Big 

(weighted) boundary matrices for the last frame in the filtration are first constructed with the 

simplices ordered by the filtration value. Then we can simply take the submatrices to obtain 

the (weighted) Laplacian defined in (4.6) and (4.7). The matrices are implemented using 

sparse matrix data structures to facilitate efficient computation in the subsequent least square 

problem in (4.8). The least square problem, i.e., min ‖Ax – b‖2 with A = LkBk
T , b = − Lω, is 

solved by using the sparse.linalg.lsqr module in the SciPy package (version 0.18.1) [36] for 

solving least square problems with sparse matrices.

To compute the weighted Wasserstein distance in (4.18), we consider the optimization 

problem as an assignment problem and solve it by the Hungarian algorithm. Given two 

enriched barcodes B = bi, di, fi* i = 1
m  and B′ = bj′, dj′, fj′ * j = 1

n , we first construct a 

pseudobarcode for each of them to account for the situation where a bar is not paired with 

another. The pseudobarcodes are BB′ = bj′ + dj′ /2, bj′ + dj′ /2, 0 j = 1
n  and 

BB′ = bi + di /2, bi + di /2, 0 i = 1
m . Then the assignment problem between B ⋃ BB′ and B′ 
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⋃ B′B is solved with the cost γΔb
q + (1 − γ)Δf

p . The linear_sum_assignment tool under the 

optimize module of the SciPy package [36] is used.

The method in this work is implemented as a Python package, and it is available at 

github.com/GWWEI/EnrichedBarcode together with a notebook reproducing the examples 

in this paper.

5. Numerical results.

5.1. Simple examples.

Consider a simplicial complex X with four vertices and four edges (01, 02, 13, 23) with unit 

length that forms a square as shown on the left in Figure 1. The 1-cochain ω = [0, 0, 0, 1]T  is a 

real cocycle. The notation means that ω(23) = 1 and ω(01) = ω(02) = ω(13) = 0. The 

combinatorial Laplacian matrix ℒ1
C is

2 1 −1 0
1 2 0 −1

−1 0 2 1
0 −1 1 2

when a uniform weight of 1 is assigned to all edges. Then, we obtain a smoothed cocycle 

ω = ω + dα = [ − 0.25, 0.25, − 0.25, 0.25]T  with a 0-cochain α = [0, − 0.25, 0.25, 0.5]T  which 

minimizes ‖ℒW (ω + dα)‖2
2 to 0.

On the right of Figure 1, we consider a simplicial complex (an octahedron) with six vertices, 

twelve edges, and eight triangles (024, 025, 034, 035, 124, 125, 134, 135). The 2-cochain 

ω = [0, 0, 0, 0, 0, 0, 0, 1]T  is a real cocycle. The associated smoothed cocycle 

ω = 0.125 ∗ [ − 1, 1, 1, − 1, 1, − 1, − 1, 1]T . We observe that in both cases, the absolute value of 

each smoothed cocycle annotates a weight function that depicts the loop and the cavity.

5.2. Persistent cohomology analysis of synthetic datasets.

In this section, we show the smoothed representative 1- and 2-cocycles and the enriched 

barcodes using synthetic datasets. We create some example input functions defined on the 

nodes and aim to reflect the information about these functions on the enriched barcodes.

Annuluses.—We first consider a point cloud sampled from two adjacent annuluses with 

radii 1 and centered at (0, 0) and (2, 2) as shown in Figure 2. The persistent cohomology 

computation was carried out using a Vietoris–Rips complex based filtration with the 

Euclidean distance. There are two persistent H1 bars associated to the two significant circles 

whose smoothed cocycles show the contribution of simplices to the bars (see Figure 2).

