
BRIEF COMMUNICATION OPEN

Trajectories of mortality risk among patients with cancer and
associated end-of-life utilization
Ravi B. Parikh 1,2,3,4✉, Manqing Liu4, Eric Li2, Runze Li 5 and Jinbo Chen6

Machine learning algorithms may address prognostic inaccuracy among clinicians by identifying patients at risk of short-term
mortality and facilitating earlier discussions about hospice enrollment, discontinuation of therapy, or other management decisions.
In the present study, we used prospective predictions from a real-time machine learning prognostic algorithm to identify two
trajectories of all-cause mortality risk for decedents with cancer. We show that patients with an unpredictable trajectory, where
mortality risk rises only close to death, are significantly less likely to receive guideline-based end-of-life care and may not benefit
from the integration of prognostic algorithms in practice.
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High-quality end-of-life (EOL) care is a national priority for patients
with serious illness1, particularly during the coronavirus disease
2019 pandemic as these patients are at higher risk for mortality
than the general population2. Prognostic inaccuracy among
clinicians contributes to low-quality EOL care, including delayed
hospice utilization and increased acute care utilization close to
death, for patients with serious illnesses, such as cancer3,4.
Machine learning (ML) algorithms outperform traditional tools
used for prognostication and may facilitate earlier
clinician–patient discussions about hospice enrollment, disconti-
nuation of therapy, or other management decisions5. Most
research to date has reported on the performance of static
predictions of mortality risk from ML algorithms5–7. However,
patients’ risk of mortality may change over time in non-linear
patterns. Identifying trajectories of mortality risk may help inform
how clinicians and health systems can implement prognostic
algorithms, including understanding which populations such
algorithms are likely to benefit. To that end, we identified
trajectories of all-cause mortality risk and their association with
existing metrics of EOL care quality, using a longitudinal
prospective cohort of patients with cancer.
To calculate mortality risk, we used a previously trained gradient

boosting machine (GBM), an ensemble ML algorithm, based on
559 structured electronic health record (EHR) variables for 26,525
patients with cancer who were seen at 11 academic or community
medical oncology practices within a large academic cancer center
in 20168. The training and prospective validation of this algorithm
among a more recent cohort seen at 18 oncology practices have
been previously published5,8. This algorithm was integrated into
our EHR in 2018. Every Thursday morning, the algorithm
generated predictions of all-cause mortality risk for all patients
with a scheduled encounter during the following week with an
eligible clinician. In the prospective validation, the c-statistic of our
GBM across all disease cohorts was 0.89 (95% confidence interval
[CI] 0.88–0.90), ranging from 0.74 to 0.96 across difference disease
groups, and the sensitivity was 67.2% at a 10% threshold of
mortality risk5. To identify distinct trajectories of mortality risk
among decedents, we identified 3280 individuals who died of any

cause between January 2, 2018 and May 4, 2020, who had at least
3 face-to-face visits in an oncology practice for a cancer diagnosis
in the year preceding death, and who had at least 2 visits in the
6 months prior to death. The purpose of the latter two inclusion
criteria was to capture a cohort comprised of primary patients
within the oncology practice who would have EHR data from
which to generate predictions. We focus on decedents (individuals
who die) because these individuals have associated EOL care
quality metrics.
Of those 3280 individuals, the median number of encounters in

the 6 months prior to death was 6 (interquartile range 3–10)
(Supplementary Table 1). Each of those encounters had an
associated prospective mortality risk prediction from the GBM. We
used functional principal component analysis (FPCA)—a statistical
method for identifying modes of variation via calculating functional
principle component (FPC) scores and eigenfunctions for time-
varying data—to all mortality risk predictions associated with
encounters in the 6 months prior to death. The main advantages
of FPCA over other methods are that FPCA, as a nonparametric
method, does not assume normality on the distribution of the data
and that this algorithm takes both mean and covariance functions
into account (see “Methods,” Eqs. 1–6)9–12.
FPCA revealed 2 dominant modes of variation that explained over

