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Abstract

Graph theory is now becoming a standard tool in system-level neuroscience. How-

ever, endowing observed brain anatomy and dynamics with a complex network rep-

resentation involves often covert theoretical assumptions and methodological

choices which affect the way networks are reconstructed from experimental data,

and ultimately the resulting network properties and their interpretation. Here, we

review some fundamental conceptual underpinnings and technical issues associated

with brain network reconstruction, and discuss how their mutual influence concurs in

clarifying the organization of brain function.
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1 | INTRODUCTION

The introduction of complex network theory in neuroscience has rep-

resented a profound methodological but also in many ways concep-

tual revolution, promoting new research avenues (Bullmore & Sporns,

2009). A network is a collection of nodes and pairwise relations

between them, called edges or links (Newman, 2003). Endowing a sys-

tem with a network structure means identifying some of its parts with

the former, and physical or more abstract relations between them

with the latter. In spite of its apparent straightforwardness, such an

operation is highly non-trivial from both a conceptual and a practical

viewpoint and comes with a set of often implicit assumptions.

Representing a system with a network structure does not neces-

sarily entail that the system's properties are those of the associated

network and that the system actually works as a network. Thus, at a

fundamental level, network neuroscience must address the question
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of whether network structure reflects genuine aspects of brain phe-

nomenology or is an epiphenomenon of coordinated dynamical activ-

ity in the same way as spatio-temporal electrical field fluctuations are

sometimes thought of. But even supposing that brain function

emerges from some network property of anatomy and the dynamics

taking place on it, a no less fundamental question for neuroscientists

is how to extract this structure from data. Before even addressing the

ontological question, it is therefore necessary to ascertain that

the reconstruction is carried out properly. What “properly” means is

of course highly non-trivial, context-specific, and crucially depends on

the way the data on brain activity are collected, analysed and

interpreted.

Network reconstruction from empirical data involves discretion-

ary choices at all steps, to which graph theory per se provides no

direction (Papo, Zanin, & Buldú, 2014; Zanin et al., 2012). For

instance, there are no criteria for the choice of the space to be repre-

sented with a network structure, and for the definition of its bound-

aries, nodes and edges (Papo, Zanin, & Buldú, 2014). The

reconstruction process in general and these choices in particular are

somehow associated with assumptions on the characteristics of the

studied system. For instance, endowing brain anatomy and dynamics

with a network structure may seem prima facie rather similar pro-

cesses, but differ in some fundamental (not merely technical) ways.

An obvious difference lies in the definition of edges, which is far more

straightforward in the former case than in the latter, but the most fun-

damental difference is to do with the definition of functional brain

imaging's object, namely, functional brain activity.

In the remainder, we review the conceptual bases of functional

network reconstruction from standard system-level neuroimaging

recordings (Section 2). In particular, we show that defining functional

brain activity, extracting it from neuroimaging data and representing it

with bona fide functional networks involve essentially similar concep-

tual steps. This theoretical introduction analyses issues seldom exam-

ined in other neuroscience reviews, but which turn out to be essential

to understanding the technical aspects of the reconstruction process

(Section 3). The interaction between functional brain activity charac-

terization and network representation, and the extent to which the

definition of what is functional in brain activity depends on the partic-

ular way in which brain networks are reconstructed is discussed

throughout.

2 | PROLEGOMENA TO NETWORK
RECONSTRUCTION

System-level functional neuroimaging techniques afford discrete

time-varying images of some aspect of neural physiology, typically

associated with some physiological or cognitive function. Neuroimag-

ing data therefore constitute a coarse-grained version of “true” brain

activity, implicitly meaning that there exists some map between the

former and the latter.

The first important issue is determining the conditions under

which and extent to which neuroimaging data and, more specifically

the variables used to quantify them, allow recovering the system and

make the system observable, that is, the internal states of the whole

system can be reconstructed from the system's outputs (Kalman,

1961). Thus, neuroimaging data analysis can be thought of as a recon-

struction or inverse problem (Nguyen, Zecchina, & Berg, 2017)

(cf. Section 2.2.2). Supposing brain activity in fact has a structure of

some kind, for example, a symmetry, the aim of neuroimaging data

analysis should be to preserve at least some context-specific proper-

ties of the underlying structure. The presence of structure induces

specific equivalence classes, that is, sets whose elements are equiva-

lent in terms of some relation, and allows measuring quantities over

the considered spaces. These should ideally be preserved in the

mapping.

A second important issue is that what needs to be quantified is in

general not brain dynamics, but functional brain activity. However, the

activity recorded with neuroimaging techniques such as functional

magnetic resonance imaging (fMRI), electro- (EEG) or magneto-

encephalography (MEG), which is generally called functional, is not

genuinely functional per se. Functional brain activity can be thought

of as a particular structure of brain dynamics, that is, a particular set of

relations among the elements composing dynamics which reflect a

specific function. Extracting function from bare dynamics represents

a non-trivial though often implicit process (Papo, 2019). As a conse-

quence, functional brain imaging should provide a map between true

and coarse-grained space's respective structure.

Finally, network neuroscience aims at characterizing brain anatomy,

dynamics and ultimately function by endowing them with a network

representation, and describing them in terms of properties of this rep-

resentation. A network can be thought of as a discrete version of a

continuous space, equipped with a particular structure. Thus, in net-

work reconstruction, the codomain of the map from true brain struc-

ture is a coarse-grained and discrete image of (some aspect of) brain

anatomy and dynamics. Both its objects (i.e., the nodes) and the rela-

tions among them (i.e., the edges) are endowed with basic properties.

Altogether, network analysis of system-level neuroimaging data

involves a complex characterization of the system's functional space,

via neuroimaging and network coarse-graining. Crucially, these prop-

erties depend on the way functional brain activity is defined. Defining

functional brain activity, extracting it from neuroimaging data and rep-

resenting it with bona fide functional networks correspond to as many

coarse-graining processes, which though implying a reduction in infor-

mation, in the temporal and spatial domains, involve essentially similar

conceptual steps.

2.1 | From brain dynamics to functional brain
activity

Perhaps the most common way of representing system-level brain

activity and therefore the time-varying data produced by standard

neuroimaging techniques is as the output of an underlying spatially-

extended dynamical system embedded in the 3D anatomical space.