Given datasets with similar geometry but different nongeometric information, values on the 

nodes in this case, we can use enriched barcodes to distinguish between them as shown in 

Figure 3. The Wasserstein characteristics curve defined in (4.19) for datasets in Figure 3, 

i.e., D1, D2, and D3, are generated. Here, D1 and D2 have the same geometry, and thus their 
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curve is more on the left side, which means there is a smaller distance between their 

persistent homology barcodes. On the other hand, D3 has a similar value assignment on the 

points as that of D2, so their curve is on the bottom, which means there is a smaller distance 

in the nongeometric information.

Cuboid with cavities.—In this example, we consider a rectangular cuboid ([0, 4] × [0, 2] 

× [0, 2]) containing two spherical cavities with radius of 0.5 centered at (1, 1, 1) and (3, 1, 

1). Two thousand points are first sampled from a uniform distribution over the cuboid, and 

those inside the balls are deleted. The dataset with values on the points, the two smoothed 

cocycles corresponding to the two voids, and the enriched barcodes are shown in Figure 4.

5.3. Persistent cohomology analysis of molecules.

Cyclic and cage-like structures often exist in complicated macromolecules in various scales. 

They can be as small as a benzene (a ring) containing 6 heavy atoms or an adamantane (a 

cage) containing 10 heavy atoms. Some macromolecules have a global configuration of 

cyclic or cage-like structures such as buckminsterfullerene and carbon nanotubes which 

consist of tens or hundreds of atoms. Persistent cohomology is good at detecting these 

structures in multiple scales, and when we label the atoms by their element types, we can 

also reveal the element composition of the detected structures. Specifically, if oxygen is of 

interest, we construct an input function f0 (see section 4.3) that is defined on the nodes 

representing the atoms and outputs 1 on oxygen atoms and 0 elsewhere. We illustrate this 

application using a cyclic structure cucurbit[8]uril and a cage-like structure B24N24 cage in 

this section. The traditional persistent homology barcodes will only show the structure of the 

molecule without the element type information. If we take subsets of atoms of selected 

element types, the resulting barcode does not faithfully represent the original structure. By 

using the enriched barcodes, we can quantify the element type composition of each bar 

while retaining the original structure. For example, the enriched barcode shows that there are 

eight medium-sized H1 bars that mainly consist of carbon and nitrogen atoms, which can be 

confirmed by observing the molecular structure (Figure 5).

Cucurbituril.—In this example, we consider a macrocyclic molecule cucurbit[8]uril from 

the cucurbituril family. The molecule contains eight 6-membered rings and sixteen 5-

membered rings consisting of carbon and nitrogen atoms. The rings form a big cyclic 

structure with a relatively tighter opening surrounded by oxygen atoms. The structure is 

taken from the provided structure in the SAMPL6 challenge [1], and the resulting H1 

barcodes are shown in Figure 5a.

Boron nitride cage.—The fullerene-like boron nitride cages exhibit spherical structures 

similar to fullerenes but consist of boron and nitrogen atoms. The global spherical structure 

is composed of a collection of local rings containing several atoms. A possible structure of 

B24N24 cage given in the supporting information of [56] is used in this example. The 

molecule and the enriched barcode are shown in Figure 5b.
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In this application, the element type could be substituted by other information that the user is 

interested in, such as partial charge, van der Waals potential, and electrostatic solvation free 

energy.

5.4. Prediction of protein-ligand binding affinities.

In this example, we show the usefulness of the enriched barcode in an important real 

application. An important component of computer-aided drug design is the prediction of 

protein-ligand binding affinities based on given protein-ligand complex structures. Persistent 

homology is good at identifying rings, tunnels, and cavities in various scales which are 

crucial to the protein-ligand complex stability and instability. In addition to geometry and 

topology, chemical and biological complexities also need to be addressed toward a 

practically useful method for this application. The important chemical and biological 

information includes atom properties such as atom types, atomic charges, and interaction 

strengths. Information from bioinformatics study such as the conservation scores of protein 

residues can also play an essential role. To this end, for example, the behavior of atoms of 

different element types can be described by computing persistent homology for subsets of 

atoms of the molecule of certain element types [11]. The interaction between protein and 

