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The lymphatic vasculature plays important role in regulating 
fluid homeostasis, intestinal lipid absorption, and immune sur-
veillance in humans. Malfunction of lymphatic vasculature leads 
to several human diseases. Understanding the fundamental 
mechanism in lymphatic vascular development not only expand 
our knowledge, but also provide a new therapeutic insight. 
Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism 
of organ size and tissue homeostasis, has emerged as a critical 
player that regulate lymphatic specification, sprouting, and 
maturation. In this review, we discuss the mechanistic regulation 
and pathophysiological significant of Hippo pathway in lymphatic 
vascular development. [BMB Reports 2021; 54(6): 285-294]

INTRODUCTION

In mammals, there exist complementary vascular networks. 
Blood vasculature delivers nutrients and oxygen to cells, and 
the lymphatic vasculature maintains fluid homeostasis by 
collecting and returning interstitial fluid into the bloodstream. 
Additionally, lymphatic vasculature regulates lipid absorption 
and immune response (1, 2). Dysfunction of lymphatic vessels 
is associated with several human diseases such as lymphedema, 
Alzheimer’s disease, cancer metastasis, obesity, atherosclerosis, 
and inflammatory diseases (3-10). A major part of the lymphatic 
vascular network is established during embryonic stages (2, 
11). Three stepwise events regulate the lymphatic vasculature 
development: specification of lymphatic endothelial cell (LECs) 
progenitors, differentiation of LECs and formation of lymph 

sacs, and patterning and maturation of the lymphatic vessels. 
Different signaling pathways such as VEGFC-VEGFR3, NOTCH, 
BMP, WNT, PCP, G-protein-coupled receptors (GPCRs), ECM- 
integrin, and mechanotransduction signaling pathway regulate 
LEC identity, morphology, and behaviors via their downstream 
kinases, adaptor molecules, and transcriptional factors (1, 12-18).

The Hippo signaling is an evolutionarily conserved organ 
size-control mechanism and plays pivotal roles in maintaining 
tissue homeostasis by regulating cell proliferation, growth, and 
survival (19-22). In mammals, the central transcription factors 
of the Hippo pathway are Yes-associated protein (YAP) and its 
paralogue WW domain-containing transcription regulator (WWTR, 
hereinafter referred to as TAZ) (23, 24). In general, the phos-
phorylation status has been generally accepted as the most 
important regulatory mechanism for determining YAP/TAZ’s 
subcellular localization and transcriptional activity (25, 26). 
The Hippo signaling can be tightly controlled by a core kinase 
cascade consisting of the Ste-20 family of protein kinase 
MST1/2, the scaffolding protein Salvador (SAV), and large tumor 
suppressor kinase LATS1/2 (27-32). MOB kinase activator 
1A/1B (MOB1A/1B) forms a complex with LATS1/2 kinases. 
MST1/2 activates MOB1A/1B and LATS1/2 by phosphorylation. 
The tumor suppressor NF2/Merlin associates with LATS1/2 and 
accelerates LATS1/2 phosphorylation through the MST1/2–SAV 
complex. In parallel to MST1/2, MAP4K family kinases can 
also directly phosphorylate and activate LATS1/2 (25, 33). The 
wide range of intrinsic or extrinsic signals regulate the Hippo 
pathway that precedes to the LATS1/2-mediated YAP/TAZ phos-
phorylation. As a result, YAP/TAZ are located in the cytoplasm 
through interaction with 14-3-3, and E3 ligase β-TrCP results in 
the proteasome-dependent YAP/TAZ degradation (34-37). In 
addition, growth factor signaling or cytoskeleton rearrangement 
inhibits YAP/TAZ phosphorylation by suppressing the Hippo 
pathway and enables YAP/TAZ to translocate into the nucleus. 
Then, YAP/TAZ associates with TEA domain family member 
1-4 (TEAD1-4) and binds with several transcription factors 
SMADs, RUNXs, and p63/p73 to activate the transcriptional 
program involved in anti-apoptosis and cell proliferation (38, 
39). Recently, several studies have identified Hippo-YAP/TAZ 
signaling components as novel players in lymphatic vascular 
development by regulating LEC specification, proliferation, and 
migration. Therefore, in this review, we provide the current 
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Fig. 1. Schematic diagram of the pro-
posed model of Hippo-YAP/TAZ signal-
ing pathway in LECs. The Hippo pathway 
is a kinase cascade involving MST1/2 
mediated activation of LATS1/2 and 
LATS1/2 mediated inactivation of YAP/ 
TAZ through phosphorylation. Multiple 
stimulations including VEGF-C, mechanical 
stress, cell density, and cell polarity may 
suppress upstream kinases to activate 
YAP/TAZ transcriptional activity.