The space Φ associated with the dynamics is typically treated as
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scalar, vector, or tensor field,1 either in the time domain, ranging from

experimental to developmental or evolutionary time scales or, in

somehow equivalently ways, in the frequency domain or in phase

space.

Whatever the domain in which it is defined, the space has in gen-

eral some additional structure, that is, some relationship among its ele-

ments. The space Φ is often identified with the anatomical space itself

and treated as a smooth Euclidean space. This means that on such a

space a distance is defined, that is, a rule to calculate the length of cur-

ves connecting points of the space, and that the tools of standard cal-

culus can be used to carry out operations within the space, and

comparing or evaluating differences across conditions. However,

when considered at the whole brain spatial scale, neither anatomy nor

global dynamics can in general be thought of as a simple Euclidean

space. The folded structure resulting from brain gyrification produces

an object with non-trivial geometry. Perhaps more importantly, ana-

tomically contiguous brain areas may radically differ in terms of

dynamics and function. Φ can nonetheless be equipped with some

geometry providing a way of defining distances. This can be done by

assuming the anatomically-embedded dynamical space to be locally

Euclidean, an approximation typically adopted in anatomical data anal-

ysis. The resulting space is a manifold M, that is, a geometric object

consisting of a collection of Euclidean patches, which are local

descriptions of Φ covering the space. Such a construct is akin to a

standard geographical atlas, which is nothing else but a collection of

local charts projected on the plane. Overall, the resulting geometry is

Euclidean within patches, but of a different nature at longer spatial

scales (cf. Section 3.3.1). The main problems with such a space are

understanding the conditions under which its parts are distinguish-

able, how the charts are related to each other, how to treat overlaps

between two separate charts and changes in the description of the

same set in different coordinates (Robinson, 2013a) (see Figure 1).

While representing brain activity in a metric space equipped with

a distance may seem to facilitate neuroscientists' life, it may not cap-

ture essential non-metric aspects of functional brain organization

(Petri et al., 2014; Reimann et al., 2017). It may then be useful to rep-

resent Φ as a space the elements of which do not derive internal rela-

tions from a metric (Petri et al., 2014). The space Φ may for instance

be endowed with a topological structure (Lee, 2010). A topological

space is a set of elements together with a topology, that is, a collection

of open sets satisfying some basic properties. Intuitively, a set is open

if, starting from any of its points and going in any direction, it is possi-

ble to move a little and still lie inside the set. The notion of open set

provides a fundamental way to define nearness, and hence properties

such as continuity, connectedness, and closeness, without explicitly

resorting to distances. Nearness is maintained as the space is

stretched without tearing. This naturally allows comparing systems of

different metric size and differing local properties, a desirable charac-

teristic given the intrinsic variability of individual brains. Thus, alto-

gether, a topological representation affords two important advantages

over a usual metric space: a more flexible notion of distance, and a

robust way to compare conditions (Ghrist, 2014).

Treating brain activity as the output of a dynamical system, it can

be modelled as a topological dynamical system where in addition to

rules prescribing the matching conditions between overlapping charts,

one defines some function accounting for the temporal evolution of

such a structure. Considering the dynamics of such systems complex-

ifies the picture. This is because brain activity has non-random struc-

ture not just in the anatomical space but also in its dynamics (Papo,

2013). For instance, at long time scales, brain fluctuations are charac-

terized by non-trivial properties such as scale invariance (Fraiman &

Chialvo, 2012; Novikov, Novikov, Shannahoff-Khalsa, Schwartz, &

Wright, 1997). The presence of such properties induces for instance a

particular geometry (fractal geometry) in the time domain. This struc-

ture interacts with the spatial structure (Papo, 2014), potentially giv-

ing rise to arbitrarily complex topological properties (Zaslavsky, 2002).

2.1.1 | Notion of functional space

Neuroimaging can help pursuing cognitive neuroscience's dual goal:

understanding on the one hand how brain anatomical structure and

the dynamics unfolding on it control function, and on the other hand,

how the demands of cognitive or physiological tasks act on brain anat-

omy and dynamics, producing functional subdivisions in the brain. This

can be accomplished by mapping a space Ψ of cognitive functions {ψ1,

ψ2,…,ψ J}, non-observable when using a given system-level neuroim-

aging technique, onto a finite set of functions {ϕ1,ϕ2,…,ϕK}�Φ of

aspects of brain anatomy or physiology associated with observable fit-

ness or performance measures {γ1, γ2,…, γL}�Γ from subjects carrying

F IGURE 1 An n-dimensional manifold M can be described locally
by the n-dimensional real space ℝn. A local chart (φ, U) is an open
subset of the manifold U ⊆ M together with a one to one map φ:
U!ℝn from this subset to an open set of the Euclidean space. The
piecewise one-to-one mapping to the Euclidean space allows
generalizing Euclidean space properties onto manifolds. A transition
map between two open subsets of ℝn provides a way to compare two
charts of an atlas
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out given tasks or just resting. When using Φ to make sense of Ψ, one

ultimately aims at defining the space of equivalence classes under

some relation defined on Φ, for example, the space of points for which

brain activity has the same amplitude. In the opposite case, Φ is par-

titioned into functionally meaningful units using cognitive tasks as

probes. In general, one seeks the best way to project one space onto

the other, inducing partitions as accurate and fine as possible. Thus,

defining functional brain activity using neuroimaging techniques

involves partitioning two complex spaces, respectively made observ-

able by behaviour and brain recording techniques, putting a structure

on the set of equivalence classes, and mapping the corresponding

structures, thereby parameterizing one space by another space. How

to construct these partitions, what form the corresponding space may

take, and therefore what may be regarded as functional, depends on

the way Ψ,SΨð Þ and Φ,SΦð Þ, where S denotes a generic structure, are

defined and mapped onto each other through π (or π
0
). Within such a

space, coordinates and transitions between charts in one space are

defined by corresponding charts in the other space used to

parameterize it.