ligand can be emphasized by prohibiting an edge to form between two atoms either both in 

the protein or both in the ligand. The electrostatic interactions can be revealed by tweaking 

the distance matrix used for filtration to be the interaction strength computed with a chosen 

physical model such as Coulomb’s law [8]. However, the approaches described above 

disturb the original geometry and topology of the protein-ligand complexes. With the 

method proposed in this work, we are able to naturally embed the information such as atom 

type, atomic partial charges, and electrostatic interactions to the barcodes without disturbing 

the original geometric and topological setup of the molecular systems. An example of 

enriched barcodes is shown in Figure 6. In this example, the H1 and H2 barcodes identified 

many cycles in the whole molecule, the carbon network, and the nitrogen-oxygen network. 

We constructed the enriched barcodes with the input nongeometric information (the absolute 

value of Coulomb potential between two atoms) defined on the edges. As expected, the 

electrostatic interaction is the most inferior in the hydrophobic network (set of carbon 

atoms) and is the most active in the hydrophilic network (set of nitrogen and oxygen atoms). 

Interestingly, the electrostaic interaction is more active in H1 and H2 bars with smaller birth 

values in the all heavy atom characterization as shown in Figure 6. This may indicate that 

the local active sites may be involved in stronger electrostatic interactions.

We compute the persistent cohomology enriched barcodes for protein-ligand complexes, 

turn them into structured features, and feed these features to machine learning methods for 

the prediction of binding affinities. The procedure is validated on datasets from the PDBbind 

database [38], which includes experimentally derived protein-ligand complex structures and 

the associated binding affinities.

Enriched barcodes generation.—In addition to the traditional barcode obtained from 

persistent homology computation, we would also like to add descriptions of the electrostatic 

properties of the system. An efficient characterization of this property is the Coulomb 

potential where the interaction between two point charges is relatively described by qiqj/rij, 
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where qi and qj are the point charges with a distance of rij. The atomic partial charges of 

proteins are assigned by using PDB2PQR software [23] with CHARMM22 force field. Two 

types of constructions of the physical information are used to characterize the systems.

For dimension 0, a collection of subsets of atoms is first identified according to atom types. 

Specifically, 10 element types (C, N, O, S, P, F, Cl, Br, I, H) are considered for ligands, 5 

element types are considered for proteins (C, N, O, S, H), and a total of 50 subsets of atoms 

are selected by choosing one element type from each component (protein or ligand). The 

pairwise distance matrix based on Euclidean distance is tweaked by setting distances 

between atoms either both from protein or both from ligand to infinity which emphasizes the 

interactions between protein and ligand. Based on the tweaked distance matrix, persistent 

(co)homology computation with the Rips complex is performed. The electric potential is 

computed for each atom with its nearest neighbor in the different part of the protein-ligand 

complex and is put on this atom as the additional information. We define the input function 

f0
0:X0 ℝ to take 0 on protein atoms and to take the value discussed above on ligand 

atoms. The average potential over ligand atoms in each 0-cocycle representative is used to 

generate features. In this way, the favorability of the protein ligand electrostatic interactions 

is explicitly described.

For dimensions 1 and 2, the input function f0
1:X1 ℝ is defined to output the absolute value 

of electric potential on edges connecting two atoms to characterize the interaction strengths. 

The Coulomb potential is modeled as

Eij = ke
qiqj
rij

,

where ke is Coulomb’s constant, qi and qj are the partial charges of atoms i and j, and rij is 

the distance between the two atoms. Persistent (co)homology with alpha complex is 

computed on three subsets of the protein-ligand complexes, all heavy atoms, all carbon 

atoms, and all oxygen/nitrogen atoms. For simplicity, all enriched barcodes are computed 

only at the middle points of the bars.