findings concerning the Hippo-YAP/TAZ signaling pathway 
mediated regulation of lymphatic vessel formation and maturation. 

YAP/TAZ EXPRESSION IN LYMPHATIC VASCULATURE

It has been reported that YAP/TAZ are dynamically expressed 
in blood vascular endothelial cells (BECs) during angiogenesis 
(40-42). Remarkably, TAZ expression has been reported to be 
higher in several types of BECs compared with YAP (42). YAP/ 
TAZ are highly restricted in the nucleus of BECs between 
E10.5 to 11.5. However, YAP/TAZ are also found in the 
cytosol of most of the brain BECs at E14.5 (42). While YAP is 
mainly located in the cytoplasm in the migrating tip cells, TAZ 
is localized in the nuclei in the retinal blood vasculature at 
postnatal stage P5 (40, 41). In addition, YAP is detectable at cell- 
cell junctions in blood vessels of neonatal mice (43). Moreover, 
dynamic and differential YAP/TAZ expression patterns are 
observed during lymphatic vasculature development. In primary 
human LECs (hLECs), TAZ is expressed at a much higher level 
compared to YAP at the protein level. However, based on 
RNA-seq data, YAP expression is extremely high compared to 
TAZ (44). The mechanisms that regulate the post-transcriptional 
regulation of YAP/TAZ are still not known in LECs. TAZ is 
mainly located in the nuclei, but YAP is diffusely distributed in 
the LECs of the lymphatic plexus (45). In the newly forming 
lymphatic valve-endothelial cells (LV-ECs), TAZ is mainly localized 
in the cytoplasmic compartment at E16.5 (44, 45). However, 
TAZ is predominantly located in the nucleus of mature LV-EC 
after E17.5 (44, 46). In premature LVs CTGF and ANGPT2, the 
target genes of YAP/TAZ were not present, but high expression 

has been reported in mature LVs (44, 46). It has been proposed 
that YAP/TAZ have both distinct and redundant functions so 
they can compensate for each other in a context-dependent 
manner (47, 48). Single deletion of YAP or TAZ in LECs does 
not lead to any obvious developmental defect (44). Single 
deletion of TAZ leads to very mild lymphatic valve defect (45). 
On the contrary, genetic inactivation of both YAP/TAZ in LECs 
results in dramatic dilation of lymphatic vessels and structural 
LV deterioration (44, 45). 

UPSTREAM SIGNALS REGULATING HIPPO-YAP/TAZ 
PATHWAY IN LECs

Over 20 years of research has firmly established that YAP/TAZ, 
the central players of the Hippo pathway, are the molecular 
determinants for organ size control (19). The multiple signaling 
pathways, such as mechanical stress, WNT, TGF-β, NOTCH, 
and VEGF, have been suggested to affect the growth-regulatory 
abilities of YAP/TAZ and interact with the Hippo pathway to 
coordinate numerous biological processes, indicating the sig-
nificance of the signaling network (20). Here, we summarize 
the details of upstream signals that hold the potential to 
modulate the Hippo pathway in LECs (Fig. 1).