Structure of the functional space

Subdivisions of the functional space depend on the way Φ and Ψ are

defined, on their respective structure, and on the way they

are mapped onto each other through some function π (or π
0
) (see

Figure 2). π can be thought of as a map preserving structure, as ideally

one would like subdivisions in one space to be mapped onto subdivi-

sions in the other, though its nature, properties (e.g., invertibility, con-

tinuity) and the ones it preserves may be context-specific. Carving

functional equivalence classes from brain activity ultimately involves

moving from dynamical equivalence classes, with identical dynamical

properties and specific phase and parameter space symmetries, to

functional ones comprising patterns of neural activity that can achieve

given functional properties (Lizier & Rubinov, 2012; Ma, Trusina, El-

Samad, Lim, & Tang, 2009). This in turn requires considering the struc-

ture induced by the time evolution of the space produced by the map

π (or π
0
). Functional structure results from the combination of two

aspects: on the one hand, the accessibility structure in the neurophysi-

ological space, that is, which observable variations are realizable in the

neighbourhood of underlying neuronal configurations at scales below

the observed ones; on the other hand, the neurophysiological neutral-

ity structure of observable variations in the space in which these are

evaluated, that is, those changes in one space which have no conse-

quence on the space onto which they are projected. The combination

of these two factors may give rise to a rather non-trivial structure.

Notably, various important properties, for example, nearness and

neighbourhood, may qualitatively change when considering function

rather than bare dynamics, the former possibly turning out not to be a

metric or even a topological space (Stadler, Stadler, Wagner, &

Fontana, 2001). The very definition of other properties, such as path

dependence and robustness, may also vary in the dynamics-to-

function transition.

2.2 | From functional activity to functional
networks

2.2.1 | Network structure

An increasingly popular way to equip neuroimaging data with struc-

ture consists in endowing them with a network structure (Bullmore &

Sporns, 2009). A network is a pair G = (V, E), where V is a finite set of

nodes and E⊆V�V a set of ordered pairs of V called edges (or links).

E is a symmetric and antireflexive relation on V for simple networks,

and an anti-symmetric one for directed ones (Estrada, 2011).

In a sense, network analysis operates in the same way as neuro-

imaging itself. Neuroimaging data can prima facie be thought of as

kinetic models with a noise term averaging over brain activity at scales

that are not detectable by a given recording device (Zaslavsky, 2002).

This means that there exists a map ~π :ΦNObs !ΦObs between non-

observable and observable activity. Recovering the hidden structure

at microscopic scales would require finding a generating partition, an

arduous task often impossible in experimental contexts (Kantz &

Schreiber, 2004; Schulman & Gaveau, 2001). Associating the brain

space with a network structure constitutes a particular coarse-

graining wherein each portion of ΦObs, an essentially continuous space

(though empirical data are of course discrete), is identified with a dis-

crete point. This process bears similarities with the way the centre of

mass summarizes a whole mechanical system, an operation made pos-

sible by the system's symmetries. Furthermore, insofar as in a discrete

space all points are isolated,2 a network structure, however, defined,

induces a separation property in ΦObs, even when the spaces summa-

rized by each node are not separated3 ones. In analogy with the gen-

eral way of defining brain function, such networks, which are

associated with the structure of bare dynamics, should be called

dynamical, while functional networks should be reserved for structures

inducing partitions of ΦObs through behavioural measures Γ. In this

sense, defining network nodes, the starting point of functional net-

work analysis, already incorporates a specification of functional brain

activity.

ΦObs can loosely be thought to emerge from the renormalization

of neural activity at scales not observable with a given neuroimaging

F IGURE 2 Genuinely functional activity results from a complex
relation between the structure SΦ of the neurophysiological space Φ
and the structure SΨ of the abstract space Ψ of cognitive functions
made observable by performance measures Γ (see text above). Thus
subdivisions in one space are used to define subdivisions in the other

KORHONEN ET AL. 3683



technique (Allefeld, Atmanspacher, & Wackermann, 2009). The way

microscopic scales renormalize into macroscopic ones and the proper-

ties the ~π map induces are poorly understood but could help deter-

mining the scale at which Φ is locally isomorphic to ℝn and can

effectively be treated as a topological manifold. Likewise, the level of

neural operation at which connectivity becomes functionally relevant

determines the scales at which a system can effectively be considered

a network. At this scale, which may be induced by permutation sym-

metry with respect to a given property at microscopic scales, connec-

tivity and collectivity are equivalent. Macroscopic parcellations in the

anatomical space may then consist of topographical regions for which

such symmetry holds.

Important functional elements are also incorporated in the rela-

tions between network nodes. In network neuroscience, the relation E

is predicated upon connectedness and correlation lato sensu is usually

used as a proxy for neighbourhood in the relevant space. Connected-

ness is one of the most important properties of topological spaces

expressing the intuitive idea that an entity cannot be represented as

the sum of two parts separated from each other, or, more precisely,

as the sum of two non-empty disjoint open-closed subsets. Connect-

edness is preserved under mappings preserving the topological prop-

erties of a given space. The choice of connectedness is consistent

with the proposed role of dynamical connectivity in healthy brain func-

tion (Varela, Lachaux, Rodriguez, & Martinerie, 2001) and in several

neurological and psychiatric conditions (Alderson-Day, McCarthy-

Jones, & Fernyhough, 2015; Friston, 1998; Hahamy, Behrmann, &

Malach, 2015; Hilary & Grafman, 2017; Hohenfeld, Werner, & Reetz,

2018; Schmidt et al., 2013; Stephan, Friston, & Frith, 2009). The rela-

tions among the component nodes induce both metric (though not

Euclidean) and topological properties.

Altogether, while a network representation should in principle

clarify key aspects of functional brain activity, in turn, the assumptions

on what should be regarded as functional have a profound impact on

the associated networks, introducing circularity between definition

and quantification of functional brain activity.

2.2.2 | Reconstruction-related principles

The network neuroscience endeavour is a particular inverse problem

(Nguyen et al., 2017), involving the reconstruction of connectivity ker-

nels given a prescribed dynamics of the activity field (Coombes, beim

Graben, Potthast, & Wright, 2014) (Cf. Section 3.5). Insofar as the

activity field is discretized, and that the key aspect is not dynamics

per se but function, characterizing functional brain activity using net-

work reconstruction involves determining the set of all networks that

generate a given function. Inverse problems are by definition ill-posed

in the absence of boundary conditions. Specifying these conditions

involves choices of varying degrees of arbitrariness. Reconstruction

should ideally fulfil some partially inter-related criteria:

1. Reducibility. A fundamental question relates to whether brain activ-

ity can indeed be reduced to a network representation. The brain

is a disordered spatially extended system with complex dynamics

and incompletely understood functional organization. While com-

plex networks' properties are well-equipped to reflect many

aspects of such a system, for instance its strong disorder

(Dorogovtsev, Goltsev, & Mendes, 2008), how much information is

lost as a result of discretization, and the extent to which informa-

tion loss depends on the particular way a network is reconstructed

and the scale at which this happens are still poorly understood

issues.