Featurization of barcodes.—Given an enriched barcode, B = bi, di, fi* i ∈ I obtained 

by applying the proposed method to a dataset with an input function f0 (see section 4.3), we 

turn it into a fixed shape array required by the machine learning algorithms we choose. Here, 

the input function is f0
0 or f0

1 described in the previous section when computing 0th 

dimensional persistent (co)homology or in higher dimensions.

For dimension 0, we first identify a range of scales to focus on, and in this application we 

are interested in the interval [0, 12)Å. The interval is then divided into 6 subintervals 

lj0, rj0 j = {[0, 2.5), [2.5, 3), [3, 3.5), [3.5, 4.5), [4.5, 6), [6, 12)} to address different types of 

interactions. For dimension 0, we are interested in the death values of the bars. Therefore, a 

collection of index sets marking the death values of the bars that fall into each subinterval is 

calculated as
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Ij0 = i ∈ I ∣ di ∈ lj, rj .

For dimensions 1 and 2, we are interested in the interval [0, 6)Å with Alpha complex 

filtration. The interval is then divided into 6 equal-length subintervals lj
1, 2, rj

1, 2
j. We then 

define a collection of index sets marking the bars that overlap with each subinterval,

Ij
1, 2 = i ∈ I ∣ bi, di ∩ lj

1, 2, rj
1, 2 ≠ 0 .

Given a collection of index sets {Ij}j, a feature vector vh(B) is defined as

vℎ(B) j = Ij .

Basically, given m subintervals, we turn the barcode into a feature vector of length m 

counting the number of persistence bars intersecting with each subinterval. When Ij
0

j is 

used, it characterizes the number of component merging events in each filtration parameter 

interval. When Ij
1, 2  is used, it reflects the ranks of homology groups at a certain stage 

along the course of filtration.

A feature vector vf(B, f0) can be generated subsequently to address the information of the 

predefined function on the homology generators,

vf B, f0 j =
∑i ∈ Ijfi*

Ij
,

where fi* = ∫bi
difi*(x)dx / di − bi , which is simply fi* bi + di /2  in this application. This jth 

entry of this feature vector is simply the average value of fi* bi + di /2  for bars [bi, di) that 

intersect with the jth subinterval.

While the featurization procedure is effective in this application given that we have some 

prior understanding of molecular interactions, the readers may also find other featurization 

methods useful for general applications such as persistence images [2] and a template 

function based method [49].

Machine learning algorithm.—The application of predicting protein-ligand binding 

affinity based on structures can be regarded as a supervised learning problem. Generally 

speaking, we are given a collection of pairs of input and output {(xi, yi)} and there chosen 

which is a model is a function M(x; θ) with tunable parameters θ. The training process is to 

find a specific setting for the function M that globally or locally minimizes a penalty 

function which depends on the given data {(xi, yi)} and the parameter set θ. Once trained, 

the model can be used to predict the output for a newly given input.
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In general, the proposed persistent cohomology can be combined with any advanced 

machine learning algorithm, such as deep neural networks [10]. However, the goal of the 

present work is to illustrate the utility of the proposed persistent cohomology. Therefore, we 

choose a relatively robust and efficient algorithm, the gradient booting trees (GBT) method, 

for testing the accuracy of our method. GBT is an ensemble of trees methods with single 

decision trees as building blocks. The training of a GBT model is done by adding one tree at 

a time according to the reduction of loss in the current model. In practice, different randomly 

selected subsets of the training data and features are used for each update of the model to 

reduce overfitting. For every result reported in Table 2, a parameter search is done by 5-fold 

cross-validation within the training set where the model performance is assessed by 

Pearson’s correlation coefficient. The candidate values for hyper-parameters tried are 

summarized in Table 1. Another hyper-parameter max feature is set to sqrt because of the 

relatively large number of features. The GradientBoostingRegressor module in the scikit-

learn (version 0.17.1) [45] software is used.