95% of variation (Fig. 1). The first FPC explained 84.1% of all variation,
and the second FPC explained 11.5% of all variation. Clusters of
patients were derived using an expectation–maximization (EM)
algorithm13,14 based on the FPC scores obtained. The first cluster
represented 36.1% of all patients in the cohort. This group
(heretofore referred to as “unpredictable”) consisted of patients
whose average trajectory was characterized by a low risk of mortality
from 6 months until approximately 30 days prior to death, after
which mortality risk rose sharply. The second cluster represented
63.9% of all patients in the cohort. This group (heretofore referred to
as “predictable”) consisted of patients whose average trajectory was
characterized by a relatively higher baseline risk of mortality that
constantly rose until death. The overall shape of these trajectories
was similar when using encounter data up to 1 year prior to death
(range of encounters 2–51; see Supplementary Fig. 1). We conducted
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a sensitivity analysis to assess the robustness of our method by
splitting the decedent cohort into training (75%) and validation
(25%) subcohorts, running the FPCA algorithm on the training cohort
and projecting the validation cohort onto the resulting FPC scores for
each patient. We found that the projected FPC scores overlapped

with the FPC scores from the training data in similar areas defined by
the two FPC coordinates, suggesting the robustness of our method.
We used internal cancer registry and EHR data to characterize

each mortality risk trajectory (see Supplementary Table 1).
Individuals in the “predictable” mortality risk trajectory were more
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likely to be married and have more clinical encounters near death,
high comorbidity burden, worse performance status, stage IV
disease, and gastrointestinal malignancies. Individuals in the
“unpredictable” mortality risk trajectory were more likely to have
hematologic and primary central nervous system (CNS)
malignancies.
To identify the association between mortality risk trajectory and

EOL outcomes, we studied 4 common metrics of high-quality EOL
care: hospice enrollment prior to death, dying outside of the
hospital, no intensive care unit (ICU) admission in the last 30 days
of life, and no chemotherapy in the last 14 days of life1. Adherence
to each of these constitutes high-quality EOL care. We found that,
compared to unpredictable trajectories, predictable mortality
trajectories were associated with higher hospice enrollment
(adjusted odds ratio [aOR] 1.87, 95% CI 1.48–2.37), less inpatient
death (aOR 0.72, 95% CI 0.56–0.92), less EOL ICU admissions (aOR
0.74, 95% CI 0.57–0.95), and less chemotherapy near the end of life
(aOR 0.77, 95% CI 0.55–1.08) (Fig. 2). Supplementary Fig. 2
describes observed rates of guideline-based EOL care between the
predictable and unpredictable trajectories.
We report that a large percentage of deaths from cancer

(36.1%) follow an unpredictable disease trajectory, defined as a
rise in mortality risk very close to death as opposed to a consistent
rise in mortality risk long before death. Patients with unpredict-
able mortality trajectories prior to death have fewer clinical
encounters close to death, better performance status, lower
comorbidity burden, and lower rates of hematologic and CNS
malignancies compared to patients with predictable mortality
trajectories. Lower baseline utilization, and subsequently lower
rates of laboratory and comorbidity assessment, could contribute
to patients following an unpredictable mortality risk trajectory.
However, even patients with relatively high utilization were
present in the unpredictable risk trajectory (see Fig. 1e),
suggesting that certain adverse laboratory values and comorbid-
ities may not manifest until close to death among those with
unpredictable trajectories. Many common EOL metrics, particularly
hospice enrollment, are predicated on reliable estimation of 6-
month mortality risk. Furthermore, earlier enrollment in hospice

