Skip to main content
. 2021 Jul 1;11:13642. doi: 10.1038/s41598-021-93056-4

Table 1.

Methods performance metrics [accuracy and 95% confidence interval (CI), sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), kappa, F1 score and Matthew's Correlation Coefficient (MCC)] on external validation set. Prediction models were developed within different methods: Linear Discriminant Analysis (LDA), Generalized Linear Model (GLM) with logit link function, Naïve Bayes (NB), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN).

Method Accuracy 95% CI Se Sp PPV NPV kappa F1 score MCC
LDA 0.797 0.784–0.810 0.524 0.909 0.703 0.823 0.468 0.600 0.478
GLM 0.796 0.783–0.809 0.511 0.913 0.706 0.820 0.461 0.593 0.472
NB 0.753 0.739–0.767 0.593 0.819 0.573 0.831 0.407 0.583 0.408
CART 0.793 0.780–0.806 0.616 0.865 0.652 0.846 0.490 0.634 0.490
kNN 0.754 0.740–0.768 0.381 0.907 0.626 0.781 0.325 0.474 0.342
SVM 0.791 0.777–0.804 0.479 0.919 0.706 0.812 0.439 0.571 0.454
RF 0.797 0.783–0.810 0.553 0.897 0.687 0.830 0.477 0.613 0.482
NN 0.796 0.782–0.808 0.567 0.889 0.677 0.834 0.479 0.617 0.482