VEGF-C/VEGFR3 signal
While VEGF, a ligand of VEGFR2 is an essential factor for 
blood vessel development, VEGF-C is the major ligand that 
activates VEGFR3 for lymphatic vascular development (1, 49). 
VEGF-C/VEGFR3 interaction activates PI3K-AKT and PKC-ERK 
pathways to regulate LECs proliferation, survival, and migration 
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(50). It has been reported that VEGF-C treatment increased 
phospho-LATS1 and facilitated cytoplasmic YAP whereas VEGFR3 
knockdown promoted nuclear localization of YAP, thereby 
suggesting that VEGF-C activates the Hippo signaling to repress 
YAP/TAZ in hLECs (45). However, Hogan and colleagues 
suggested that Vegfc can promote nuclear Yap1 in a zebrafish 
model (51). In addition, VEGF-C decrease phospho-YAP and 
phospho-LATS1 in low confluent hLECs in vitro and YAP/TAZ 
activity is downregulated in Vegfc+/− embryos (44). The activation 
of VEGF/VEGFR2 signaling induces PI3K-AKT and MEK-ERK 
signaling pathways that lead to the inhibition of MST1/2 and 
LATS1/2 in (52). Although Vegfc activates Yap1 in zebrafish 
via ERK activation, the detailed molecular mechanisms down-
stream of VEGF-C/VEGFR3 in LECs are still unknown. Interestingly, 
KRAS/MAPK pathway which is triggered by VEGF-C/VEGFR3 
can induce YAP expression during skin cancer progression 
(53). Overall, the current data suggest that YAP/TAZ are regulated 
by the VEGF-C/VEGFR3 signaling pathway in a high context- 
and cell type-specific manner.

Cell polarity and cell-cell contact
Elucidating the critical roles of apical–basal cell polarity in the 
regulation of the Hippo pathway provides insight to better 
understand the link between the cellular structural components 
and growth-regulatory mechanism. At the adherent junction, 
the FERM domain proteins Merlin (Mer) and Expanded (Ex) 
have been reported to connect the transmembrane proteins to 
the cytoskeleton. Mer and Ex genetically and functionally 
co-operate to mediate activation of LATS1/2 and consequent 
inhibition of YAP/TAZ (54). Moreover, the atypical cadherin 
Fat has emerged as an upstream regulator of Ex, which promotes 
its junctional localization and stability (55). However, the FAT4- 
DCHS1 signaling is essential for vertebral growth in YAP/TAZ 
independent manner (56). Mutations in FAT4 have been reported 
in Hennekam lymphangiectasia-lymphedema syndrome, features 
of which include lymphedema, lymphangiectasia, and mental 
retardation (57). Fat4 inactivation leads to dysmorphic lymphatic 
valves and impaired polarization of LECs in response to the 
flow. However, YAP/TAZ target genes are not affected by the 
loss of Fat4 (58). VANGL2 is also a core PCP component and 
YAP activity is reduced in the lung airways of Vangl2Lp embryos 
(59). Looptail embryos, Vangl2 mutants, possess lymphatic 
valve maturation defect (13). It is still unclear whether the PCP 
pathway coordinates with the Hippo pathway in the lymphatic 
vasculature. 

The Hippo-YAP/TAZ pathway regulates several cellular pro-
cesses in response to cell-cell contact. Cell-adherent molecules 
are the regulator of the Hippo pathway. In high cell density, 
the Hippo pathway is activated and LATS1/2 kinase activity is 
increased, thereby leading to YAP/TAZ phosphorylation (36). 
YAP activity could be regulated by VE-cadherin-mediated cell- 
cell contact in blood endothelial cells via PI3K-AKT (43, 60). 
We observed that YAP/TAZ activity was down-regulated in 
high cell density in in vitro hLECs, thereby indicating conservation 

of contact inhibition in LECs. During LV maturation, LV-ECs 
have discontinuous and low-density cell-cell junctions (13) and 
LV-ECs have high YAP/TAZ activity (44). Deletion of VE-cadherin 
from LECs leads to the up-regulation of YAP/TAZ activity in the 
dermal and mesenteric LECs (61). However, YAP/TAZ activity 
is downregulated in the intestinal LECs (61, 62). 