may facilitate more goal-concordant care, better symptom
management, and avoidance of acute care prior to death1. While
providing estimates of mortality risk may improve clinicians’
awareness of short-term mortality risk and facilitate higher-quality
EOL care, this strategy is only likely to be successful for individuals
with predictable mortality trajectories. For individuals with
unpredictable disease trajectories, overreliance on risk predictions
from prognostic algorithms to guide care could delay important
EOL care and reinforce pre-existing inequities in outcomes such as
hospice referral and aggressive treatment near the end of life.
Subgroups of individuals with unpredictable mortality trajectories
may instead benefit from early concurrent palliative care and/or
hospice, close to the original diagnosis of serious illness and not
necessarily triggered by an algorithm, to ensure adequate
symptom control and advance care planning prior to death.
There were limitations to the study. We lacked EOL quality data

on 11.6% of the decedent cohort, who were excluded from the
analysis. Second, our algorithm relied on EHR data, which has
good performance in predicting mortality but may not capture
patient-centric data or physician-specific factors that could
improve the sensitivity of the prediction. Third, while we identified
trajectories of mortality risk, any findings regarding absolute levels
of mortality risk within trajectories must be interpreted with
caution given that the algorithm had suboptimal calibration for
mortality risks ≥40%. Fourth, we focus on four common EOL
measures. While there are other metrics of EOL quality, these are
among the most commonly used in oncology quality reporting
guidelines. Fifth, we assumed that differential encounter data and
frequency were reflective of differences in clinician-assessed
severity of illness rather than other potential sources of
missingness that was not at random. Given that this is a cancer
cohort among individuals who received their primary oncologic
care in our center, it is unlikely that there was significant
missingness in encounter-level data. Sixth, we only used data
within a single academic health system and thus results may not
be generalizable to other oncology care settings, although we
used data from a variety of practices with a good mix of
community and tertiary academic oncology practices. Finally,
further work clustering the entire cohort of non-decedents and
decedents is necessary to inform how clinicians could incorporate
these trajectories in their clinical assessment. Preliminary data
(Supplementary Fig. 3) suggest that our FPCA algorithm is able to
adequately distinguish between distinct trajectories among non-
decedents.

METHODS
Data sources
The study cohort was extracted from Clarity, a database that contains
structured data elements of individual EHR data for patients treated at the
University of Pennsylvania Health System (UPHS). The EHRs contained
patient demographic characteristics, comorbidities, laboratory results, and
utilization data. We linked individual patient EHRs from Clarity to the

Fig. 1 Dominant modes of variation of trajectories of mortality risk. a First (unpredictable) trajectory derived from FPCA. Smoothed
estimate of the mean function for mortality risk scores from local weighted regression (loess) method (blue smoothed line), superimposed on
the individual trajectories for all patients in this FPC (blue spaghetti plot). b Second (predictable) trajectory derived from FPCA. Smoothed
estimate of the mean function for mortality risk scores from local weighted regression (loess) method (red smoothed line), superimposed on
the individual trajectories for all patients in this FPC (red spaghetti plot). c Smoothed estimates of the first eigenfunction from FPCA (blue line),
representing the first mode of variation from the “unpredictable” trajectory that explains 84.1% of total variation. d Smoothed estimates of the
second eigenfunction from FPCA (red line), representing the second mode of variation from the “predictable” trajectory that explains 11.5% of
total variation. e The individual patient with largest absolute value of the projection on the first eigenfunction (among the unpredictable
trajectory) who had ≥10 encounters. Mortality risks (blue circles), predicted trajectories (blue solid lines), 95% simultaneous bands (dashed
blue lines). f The individual patient with the largest absolute value of projection on the second eigenfunction (among the predictable
trajectory) who had ≥10 encounters. Mortality risks (red circles), predicted trajectories (red solid lines), 95% simultaneous bands (dashed red
lines). g Plotting FPC 1 (x axis) against FPC 2 (y axis) for the training set (empty circles) and validation set (filled circles). Both pairs of FPCs
explain above 95% of the total variation in each set.