2. Observability. An issue related to reducibility and which is still

poorly understood, is to what extent and under what conditions a

network representation enables good observability, that is, allows

recovering the states (Letellier & Aguirre, 2002) of the underlying

high-dimensional system (Aguirre, Portes, & Letellier, 2018).

3. Structural similarity. Ideally, the network structure should reflect

that of the underlying functional space, that is, there should be a

map between them that preserves structure.

4. Property preservation. An adequate structure should therefore pre-

serve fundamental dynamical and structural properties of the

underlying space. These properties include (a) the ability to obtain

a dynamical rule for the system (Allefeld et al., 2009), and

(b) symmetries (Cross & Gilmore, 2010). At least in its classical for-

mulation, a network representation introduces symmetries, which

may not be intrinsic to the system. For instance, nodes are typically

taken to be essentially equal, implying a global symmetry of the

space on which the network is defined.

5. Intrinsicality. Network properties should be intrinsic, that is, they

should show some invariance with respect to the way the network

structure through which they are identified is reconstructed.

Which properties of brain dynamics and function networks can,

actually do, or should document, and what this implies in terms of net-

work properties, constitute fundamental issues that need to be

addressed in network reconstruction.

3 | BRAIN NETWORK RECONSTRUCTION

Endowing brain dynamics with a network representation is consistent

with models representing global brain activity as emerging from the

coupling of oscillating neuronal ensembles (Ashwin, Coombes, &

Nicks, 2016; Hoppensteadt & Izhikevich, 1997; Sreenivasan,

Menon, & Sinha, 2017). In this sense, network neuroscience can be

seen as a particular neural field theory (Coombes & Byrne, 2019),

wherein a finite number of neural masses interact according to a

given context-dependent topology (Cabral, Hugues, Sporns, &

Deco, 2011).

However, not only is writing equations for brain dynamics based

on empirical data an arduous task (Brückner, Ronceray, & Broedersz,

2020; Crutchfield & McNamara, 1987; Friedrich, Peinke, Sahimi, &

Tabar, 2011), but at the scales typical of standard system-level non-

invasive neuroimaging techniques, it is not trivial to define oscillators.

At these scales, the definition of node is far less intuitive than for
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example, at the single neuron ones, where units are clearly defined.

Nodes then ought to be identified in a different way. This often

involves some form of functional projection on the anatomical space,

whereby nodes map spatially local characteristics of the system's

microscopic scales. However, the anatomy-to-function map is com-

plex and poorly understood, as dynamical patterns of brain activity

emerge in a spatially and temporally non-local way from brain con-

nectivity at all scales (Kozma & Freeman, 2016). Furthermore, no

clear recipe exists to define relationships among nodes or to

choose among the many available alternatives (Pereda, Quiroga, &

Bhattacharya, 2005).

Functional network reconstruction is typically presented as a pro-

cess involving node and edge definition and comprising a sequence of

discrete steps. This division is in large part both heuristic, as dis-

cretional decisions at each step crucially depend on choices made at

the others, and incomplete, as node and edge characterization is for

instance logically preceded by the choice of the space on which the

network structure is defined. In the remainder of this section, we pro-

vide an account of the various aspects in the reconstruction process,

their reciprocal relationships, their dependence on often covert

assumptions on functional brain activity as well as their brain record-

ing technique specificity.

3.1 | Space identification

Typically the space to be endowed with a network structure is iso-

morphic to the anatomical space on which the recorded dynamics

takes place. Often the anatomical space would constitute both the

embedding and the configuration space4 for the dynamics. This

characterization presents features that may simplify the analysis.

For instance, the space can be endowed with the usual Euclidean

metric. In addition, it makes interpretations in physiological terms

and comparisons between anatomical and dynamical networks

straightforward.

In fMRI studies, the anatomical space is not only the space where

the brain dynamics take place but also the space where the imaging

data are collected. The case of MEG and EEG is more complicated:

while the data origins from electric dynamics of source points located

on the brain surface, or in the source space, signals are recorded by

magnetometers, gradiometers, and electrodes outside of the skull, in

the sensor space. Functional networks can be constructed in both

spaces. Sensor space analysis directly investigates the temporal simi-

larity between signals from different sensors. For source-space analy-

sis, on the other hand, the dynamics of sources on the brain surface

are first reconstructed via electromagnetic inverse modelling, also

known as source reconstruction (for a review on source reconstruc-

tion approaches, cf. Hämäläinen, Hari, Ilmoniemi, Knuutila, &

Lounasmaa, 1993; Grech et al., 2008; Schoffelen & Gross, 2009, He,

Sohrabpoir, Brown, & Liu, 2018). While sensor-space analysis is often

selected for its relative simplicity and reduced computational cost,

source-space analysis offers higher spatial resolution, facilitating inter-

pretation of results in neurophysiological context (Palva & Palva,

2012; Schoffelen & Gross, 2009). Source-space analysis is also less

prone to errors originating from signal mixing (cf. Section 3.5.2).

The anatomical space is not the same for all brains. In particular,

fMRI data are collected in the so-called native space of each subject,

and also MEG and EEG data may be source-modelled to native space.

However, the brain regions used as functional network nodes

(cf. Section 3.2.1) are defined in some standard space, the most com-

monly used being the Montreal Neurological Institute space (Collins,

1994; Collins, Neelin, Peters, & Evans, 1994; Evans, Collins, & Milner,

1992; Evans, Marrett, et al., 1992). Therefore, neuroimaging data are

typically transformed to a standard space prior to network construc-

tion. The transformation aims to map homologous areas of different

subjects into a single area in the standard space (Brett, Johnsrude, &

Owen, 2002). Depending on the assumed connection between func-

tion and anatomy, this can be done by matching brain size and outline

or more detailed anatomical structures such as sulci (Brett et al.,

2002). Another, although more rare, option is to map the ROI defini-

tions to each subject's native space and construct networks there.