Tyrosine phosphatase PTPN14 which is associated with Choanal 
Atresia-Lymphedema interacts with VEGFR3 and inhibits its 
downstream signaling cascade (63). PTPN14 also has an inte-
resting relationship with the Hippo signaling pathway; it 
interacts with the Kibra and induced LATS1 activation to 
negatively regulate oncogenic YAP activity (64, 65). In addition, 
PTPN14 protein level has been reported to be elevated in 
response to an increase in cell density; the protein regulates 
nucleus-to-cytoplasm translocation of YAP in MCF10A cells (66).

Physical signal 
Accumulating evidence has suggested YAP/TAZ as the central 
mechanosensor and mechanotransducer in response to several 
kinds of mechanical stresses including shear stress, stiffness, 
and cell geometry. These physical signals regulate the localiza-
tion and activities of YAP/TAZ to coordinate complex organ 
architectures (21, 67, 68). BECs are constantly exposed to 
mechanical forces generated by blood flow which affects cell 
proliferation and morphogenesis. Laminar shear stress (LSS) 
inactivates YAP/TAZ, whereas oscillatory shear stress (OSS) 
stimulates YAP/TAZ activity in BECs (69, 70). However, a 
following report suggested that even LSS can transiently 
activate YAP in BECs (71), and flow patterns could control the 
localization of YAP (72). Lymph flow generates shear stress in 
lymphatic vessels; the stress has been reported as critical for 
lymphatic vascular development (14, 73). LSS can enhance the 
proliferation and sprouting of LECs through ORAI1 mediated 
calcium influx and inhibition of NOTCH1 (73). LSS also enhances 
VEGF-C signaling through unknown mechanisms (74). Ca2+ 
entry through the ORAI channel can inhibit YAP/TAZ human 
glioblastoma cell lines (75). In addition, OSS is critical for 
lymphatic valve formation (12, 46). Shear stress sensing molecules 
such as PIEZO1 and VE-cadherin regulate lymphatic valve 
development (61, 62, 76, 77). PIEZO1 activation elicits transient 
Ca2+ influx and positively regulates nuclear localization of YAP 
in neural stem cells and osteoblasts (78-80). OSS increases 
YAP/TAZ activity and promotes nuclear localization of YAP/TAZ 
in in vitro cultured hLECs (46). 

Physical changes induced by extracellular stiffness induce 
cytoskeleton rearrangement through actin remodeling, which 
controls the Hippo pathway in response to the activity of 
Integrin, Rho-GTPase, or FAK-SRC (67, 68, 81, 82). In cultured 
hLECs, soft matrix inhibits YAP/TAZ but promotes nuclear 
accumulation of GATA2 (83). In human mammary epithelial 
cells stretched by fluid pressure, YAP/TAZ can be activated 
thereby resulting in the entry of cells into the proliferative S 
phase (84). Migrating LECs are mechanically stretched by 
interstitial fluid pressure thereby resulting in the swelling of the 
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interstitium (85). Integrin β1, a key component of ECM stiffness 
dependent YAP/TAZ activation, is necessary for inducing 
response to mechanical stretch to enhance VEGF-C/VEGFR3 
signaling during LECs migration (85). 