EOL Metrics

Inpatient Death

Admitted to ICU in last 30 days

Enrolled to hospice

Chemotherapy in last 14 days

OR

0.72

0.74

1.87

0.77

95% CI

0.56-0.92

0.57-0.95

1.48-2.37

0.55-1.08

0.50 1.0 1.5 2.0 2.5

Fig. 2 End-of-life outcomes. Logistic regression where the pre-
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University of Pennsylvania Oncology Registry (UPOR) to obtain cancer type
and stage when determining the characteristics of patients in each
trajectory group. Mortality data were derived from internal administrative
data, the EHR, and the Social Security Administration Death Master File,
matched to UPHS patients by social security number and date of birth15.
EOL outcomes were derived from the Abramson Cancer Center cancer
registry, EHR data, and an external agency used at UPHS to capture dates
of death from local obituary data. EOL outcome data was primarily
available for individuals with three face-to-face encounters in the year prior
to death. EOL hospitalizations encompassed both oncologic and non-
oncologic hospitalizations and were only able to be ascertained from UPHS
inpatient stays.

Ethics
The University of Pennsylvania Institutional Review Board approved this
study with a waiver of informed consent, classifying this study as quality
improvement.

Participants
Patients were eligible if they were 18 years or older and had at least two
encounters at one of the 18 medical oncology clinics within the UPHS
between January 2, 2018 and May 4, 2020. To ensure that we captured
patients who received their primary oncology care in our center and health
system, we only included patients who had at least three face-to-face visits
in an oncology practice for a cancer diagnosis in the year preceding death
and at least two visits in the 6 months prior to death. Of the 44,588
patients who met the criteria above, 41,308 (92.6%) patients who were
alive at 6 months from the index encounter were excluded from this
analysis. Three thousand two hundred and eighty deceased patients who
had encounters within 6 months of death were eligible for this study.

Predictive algorithm
The mortality risks of patients were derived from a GBM learning algorithm
designed to predict 180-day mortality among outpatients with cancer. Five
hundred and fifty-nine structured EHR features collected at UPHS were
used to train this algorithm. The 180-day prospective predictions were
generated once a week on Thursdays. Detailed descriptions of the ML
algorithm are described in previous publications5,8. The overall AUC of this
algorithm was 0.89 (95% CI, 0.88–0.90), and disease-specific AUC ranged
from 0.74 to 0.965.

Outcomes
We were interested in determining the association between identified
trajectories of mortality risks and four EOL outcomes: inpatient death,
admission to ICU in the last 30 days of life, hospice enrollment prior to
death, and receipt of chemotherapy in the last 14 days of life.

Features
To determine distinct trajectory patterns during the end of life, we used
predicted mortality risks from the GBM for each patient encounter that
occurred within 180 days prior to death. To characterize patients after we
identified distinct trajectory groups, we used baseline patient character-
istics collected from the Clarity and UPOR data. Variables used for
characterization are provided in Supplementary Table 1.

Statistical analysis
The distinct patterns of trajectories of mortality risks were ascertained
using FPCA. The rationale for choosing this method instead of other
clustering techniques, such as group-based trajectory modelling and K-
means, are threefold: (1) Time points when the predicted risks were
generated differed from patient to patient. Since patients went to clinics
based on their own preferences, the intervals between each visit vary; (2) It
is almost impossible to assume an overall distribution of the shape of
mortality risks. The trajectory for each patient vary between flattened
straight lines (if a patient only had two or three predictions) and U-shapes;
and (3) Given the variation of shapes of each patient’s risk trajectory, it is
important to consider both mean functions and covariance structures
during the clustering process. FPCA can account for all three of these
features of longitudinal GBM-predicted mortality risks, while the other two
methods (group-based trajectory modelling and K-means) cannot16,17.