Binding affinity predictions.—We test the improvement of the enriched barcodes with 

electrostatic information in the cases of 0th dimension and higher dimensions using the 

PDBbind database. The predictor performance is improved by using the enriched barcode 

embedding the electrostatics information. The results are listed in Table 2. This study 

indicates that the electrostatic information incorporated in the persistent cohomology 

generally improves the binding affinity predictions. There is an exception in the v2007 

dataset where adding in electrostatic information causes reduced accuracy. We believe that 

this is due to the small size and low diversity of the v2007 dataset compared to other 

datasets. The disadvantage of the overfitting due to the introduction of more features 

outweighs the benefit brought about by the extra information. The approach proposed in this 

work can be generalized to other physical properties, such as van der Waals interactions.

We also compare our method to some well-known methods of different kinds using the 

PDBbind v2016 dataset: KDEEP [35] using the advanced deep learning technique; RF-Score 

[3] using random forest, which has a similar level of complexity compared to GBT; X-Score 

[51], a consensus empirical scoring function; and cyScore [12], an empirical scoring 

function combining geometric descriptions (e.g., curvature and surface area) and physical 

terms (e.g., electrostatics and hydrogen bonds). In the test, the PDBbind 2016 core set is 

used as the testing set, and the PDBbind 2016 refined set excluding the core set is used as 

the training set. We report the performance of our model using all features, i.e., conventional 

persistence barcode features and enriched barcode features about Coulomb interactions of 

dimensions 0 (Rips filtration), 1, and 2 (alpha filtration). With only Coulomb interactions as 

the additional feature, our cohomology method achieves a performance comparable to the 

state-of-the-art methods as shown in Figure 7.

6. Conclusion.

Algebraic topology, particularly persistent homology, has been devised to simplify high-

dimensional complex geometric information in terms of topological invariants. However, 

during the topological abstraction of biomolecular datasets, some physical, chemical, and 

biological information is neglected. Therefore, there is a pressing need to embed physical, 
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chemical, and biological information, such as atom types, partial charges, and pairwise 

interaction strengths in a dataset, into the topological invariants generated from the 

geometric (i.e., structural) information of the dataset. In general, when analyzing datasets 

with persistent homology, the geometric information is built into topological invariants while 

nongeometric information is usually neglected. In duality to homology, cohomology allows 

us to retain crucial nongeometric information in topological modeling. Utilizing the richer 

information carried by cohomology, we introduce an enriched topological data 

representation by encoding in the topological invariants the additional physical information 

from the dimensions that are not used for persistent homology computation. The 

nongeometric information is attached to the topological invariants in regular persistent 

homology computation. This is achieved by finding a smoothed representative cocycle with 

respect to a Laplacian for simplicial complexes. The smoothed cocycles then serve as 

measures on the simplicial complexes and allow us to integrate the additional information. 

As a result, in addition to the original persistence barcodes, functions of filtration values 

associated with each persistence pair are constructed, which enriches the information carried 

by the original barcodes. A similarity score based on Wasserstein distance is introduced to 

analyze these enriched barcodes. The properties of the proposed methods are illustrated with 

various numerical experiments including synthetic datasets, small molecules, and protein-

ligand complexes. We show that the enriched barcode can depict the element compositions 

and electrostatic interactions corresponding to the detected topological features. For the 

protein-ligand binding affinity prediction that motivated the current development, we show 

that by adding electrostatics information to the barcodes, the present persistent cohomology 

enriched barcode improves the performance in the practical prediction of protein-ligand 

binding affinities from massive datasets. The results obtained from the proposed method are 

comparable to the other state-of-the-art methods on commonly used benchmarks. The 

proposed method is potentially useful for a wide range of applications that contain 

nongeometric information in data which does not warrant direct application of traditional 

persistent homology.
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Figure 1. 
Left: A (geometric) simplicial complex with four vertices and four equal-length edges. 