G-protein-coupled receptors (GPCRs) signaling
Yu and colleagues have accomplished a conceptual development 
in the regulation of the Hippo-YAP/TAZ pathway and G-protein- 
coupled receptors (GPCRs), the largest group of membrane 
receptors. GPCRs function as a critical upstream regulator in 
the Hippo pathway and relay the extracellular signal to Hippo 
signaling components (86). Depending on the type of ligands, 
GPCRs activate different types of heterotrimeric G-protein, 
thereby causing differential regulation of the Hippo signaling. 
Lysophosphatidic acid (LPA) or sphingosine 1-phosphate (S1P) 
promotes YAP/TAZ activation through G12/13-dependent LATS1/2 
inhibition while epinephrine or glucagon suppresses YAP/TAZ 
activation by Gs signaling (86). Adrenomedullin (AM) and its 
receptor complex, the G protein-coupled receptor CLR (calcitonin 
receptor-like receptor; Calcrl) and Ramp2, play critical roles in 
lymphatic development during embryogenesis and maintenance 
of normal lymphatic function in adults (15, 87). LPA, a positive 
regulator of YAP/TAZ activity, is essential for lymphatic 
vascular development (88, 89). PROX1 and LYVE1 expression 
are induced by LPA stimulation in BECs (90). Also, S1P 
promotes lymphangiogenesis by activating S1P receptor 1 (S1PR1) 
which couples stringently to the Gi protein (91) and S1PR1 
signaling is active in mature and quiescent lymphatic vessels 
during development (74). Taken together, several studies suggest 
that GPCRs signaling pathway regulates LEC proliferation and 
migration, and determines lymphatic vessel integrity and perme-
ability. Therefore, it will be worthy to explore the potential 
cross-talk between GPCR and Hippo-YAP/TAZ signaling pathway. 

WNT signaling
The WNT/β-catenin signaling is a critical regulator that is 
involved in embryo development and tissue homeostasis. 
Abnormal regulation of WNT signaling causes diverse human 
diseases, including cancer and neurodegenerative disorders 
(92, 93). In the canonical WNT pathway, β-catenin is a major 
transcription factor activating WNT-responsive target gene 
expression. Without WNT stimulation, β-catenin is sequestered 
and phosphorylated by destruction complex containing Axin, 
APC, and GSK3β, followed by β-TrCP-mediated proteasomal 
degradation in the cytosol. In response to the WNT stimulus, 
accumulated β-catenin translocates into the nucleus and ulti-
mately activates WNT transcriptional program (94). Interestingly, 
growing evidence has suggested that WNT and Hippo pathways 
integrate and converge in the multiple layers of signaling 
pathways to respond to physiological inputs or alterations (95). 
Indeed, TAZ is known to functionally mediate WNT signaling 
(96). Also, YAP/TAZ can be seized by β-catenin destruction 
complex via physical interaction with Axin (97). In addition to 
the canonical WNT pathway, noncanonical WNT ligands 

regulate YAP/TAZ activation via Gα12/13-Rho-LATS signaling 
(98). Both canonical and non-canonical WNT signaling are 
critical for lymphatic vascular development (12, 99, 100). It 
will be interesting to elucidate whether cross-talk between 
WNT-YAP/TAZ signaling is involved in this process. 

NOTCH signaling 
NOTCH signaling plays a central role in various biological 
processes and is activated by direct cell-cell communication 
between the NOTCH receptors and their ligands including 
Jagged and Delta-like. After the binding, the NOTCH receptor 
can be cleaved sequentially and converted into a NOTCH 
intracellular domain (NICD) that acts as a transcription factor 
to activate the NOTCH-responsive target gene (101, 102). YAP 
regulates expression of NOTCH receptors and their ligand 
Jagged1. In turn, NICD augments YAP/TAZ protein stability 
and creates a positive loop for tumor development (103, 104). 
NOTCH inhibits lymphatic development by repressing PROX1 
expression (105). Genetic inactivation of Notch1 in LECs of 
mouse embryos leads to enlarge lymph sac and increase LEC 
populations (16, 106). However, inactivating the DLL4/NOTCH 
signaling using blocking antibodies leads to decline of lymp-
hatic vessel density (107). Likewise, Dll4+/− mice have reduced 
lymphatic vascular density (74). The role of NOTCH in LECs is 
still not fully resolved. The molecular mechanism by which 
NOTCH pathway controls PROX1 is a key step that remains to 
be identified. Certainly, further work is necessitated to deter-
mine whether the NOTCH-NICD-YAP/TAZ positive feedback 
loop operates in the lymphatic vasculature. 