We used the fdapace R package in CRAN to perform the FPCA analysis
that considered the sparsity of the data9–12. Let Yij denote the mortality risk
of the ith patient observed from trajectory Xi(t) at the jth time point Tij
where Tij is irregular. Then Yij can be modeled as Eq. (1)

Yij ¼ Xi Tij
� �þ εij ; (1)

where εij denotes random error; i= 1,…,n; j= 1,…,Ni. The number of
predicted risks Ni for the ith subject was small and considered random. The
major steps are summarized as follows:
The smoothed mean μ̂ was estimated using local linear smoothing that

aggregates all available mortality risks together. Raw covariance for each
curve was calculated as Eq. (2).

Gi Tij ; Til
� � ¼ Yij � μ̂ Tij

� �� �
Yil � μ̂ Tilð Þð Þ; (2)

then all of the raw covariances were aggregated to generate the sample
raw covariance. The smoothed covariance Ĝ s; tð Þ was then estimated using
the off-diagonal elements of the sample raw covariance. The estimated kth
eigenfunction φ̂k and eigenvalue λ̂k were calculated via eigenanalysis on
the smoothed covariance by solving the integral Eq. (3).
Z

T
Ĝ s; tð Þφ̂k sð Þds ¼ λ̂k φ̂k tð Þ� (3)

The “Functional Principal Components Analysis Through Conditional
Expectation (PACE)” method was used to estimate the corresponding FPC
scores in Eq. (4).

ξ̂ik ¼ Ê ξ̂ik jYi
h i

¼ λ̂k φ̂
T
ik

X�1

Yi
ðYi � μ̂iÞ: (4)

The number of FPC scores K sufficient to describe the shape of the
predicted risks was determined by calculating the fraction of variance
explained (FVE), and qualitative features of the longitudinal patterns of
mortality risks were summarized by the corresponding eigenfunctions bφk .
The trajectory Xi(t) for the ith patient using the first K eigenfunctions was

projected as Eq. (5).

X̂K
i tð Þ � μ̂ tð Þ þ

XK

k¼1
ξ̂ik φ̂kðtÞ: (5)

The 95% simultaneous confidence bands for Xi(t) was constructed as Eq.
(6).

X̂K
i tð Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2K ;95%φ̂

T
K;tΩ̂K φ̂K;t

q
; (6)

where χ2K;95% was the 95th quantile of the Chi-squared distribution with K
degrees of freedom, and Ω̂K was the estimated variance of ξ̂ik .
We identified two FPCs with 95% FVE, where the first FPC contributed

84.1% and the second 11.5%. We chose a cutoff of 95% since an FVE >90%
is generally accepted as appropriately sensitive for identifying clinically
relevant trajectories18. We assigned patients into two clusters based on the
FPC scores using an EM algorithm for model-based clustering13,14. The
mean trajectories of the two clusters were either “predictable” or
“unpredictable”. To compare patients in the two clusters, we conducted
logistic regression analysis to assess the association between the trajectory
and patient characteristics, including baseline variables and variables
related to cancer treatment.
To evaluate the association between trajectory and EOL outcomes, we fit

separate logistic regression models using each of the four EOL metrics as
dichotomous outcomes. The independent variable of interest was the
trajectory (predictable vs. unpredictable), with all features in Supplemen-
tary Table 1 used as covariates. For all logistic regression analyses, missing
indicators were added to address the issue of missing data, except for
Eastern Cooperative Oncology Group performance status (ECOG) values,
which were imputed via multiple imputations that repeated 50 times19,20.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data shown in the manuscript are available upon request from the
corresponding author.
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CODE AVAILABILITY
All statistical analysis was performed in R version 3.6.0. The analysis codes can be
obtained from https://github.com/ManqingLiu/Trajectory.Modelling.git. The core
algorithm for FPCA can be obtained from https://github.com/functionaldata/tPACE.
The validation for the GBM algorithm has been previous published (https://
jamanetwork.com/journals/jamaoncology/article-abstract/2770698) and source code
is available at https://github.com/pennsignals/eol-onc.
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