Some studies report no difference in network metrics between spaces

(van den Heuvel, Stam, Boersma, & Hulshoff Pol, 2008); according to

others, however, native-space networks have more local structure

and clearer local hubs than standard-space ones (Magalh~aes, Marques,

Soares, Alves, & Sousa, 2015). Furthermore, network metrics calcu-

lated in the native space and normalized by metrics obtained from

random networks of corresponding size are better predictors for IQ of

children suffering from epilepsy than their standard-space counter-

parts, although the standard-space metrics outperform the non-

normalized native space ones (Paldino, Golriz, Zhang, & Chu, 2019).

However, effects of the standard-space transformation on network

structure and metrics are not fully known, and the selection of optimal

space probably depends on multiple factors, including the definition

of network nodes (Magalh~aes et al., 2015).

The anatomical space is only one of the many classes of spaces

that can in principle be endowed with a network structure. For

instance, network theory may be used to describe the phase space in

which brain activity lives (Baiesi, Bongini, Casetti, & Tattini, 2009;

Thurner, 2005). Such a representation seems particularly appropriate

in regard to the phase space characteristics of complex systems such

as the brain, where not all possible states are homogeneously popu-

lated, and microscopic dynamics is restricted to some states and the

paths uniting them (Bianco et al., 2007; Sherrington, 2010). In a multi-

layer network approach (Boccaletti et al., 2014; Kivelä et al., 2014) to

brain activity (Buldú & Papo, 2018), the relevant space may be the fre-

quency domain (Brookes et al., 2016; Buldú & Porter, 2018; Guillon

et al., 2017). In this approach, network nodes are identified with signal

frequency bands, and edges with their particular relationship,

reflecting the frequency-specific aspect of long-range interactions

associated with cognitive function (Siegel, Donner, & Engel, 2012).

Finally, the network structure need not be isomorphic to the anatomi-

cal structure (Papo, Zanin, & Buldú, 2014; Papo, Zanin, Pineda, et al.,

2014). The space may for instance be of a more abstract nature, for

example, the space of pathological features of a given disease or of

the relationships between different diseases (Borsboom & Cramer,
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2013; Zanin et al., 2014). This would reflect the fact that the relevant

space may qualitatively differ, depending on the goals of a given

research, which could range from simply finding differences between

conditions to modelling brain activity.

3.2 | Space partitioning

Nodes are the basic objects of a network structure and constitute the

microscopic scale of network analysis. Network theory prescribes

nothing as to their properties other than their pointwise nature.

Defining nodes from dynamical brain imaging data implies par-

titioning the space, quotienting it by a given property and identifying

the open sets of the topology thus induced with discrete points. This

is achieved through a complex renormalization process which involves

a number of discretionary choices to define the following partially

interrelated properties:

1. General construction criteria/principles. These may include anatomy-

based rules, resorting for instance to available atlases, or

dynamics-based ones. The various methods differ in the stage at

which function enters the picture.

One class of methods, referred to as data-driven in the remainder

of this article, tries to commit as little as possible to prior theory,

to let function emerge from the dynamics. The maximally non-

committal possibility would involve a one-to-one map to the

microscopic scales induced by the brain recording device's preci-

sion. For non-invasive system-level electrophysiological tech-

niques, this ground partition could prima facie coincide with the

sensor space and the main issue is how well sensors sample the

underlying dynamical system. Working on a source reconstructed

space would allow far more reliable interpretations in terms of

activity in anatomically defined brain regions, however both the

accuracy of the inverse model and the partition of the source

points affects analysis outcomes (Palva et al., 2018), and tend to

limit the size of the reconstructable network. In fMRI, voxels

induce a partition of the anatomical space and the main issue is

finding a functionally meaningful covering of this ground partition.

Another class of methods, a priori atlases, uses prior knowledge,

for example, anatomical or histological landmarks, to define parti-

tions of the anatomical space, taking into account the disordered

nature of the functional space, the general idea being to directly

carve functionally meaningful parcellations. Here, the problem lies

in the complex anatomy-dynamics-function relationship.

2. Membership rules, for example, topographical localization in the

anatomical space or statistical criteria, as in clustering methods

(Jain, Murty, & Flynn, 1999) directly reflect the chosen reconstruc-

tion principles.

3. Space partition rules, for example, partitioning stricto sensu, fuzzy

(Simas & Rocha, 2015) or overlapping (Palla, Derényi, Farkas, &

Vicsek, 2005) parcellations, or size rules, enforcing in different

ways separation on the relevant space. Furthermore, space parti-

tions need not be time-invariant and nodes may be time-varying

entities in the space in which they are defined; for instance, nodes

could be spatially non-stationary in the anatomical space

(cf. Section 3.4.3).

4. Geometric or topological metarules. Typically, parcellating the ana-

tomical space involves forming macronodes, called regions of

interest (ROIs). In this case, other important properties such as

locality, compactness and connectedness in the anatomical space

are often required. These properties are motivated by a classical

anatomy-to-function projection, but also by the need to perform

operations in the relevant space, such as comparing different

parts of the space (cf. Section 3.3.1). A well-behaved space would

for instance permit using the powerful tools of calculus and dif-

ferential geometry, and handling scalar or vector fields allowing

operations such as transport within the underlying manifold.

Relaxing these properties may imply allowing the emergence of

non-trivial properties of the underlying space, and would require

tools for example, from computational topology (Robinson,

2013a) capable of handling such systems. This would also help

conceiving of observed brain dynamics in terms of a function

space (Papo, 2019) and therefore a more flexible and intuitive

way of representing brain function.

Independent of the exact criteria applied to reduce the number of

nodes in the transition from voxel or source-point level to the level

of ROIs, the process involves delineating functionally separate brain

units, a task that goes under the name of parcellation (Stanley et al.,

2013). As a basic requirement, a parcellation should minimize the

amount of information lost in the transition from voxels or source

points to ROIs. To this end, ROIs must be functionally homogeneous, or

in other words, comprise voxels or source points similar enough to be

presented with a single ROI time series (Stanley et al., 2013). Func-

tional homogeneity can be measured as the similarity of, for example,

voxel or source point time series (Göttlich et al., 2013; Korhonen,

Saarimäki, Glerean, Sams, & Saramäki, 2017; Ryyppö, Glerean,

Brattico, Saramäki, & Korhonen, 2018; Stanley et al., 2013), voxel or

source point connectivity profiles (Craddock, James, Holzheimer,

Hu, & Mayberg, 2012; Gordon et al., 2016), general linear model

parameters describing voxel activation (Thirion et al., 2006), or the

observed activity z scores (Schaefer et al., 2017). The selection of

the appropriate measure of functional homogeneity depends on how

ROI time series are observed (cf. “Renormalization of ROIs' internal

properties” section below).