Right: A simplicial complex with six vertices, twelve edges, and eight triangles.
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Figure 2. 
a: A point cloud sampled from two adjacent annulus. b,c: Two representative cocycles 

corresponding to the two long bars in the H1 barcode. d: The H1 persistence barcode of the 

point cloud with Vietoris-Rips filtration. e,f: The smoothed cocycles. In b, c, e, and f, the 

node color shows the weight induced by the smoothed cocycle projected to the nodes and 

the opaqueness of edges shows the weight induced by the smoothed cocycle.

Cang and Wei Page 24

SIAM J Math Data Sci. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
a–f: Three datasets with nongeometric information on the nodes and their H1 enriched 

barcodes. e: The Wasserstein characteristics curves among these three datasets. The 

computation is done on a finite set of γ values, from 0 to 1 with a step size of 0.005.
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Figure 4. 
a: The points sampled from an object which is a with two spherical cavities. b and c: Two 

representative cocycles corresponding to the two long bars in the H2 barcode. d: The 

persistent cohomology enriched H2 barcode showing the two voids in the blue and red 

regions of the original dataset. e and f: The two smoothed 2-cocycles. The faces where the 

cocycles take absolute values greater than or equal to 0.005 are plotted as grey triangles and 

the point size shows the weight projected to the points from the 2-simplices. The smoothing 

is done on the subcomplexes associated to the filtration values at the middle of the 

corresponding bars.
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Figure 5. 
a: The cucurbit[8]uril molecule viewed from two different angles. The hydrogen, carbon, 

nitrogen, and oxygen atoms are colored in white, cyan, blue, and red, respectively. b: A 

boron nitride cage structure (B24N24 with nitrogen and boron atoms colored in blue and 

pink). The enriched barcodes are obtained by assigning 1 to the nodes of the corresponding 

atom type and 0 elsewhere.
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Figure 6. 
Enriched barcodes focusing on electrostatic interactions. a, b, and c: Enriched barcodes for 

electrostatic interaction strengths (quantified using absolute values of Coulomb potentials) 

generated by computing persistent cohomology with alpha complex filtration on all heavy 

atoms, all carbon atoms, and nitrogen and oxygen atoms, respectively. d: The ligand (as van 

der Waals spheres) and the surrounding protein atoms (within 12 Å of ligand as thick sticks) 

of PDB entry 1a94. The color reflects the strength of electrostatic interactions. e: The 

Wasserstein distance curves for the comparison of the enriched barcodes. We computed for a 

grid of γ values from 0 to 1 with a step size of 0.02.
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Figure 7. 
Performance comparison of our method to some other methods on PDBbind v2016 dataset 

(the core set as the test set and the rest of the refined set as the training set). The metrics 

used are Pearson’s correlation coefficient (Rp) and root-mean-squared-error (RMSE). The 

results of other methods are taken from [35].
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Table 1

Candidate values for hyper-parameters of the gradient boosting trees model.

Hyper-parameters Candidate values

n_estimators 5000, 10000, 20000

max_depth 4, 8, 16

min_samples_split 5, 10, 20

learning_rate 0.0025, 0.005, 0.01

subsample 0.25, 0.5, 0.75

min_samples_leaf 1, 3
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Table 2

The predictor performance is evaluated by training on PDBbind refined set excluding the core set and testing 

on the core set of a certain year’s version. The median Pearson’s correlation coefficient (root mean squared 

error in pKd/pKi unit) among 10 repeated experiments is reported for persistent homology (PH) and persistent 

cohomology (PC). In the PC, electrostatic information is utilized.

PDBbind v2007 v2013 v2015 v2016

Dim 0 PH 0.802 (1.47)) 0.754 (1.56) 0.745 (1.56) 0.824 (1.32)

Dim 0 PC 0.796 (1.50) 0.768 (1.53) 0.763 (1.53) 0.833 (1.31)

Dim 1&2 PH 0.726 (1.65) 0.706 (1.67) 0.718 (1.62) 0.767 (1.46)

Dim 1&2 PC 0.738 (1.65) 0.784 (1.46) 0.780 (1.47) 0.781 (1.41)
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