HIPPO-YAP/TAZ PATHWAY IN LYMPHATIC 
VASCULAR DEVELOPMENT

Role of Hippo-YAP/TAZ signaling in the specification of 
lymphatic endothelial cell progenitors
Most of the embryonic LEC progenitors derive from the cardinal 
veins (108-110). In mouse embryos, around E9.5, a unique 
group of venous endothelial cells starts to express PROX1 and 
becomes LEC progenitors. The homeobox transcription factor 
PROX1 not only controls LEC cell-fate determination but also 
maintains their identity (49, 109, 111, 112). It has been known 
that COUP-TFII (111) and SOX18 (113) are required to activate 
PROX1 expression by binding directly to the PROX1 promoter. 
On the other hand, NOTCH signaling inhibits PROX1 expression 
during LEC cell-fate specification (16, 106). A Positive feedback 
loop between PROX1-VEGFR3 is necessary for controlling the 
LEC specification and for preserving LEC identity (114, 115) 
(Fig. 2). Koh and colleagues for the first time reported the 
presence of YAP/TAZ in the cytoplasm of most of the LEC 
progenitors (45). Activation of YAP/TAZ in cultured hLECs leads 
to down-regulation of PROX1 while knocking down of YAP/TAZ 
increases PROX1 expression (45). Hyperactivation of YAP/TAZ 
using Prox1-CreERT2;Lats1f/f;Lats2f/f mouse demonstrated a re-
duction in the number of Prox1+ LECs in cardinal vein thereby 
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Fig. 2. Schematic representation of the 
molecular mechanisms controlling lym-
phatic specification and sprouting. PROX1 
is a key transcription factor that drives 
lymphatic cell fate specification. Lym-
phatic endothelial progenitor cells ex-
pressing PROX1 arise from the cardinal 
veins (CV) and intersomitic veins. After 
specification, LECs migrate out from 
the CV in a VEGF-C/VEGFR3 dependent 
manner and form lymph sac. Hippo- 
YAP/TAZ signaling regulates PROX1 ex-
pression during LEC specification and 
sprouting.

indicating that Hippo signaling activates PROX1 expression 
and promotes LECs specification (45). However, Yap1 localization 
has been reported to be dynamically altered in parachordal 
LECs in zebrafish (51). Interestingly, yap1 mutants show the 
normal specification of lymphatic progenitors and yap1 is not 
necessary for specification in the zebrafish model (51). 

Role of Hippo-YAP/TAZ signaling in lymphatic endothelial 
cell migration
In mouse embryos, around E10.5, LEC progenitors start to 
migrate out from the cardinal vein into mesenchyme as loosely 
connected spindle-shaped LECs. These LECs form lumenized 
lymphatic structure such as the lymph sac, the peripheral 
longitudinal lymphatic vessel, and the primordial thoracic duct 
around E11.5 (116, 117). Sprouting process of LECs is governed 
by VEGF-C/VEGFR3 in both mice and zebrafish (118-120) (Fig. 
2). It appears that VEGF-C/VEGFR3 signaling represses YAP/TAZ 
activity via LATS1 phosphorylation in vitro (45). Hyperactivation 
of YAP/TAZ at E10.5 reduced Prox1 expression thereby leading 
to a decrease in lymph sac size (45). On the other hand, yap1 
mutant showed abnormal cellular sprouting in zebrafish (51). 
Hogan and colleagues suggested that Vegfc promotes nuclear 
Yap1 with subsequent regulation of LECs proliferation (51). 
During migration, LECs are exposed to a soft ECM environment, 
thereby leading to a decrease in YAP/TAZ activity and activation 
of GATA2-dependent VEGFR3 expression (83). However, mig-
rating LECs are mechanically stretched because of high interstitial 
fluid pressure (85). Integrin β1, a key component of ECM 
stiffness dependent YAP/TAZ activation, is necessary for responding 
to mechanical stretch to enhance VEGF-C/VEGFR-3 signaling 
during LECs migration (85). 