In addition to functional homogeneity, the goodness of a

parcellation can be evaluated in terms of agreement with brain micro-

structure (cytoarchitecture and myelination), performance in simple

network-based classification tasks (e.g., gender classification), and in

the case of data-driven parcellations (cf. “A priori atlases or data-

driven parcellations?” section below) also reproducibility, that is, the

ability to produce similar ROIs from different datasets of the same

subject (Arslan et al., 2018).

Creating a parcellation optimal in all these measures is challenging

(Arslan et al., 2018). Therefore, what parcellation scheme to adopt

hinges on the studies' general purpose. For instance, if the purpose is
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characterizing brain function or modelling brain activity, then nodes

should closely reflect the properties that one intends to model. How-

ever, network analysis may simply be used as a convenient tool to

achieve less ambitious goals though often of primary importance, such

as discriminating between populations or conditions along some

feature.

3.2.1 | Defining ROIs

Motivation for using ROIs

A typical whole-brain fMRI protocol is associated with �106 voxels,

while in MEG/EEG, when source reconstruction is applied, the data

collected by some hundreds of sensors are typically inverse modelled

as time series of �106 source points. As described above

(cf. Section 3.2), these voxels or source points may appear as natural

node candidates for functional brain network analysis. However, often

network nodes depict larger spatially continuous clusters of voxels or

source points, referred to as ROIs. The appropriate definition of ROIs

is equally important for analysis of fMRI and source-modelled MEG

and EEG data. Often, the same ROI definition approaches can be used

for analysing both imaging modalities, in particular if the MEG or EEG

source reconstruction is based on anatomical information from MRI

(Cottereau, Ales, & Norcia, 2015). Instead, the problem of ROI defini-

tion is not relevant for sensor-space MEG and EEG analysis, where

network nodes naturally depict the measurement sensors.

There are several reasons for using ROIs as network nodes. The

most important is dimensionality reduction: the large amount of nodes

may lead to a noisy adjacency matrix, in particular since the signal-to-

noise ratio (SNR) of voxel and source point time series is often not

particularly high (de Reus & van den Heuvel, 2013; Zalesky, Fornito,

Hardling, et al., 2010). In general, interpreting relations or even pro-

viding a graphical representation may prove arduous for the voxel and

source-point-level networks (Papo, Buldú, Boccaletti, & Bullmore,

2014). Besides, the large number of nodes in the voxel and source-

point-level networks increases the computational cost of obtaining

higher-order topological properties. Furthermore, cognitive functions

are known to cover cortical areas larger than single voxels or source

points (Shen, Tokoglu, Papademetris, & Constable, 2013; Wig et al.,

2011). Therefore, outcomes of ROI-level analysis may be easier to

interpret in the neurophysiological context than those of voxel or

source-point level ones.

Unlike nodes of many other networks, ROIs are not spatially

pointwise. Consequently, their reconstruction involves defining both

boundaries (cf. “Renormalization of ROI boundaries” section below)

and internal properties, which determine the way each of these

regions interacts with other ones (cf. “Renormalization of ROI's inter-

nal properties” section below). The latter introduces an intrinsic rela-

tionship between node and edge definition.

A priori atlases or data-driven parcellations?

The lack of a standard method for brain parcellation into regions

(Eickhoff, Thirion, Varoquaux, & Bzdok, 2015) has led to a wide

variety of definitions of functional brain network nodes (Zalesky, For-

nito, Hardling, et al., 2010).

From a methodological viewpoint, the various ROI definition

methods can be divided into two categories. Most parcellation tech-

niques are based on mapping a priori atlases (e.g., Desikan et al.,

2006; Fan et al., 2016; Fischl et al., 2004; Power et al., 2011), defined

in terms of, for example, anatomy or function, onto the subject's brain.

On the other hand, data-driven techniques parcellate the brain using

the features of the present data (Honnorat et al., 2015; Parisot,

Arslan, Passerat-Palmbach, Wells, & Rueckert, 2016).

Brain functions range from highly localized to highly extended

(Robinson, 2013b). The atlas approaches are based on the assumption

that a relatively small number of localized ROIs, representing the

underlying dominant modes, can accurately capture distributed brain

dynamics (Robinson, 2013b). However, this assumption is not

guaranteed to hold, and checking its validity with experimental data is

hard. Indeed, data-driven parcellations outperform a priori atlases in

terms of functional homogeneity (Craddock et al., 2012; Gordon et al.,

2016) and amount of information maintained in the transition from

voxels to ROIs (Thirion, Varoquaux, Dohmatob, & Poline, 2014).

Besides, data-driven parcellations yield higher prediction accuracy in

the classification of fMRI data collected during different tasks (Sala-

Lloch, Smith, Woolrich, & Duff, 2019; Shirer, Ryali, Rykhlevskaia,

Menon, & Greicius, 2012) or from different subject cohorts, for exam-

ple, patients and healthy control subjects (Dadi et al., 2019). Despite

the evidence supporting data-driven parcellations, a priori atlases are

still commonly used, since they are easy to apply and may allow more

straightforward interpretation of results than the data-driven

approaches.

From a conceptual viewpoint, it is interesting to compare how

these methods differ in the way they allow function to emerge

(cf. Section 2.1.1). These two methods, which belong to two qualita-

tively different approaches, respectively theory- and data-driven, dif-

fer in the space used to parameterize brain activity. Atlas-based

approaches use a local projection of function on anatomy, whereas

data-driven approaches typically use bare dynamics. Thus, the former

approach already contains a parcellation of the space onto which the

dynamics is defined. What is studied is an ensemble of oscillators

interacting according to the coupling scheme imposed by the anatomi-

cal network (Cabral et al., 2011; Deco, Jirsa, & McIntosh, 2011). Inter-

estingly, function features both as an a priori ingredient of the space

in which dynamics takes place and as a subset of the associated

space which emerges from network dynamics at appropriate coupling

values (Pillai & Jirsa, 2017). In data-driven approaches, parcellations,

and therefore ultimately function both emerge from dynamics. How-

ever, data-driven approaches may in fact contain geometrical and

topological constraints on how brain function is projected onto brain

anatomy (cf. Sections 3.2 and “Renormalization of ROI boundaries”).
Ultimately this may contribute to reducing differences in the

parcellations produced by the two methods.

