Skip to main content
. 2021 Jul 1;12:4077. doi: 10.1038/s41467-021-24331-1

Fig. 2. Pentanoate inhibits the class I HDAC enzymes and enhances the activity of mTOR in CD8+ T cells.

Fig. 2

a Impact of bacterial SCFAs, BCFAs, and MCFAs on the activity of recombinant class I and II HDAC enzymes. TSA was used as a control pan-HDAC inhibitor. One of three independent experiments is shown. b The fluorogenic HDAC assay was applied to measure the HDAC inhibitory activity of SCFAs on CTLs. The value for unstimulated CTLs was arbitrarily set to 1.0. Four independent experiments were performed (analyzed by two-tailed unpaired Student’s t-test; data are shown as mean ± s.e.m). ce Murine CD8+ T cells were polarized under suboptimal CTL-inducing conditions for three days. Representative contour plots (c) and bar graphs (d) indicate the frequency of IFN-γ+TNF-α+ cells and TNF-α secretion (e) after treatment with 300 nM mocetinostat (class I HDAC inhibitor) or 2.5 µM TMP-195 (class II HDAC inhibitor), respectively (n = 3 mice, analyzed by two-tailed unpaired Student’s t-test; data are shown as mean ± s.e.m). f Murine CTLs were cultured in medium containing 1.0% serum and treated with indicated HDACi for three days. Representative histogram plots and bar graphs indicate the phoshorylated levels of mTOR and S6 ribosomal protein, respectively (n = 3 mice, analyzed by two-tailed unpaired Student’s t-test; data are shown as mean ± s.e.m). Source data are provided as a Source data file.