Role of Hippo-YAP/TAZ signaling in dermal lymphatic 
vascular development
The first lymphatic vessels reach the skin from the jugular 
lymph sac around E12.5. Then, arising superficial lymphatic 
vessels on the lateral side of the embryo actively move towards 
until they reach the dorsal midline around E15.5-E16.5. (108, 
121, 122). They show honeycomb-like structure in the plexus 
region and have actively sprouting tips in the migratory front 
region, reflecting a dynamic process in lymphatic vascular 
patterning. The molecular mechanisms regulating formation of 
the dermal lymphatic vasculature remain incompletely understood. 
However, PROX1, VEGFC, FOXC2, GATA2, and NRP2 are 
recognized to be necessary for the dermal lymphatic development 
(3, 118, 123-125). Koh and colleagues demonstrated that around 
E16.5, YAP/TAZ are very less expressed in the tip LECs but 
TAZ are nucleo-cytoplasmically located in LV-ECs in the plexus 
(45). Conditional deletion of YAP/TAZ in LECs from E11.5 
causes enlarged, ballooned, and mispatterned lymphatic vessels 
with no lymphatic valves. Genetical inactivation of LATS1/2 
blocks lymphatic sprouting and leads to the formation of 
dysmorphic lymphatic vessels (45). Lyve1-Cre;Yapf/f;Tazf/f embryos 
have defective lymphatic vasculature with dilated vessels, 
fewer branch points, and migration defect around E18.5 (44). 
Therefore, Hippo-YAP/TAZ signaling pathway is unquestionably 
essential for dermal lymphatic vascular development. 

Role of Hippo-YAP/TAZ signaling in lymphovenous and 
lymphatic valve development 
Lymph returns to the blood circulatory system particularly 
through four lymphovenous valves (LVVs) (126, 127). They 
start forming around E12 at the junction of the jugular and 
subclavian veins (128, 129). The development of LVV starts 
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Fig. 3. A proposed mechanism of Hippo- 
YAP/TAZ signaling pathway function 
in lymphatic valve (LV) formation. LVs 
develop in a step-wise manner. LV-ECs 
are specified in red and LECs are in 
green. Blue lines indicate VEGFR3. Briefly, 
during the initiation stage, OSS promotes 
high PROX1 and FOXC2 expression in 
LV-ECs. During the valve maturation 
stage, LV-ECs orient perpendicular to 
the flow and migrate into the vessel 
lumen. Then, LV-ECs elongate to form 
a bi-layered leaflet with a thick extra-
cellular matrix (ECM). YAP/TAZ activities 
are gradually increased during the matu-
ration stage, thereby indicating that Hippo 
YAP/TAZ signaling pathway is regulated 
by a multitude of signaling mechanisms 
for LV development.

with the formation of two distinct cell populations. LECs from 
the lymph sacs and LVV-forming endothelial cells (LVV-ECs) 
from the veins interact to build the LVVs. LVV-ECs quickly 
aggregate again and invaginate into the vein to create valve 
leaflets around E12.5. Then, LVVs experience gradual maturation 
by assembling mural cells to the gap between the LVV-ECs 
between E14.5 to E16.5. The expression of PROX1, GATA2, 
and FOXC2 are increased in LVV-ECs and strong expression of 
VEGFR3 is remained in the LECs that create LVVs as well 
(128). YAP/TAZ and CTGF are almost absent in LVV-ECs 
between E12.0 to E14.5 but enriched around E16.5 (44). 
Consistent with the expression data, Lyve1-Cre;Yapf/f;Tazf/f 
embryos lack any obvious morphologic defects at E14.5 in 
LVVs. However, mutants with the complete absence of LVVs 
at E17.5 indicate that YAP/TAZ activity progressively augments 
during LVV maturation and YAP/TAZ are necessary for 
preserving LVV-ECs. We also found that YAP/TAZ positively 
control PROX1 expression in LVV-ECs (44).