Furthermore, while in the former method the parameterizing

space is static by construction, in the latter it can potentially by time-

varying. However, as the time axis is collapsed, the two approaches
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lose one of the dimensions in which they differ. These factors help

explaining why, although the difference between atlases and data-

driven approaches may look fundamental, the two methods may yield

overlapping results, under some conditions. Many parcellation strate-

gies first introduced as data-driven ones have led to static sets of

ROIs that are used as a priori atlases (e.g., Craddock et al., 2012;

Schaefer et al., 2017; Shen et al., 2013). Such an approach obviously

saves time and computational power. On the other hand, there is no

reason to assume that the accuracy of a parcellation strategy would

remain intact if it is used as an atlas instead of a data-driven approach.

Renormalization of ROI boundaries

In the following sections, we review parcellation strategies grouped

by the brain features they make use of and the ROI properties they

aim to optimize. Some of these strategies produce by definition a

priori atlases while others can be both used to define atlases and

applied as data-driven techniques. Most of the techniques can be

applied to both functional neuroimaging and electrophysiological

recordings.

Microstructural parcellations. Parcellating the brain based on cell-level

microstructure has a long tradition, tracing back to the seminal work

of Brodmann on brain cytoarchitecture (Brodmann, 1909) and Vogt

and Vogt (1919) on myeloarchitecture. These parcellation strategies

are based on the diversity of cell types in the brain: different cells are

assumed to specialize on different tasks, and boundaries of function-

ally homogeneous ROIs should therefore follow the boundaries

between different cell types. The first microstructural atlases were

defined in 2D and excluding the intrasulcular surface, which means

that before using these areas as network nodes, they need to be

translated to a 3D space (Zilles & Amunts, 2010). The best-known

example of such translation is the Talairach–Tournoux atlas, a 3D gen-

eralization of the Brodmann areas (Talairach & Tournoux, 1988). Some

Brodmann areas are still commonly used as ROIs in both fMRI and

MEG and EEG analysis, and they are also used as a naming reference

for creating new parcellations.

The early microstructural parcellations were based on light

microscopy studies and carried no reference to anatomical landmarks

of the brain, while the modern approaches combine cell-level staining

methods with large-scale structural neuroimaging (Amunts & Zilles,

2015). For example, Ding et al. (2016) applied Nissl staining and NFP

and PV immunolabelling, together with MRI and diffusion weighted

imaging, to label 862 grey and white matter structures in the brain of

a 34-year-old female. The JuBrain atlas (Amunts, Schleicher, & Zilles,

2007; Caspers, Eickhoff, Zilles, & Amunts, 2013) combines cell

staining with macroanatomical landmarks to create a probabilistic

parcellation or, in other words, a set of maps telling for each voxel the

probability to belong to each of the 106 regions of the atlas. The

Julich–Brain project (Amunts, Mohlberg, Bluday, & Zilles, 2020) com-

bines probabilistic cytoarchitectural maps from different sub-studies;

these maps are obtained with modified Merker staining and anatomi-

cal information from MRI using post-mortem data of 10 subjects

selected from a 23-subject pool. The Julich–Brain atlas is available as

maximum probability maps, where each voxel is assigned to the ROI it

has the highest probability to belong to (Eickhoff et al., 2005;

Eickhoff, Heim, Zilles, & Amunts, 2006), as well as in probabilistic

maps of individual ROIs that allow more detailed, distribution-based

localization of brain activation (Eickhoff et al., 2007). At the moment,

the Julich–Brain atlas contains 120 areas per hemisphere, covering

around 80% of the cortical volume; however, the atlas is continuously

updated with new areas as new sub-studies are published (Amunts

et al., 2020).

Microstructure-based parcellation strategies rely on post mortem

data, which obviously limits their use to construction of a priori

defined atlases only. Furthermore, the availability of such data limits

the number of brains used for the microstructure-based parcellation

strategies; the atlases may even be based on a single brain, and their

generalizability to other subject populations is rarely addressed.

Anatomical parcellations. In many commonly-used parcellation strate-

gies, the criteria for defining a cortical area are based on structure–

function associations at the level of cortical areas in the anatomical

space (Amunts & Zilles, 2015). Anatomical parcellation strategies use

data collected with non-invasive imaging methods, typically structural

MRI. Therefore, these parcellations may use a larger number of sub-

jects than the microstructural ones, yielding improved generalizability.

However, the anatomical parcellation processes are typically time-

consuming and require significant amounts of manual work, which

means that these parcellation strategies are rarely used in a data-

driven way.

Anatomical ROIs are commonly used as nodes of functional brain

networks constructed from both fMRI and source-modelled MEG and

EEG data. The probably most commonly used one is the automated

anatomical labeling (AAL) atlas (Rolls, Huang, Lin, Feng, & Joliot, 2020;

Rolls, Joliot, & Tzourio-Mazoyer, 2015; Tzourio-Mazoyer et al., 2002),

whose ROIs are obtained by manually labelling a high-resolution

single-subject MR image based on the main sulci. The latest version of

AAL, AAL3 (Rolls et al., 2020) contains 166 ROIs. Another commonly

used anatomical parcellation, the Desikan–Killiany atlas (Desikan

et al., 2006) was constructed by manually labelling the cortex of

40 subjects of varying age and healthy status into 34 areas per hemi-

sphere and turning these areas into a cortical atlas using a probabilistic

algorithm. Besides being used as an atlas of its own, the Desikan–

Killiany atlas forms a part of the probabilistic Harvard–Oxford

(HO) parcellation that combines multiple atlases (Desikan et al., 2006;

Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006). In HO,

each voxel is given, separately, the probability to belong to each of

the 48 cortical and 21 subcortical ROIs.