Skin and mesentery lymphatic valves (LVs) start developing 
around E15.5-E16.5 (18, 130). Differentiation of PROX1high, 
FOXC2high, and GATA2high LV-ECs is the opening stage of LV 
development (Fig. 3). OSS generated by lymph flow is one of 
the most critical factors for FOXC2 and GATA2 expression (14, 
131) along with activation of NFATc1 (14) and Wnt/β-catenin 
signaling (12, 100). The highly elongated LV-ECs line up along 
the wall of lymphatic vessels at E16.5, and then they aligned 
perpendicular to lymph flow at E17.5. ECM molecules such as 
collagen IV, laminin-α5, fibronectin (FN)-EIIIA, and EMILIN1 
are accumulated in between the LV-EC layers around E17.5 
(14, 18, 130, 132). Next, the LV-EC layers stretch along the 
direction of the lymph flow to produce mature LV leaflets after 
E18.5 (129, 133). At E16.5, TAZ is mainly localized in the 
cytoplasm (45) in LV-Ecs; however, at the maturation stage, 
TAZ appears to be located in the nucleus (44, 46). E18.5 of 
Lyve1-Cre;Yapf/f;Tazf/f embryos show dilated lymphatic vessel 

with no LVs and immature phenotype with strong expression 
of LYVE1, VEGFR3, and PROX1 (44). While deletion of YAP/TAZ 
after birth using tamoxifen delivery system from P1 to P7 leads 
to a reduction in the LV number with high expression of 
FOXC2 and PROX1, hyperactivation of YAP/TAZ causes a 
decrease in LV number with low expression of PROX1 and 
Integrin-α9 (45). Therefore, a balance in YAP/TAZ activity is 
important for maintaining the lymphatic valve.

CONCLUDING REMARKS

In summary, although our understanding of lymphatic vessel 
functions under physiological or pathological conditions has 
improved in the past decade, many questions remain unclear. 
Therefore, it has been considered that the identification of 
lymphangiogenic modulators and a clear understanding of the 
involved signaling pathways will provide opportunities to 
develop therapeutic targets for lymphatic diseases. Among the 
factors, PROX1 and VEGF-C/VEGFR3 signaling are the most 
critical regulators of lymphatic vascular development. The 
Hippo-YAP/TAZ signaling pathway has been established as a 
key mechanism of regulation of organ size and tissue home-
ostasis. Recent studies reveal that YAP/TAZ are the vital mole-
cules of the PROX1/VEGFR3 feedback loop in LEC specification, 
migration, and LV maturation. Based on the current Hippo 
signaling pathway, it has been hypothesized that MAP4K 
family kinases acting in parallel to the MST1/2-SAV1 complex 
can phosphorylate LATS1/2 to inactivate YAP/TAZ in a context- 
dependent manner. We generated SAV1 conditional knockout 
mice using two different Cre lines (Lyve1-Cre;Sav1f/f and Tie2- 
Cre;Sav1f/f); the mutants showed no obvious phenotypes in the 
lymphatic vasculature. Interestingly, Czech and colleagues showed 
that mice constitutively lacking Map4k4 displayed LVs defect 
and lymphatic flow disorder with increased Prox1 expression 
(134). Besides VEGF-C and mechanical stress such as EMC 
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stiffness and shear force, multiple signaling pathways are able 
to control the development of lymphatic vasculature. It must 
be elucidated whether YAP/TAZ could be regulated by these 
signaling pathways in a functionally related manner. Moreover, 
Hippo pathway molecules have been considered as therapeutic 
targets in several human diseases. Therefore, it is hypothesized 
that targeting those molecules will provide new therapeutic 
strategies to cure lymphatic disease in the future.
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