HO, Desikan–Killiany, and AAL all offer an atlas for assigning ROI

labels to voxels after transforming the data from subjects' native

space to some standard space. An opposite approach is used by, for

example, the Automated Nonlinear Image Matching and Anatomical

Labelling (ANIMAL) parcellation (Collins, Holmes, Peters, & Evans,

1995) and the Destrieux parcellation (Destrieux, Fischl, Dale, &

Halgren, 2010; Fischl et al., 2004), also known as the FreeSurfer

parcellation after the commonly used FreeSurfer analysis software

3688 KORHONEN ET AL.



(Fischl, 2012). In these parcellations, the a priori atlas of ROI labels is

first transformed to the native space and voxels are assigned with ROI

labels before transformation to the standard space. ANIMAL com-

prises an a priori atlas observed from the averaged MR images of

305 subjects, an iterative, hierarchical multiscale algorithm for map-

ping the atlas to native space, and a linear transformation from the

native space back to a standard space for group-level analysis. In

the Destrieux parcellation, the atlas consists of voxels' probabilities of

belonging to certain ROIs (74 per hemisphere), given the anatomical

location and ROI labels of neighbouring voxels, and the transforma-

tion from standard to native space is done using anisotropic non-

stationary Markov random fields (MRFs).

The size of ROIs created by anatomical parcellations tends to vary

widely. While this variation may be a genuine property of the brain

(Wig et al., 2011), it may also bias the outcome of network analysis,

depending on how the network edges are defined. To eliminate this

bias, some studies have further fine-tuned anatomical ROIs by split-

ting them to sub-areas along the axis with the largest variance in voxel

or source point location (Palva, Kulashekhar, Hämäläinen, & Palva,

2011; Palva, Monto, Kulashekhar, & Palva, 2010).

In microstructural and anatomical parcellation methods, Ψ is

mapped onto the anatomical Euclidean space, inheriting the functional

partition defined on this space based on average anatomical structure,

physiology, or cytoarchitecture (Brodmann, 1909). Both Ψ and Φ are

then assumed to have modular structure (Fodor, 1983), the underlying

assumption being that information is (locally) compact in the anatomi-

cal support. However, higher-level cognitive function, for example,

executive functions, reasoning or thinking, are associated with com-

plex spatio-temporal organization and correspondingly complex phe-

nomenology (Papo, 2015), and emerging function is spatially and

temporally non-local (Kozma & Freeman, 2016). These functions are

typically supported by redundant and degenerate5 systems wherein a

number of brain structures can generate functionally equivalent

behaviour (Price & Friston, 2002). Φ may therefore turn out to be too

low-dimensional to capture the complexity of both Φ and Ψ, and this

severely limits the ability to account for the complex phenomenology

of executive function and its disruption in pathology

(cf. Section 2.1.1). Degeneracy may reflect a higher dimensional

input–output space and combinatorial complexity (Brezina, 2010;

Brezina & Weiss, 1997) but may also be a purely dynamical effect of a

system with non-linear and history-dependent interactions

(cf. “Structure of the functional space” section above).

Functional parcellations. In functional parcellation approaches, ROIs

are defined as functional equivalence classes, that is, as groups of

voxels or source points with similar functional profile. The definition

of these parcellations depends on recording techniques and the tem-

poral scales of brain activity. For fast sensory processes, which typi-

cally have a characteristic duration and a topographically more

stereotyped identity, functional ROIs can be defined by stimulus prop-

erties and response functions, for example, the dynamical range, that

is, the range of stimulus intensities resulting in distinguishable neural

responses, or the dynamical repertoire, that is, the number of

distinguishable responses. On the other hand, for processes lacking a

characteristic duration and stereotypical topography such as thinking

or reasoning (Papo, 2015), defining functional parcellations is concep-

tually and technically arduous. This approach suffers from some of the

issues encountered by anatomy-based methods (cf. “Anatomical

parcellations” section above), namely a spatially local and time-

invariant vision of brain function, an approximation which may be use-

ful in some cases but untenable in others, and further illustrates a

degree of circularity in the definition of function in network neurosci-

ence (cf. Section 2.2.1).

Historically, the term ROI has referred to a part of the brain, typi-

cally a set of fMRI voxels, subject to a specific interest because of its

observed activation during a certain task. This is still the standard way

to define functional ROIs: ROI centroids are defined as the peak coor-

dinates of activation maps related to a task or a set of tasks and the

ROI is formed by setting a relatively small sphere or cube around

the centroid (Power et al., 2011; Stanley et al., 2013; Wang et al.,

2011). This approach produces ROIs of at least approximately

uniform size.

Typically, the spherical functional ROIs cover only a part, even as

little as 1%, of grey matter (Stanley et al., 2013), which obviously leads

to losing information from the excluded voxels. Furthermore,

activation-based parcellations are limited by the fact that the tasks

used in the activation mapping scans obviously cover only a minor

part of the brain's functional repertoire (Eickhoff et al., 2018).

Using the parcellations based on activation maps in a data-driven

way requires additional activation mapping scans. Therefore, these

parcellations are typically used as a priori atlases and cannot account

for individual variation between subjects. The parcellation of

Blumensath et al. (2013) addresses this problem by maximizing the

similarity of voxel time series inside ROIs instead of localizing activity

peaks. The approach is twofold: first, small parcels are grown around

numerous (up to several thousands) seed voxels. Next, hierarchical

clustering is used to combine these parcels into final ROIs; cutting the

clustering tree at different stages produces different numbers

of ROIs.

Another commonly used functional parcellation approach, espe-

cially in fMRI analysis, is the independent component analysis (ICA)

(Calhoun, Liu, & Adali, 2009). The numerous ICA approaches can be

divided into two domains: the temporal ICA (tICA) (Biswal & Ulmer,

1999; Smith et al., 2012) and the spatial ICA (sICA) (Calhoun, Liu, &

Adali, 2009; McKeown et al., 1998). tICA identifies temporally inde-

pendent signal components, possibly originating from spatially over-

lapping areas. These components are, by definition, not correlated,

which precludes their use as network nodes (Pervaiz, Vidaurre,

Woolrich, & Smith, 2020). sICA, on the other hand, divides the data

into a set of spatially independent components, that is, components

originating from non-overlapping voxels. For group-level analysis,

there are several approaches that first perform group sICA and then

register the detected components back to each subject's native space

(Calhoun, Liu, & Adali, 2009). Despite the spatial independence

requirement of sICA, temporal dependencies between the compo-

nents are possible, allowing definition of network edges as temporal
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similarity between the sICA components. The spatial independence

requirement ensures that the sICA-based nodes do not overlap; how-

ever, depending on the selected number of components, the nodes

may be spatially discontinuous.

The ICA-based parcellation approaches search for components of

brain activity that are independent either in time or in space. How-

ever, the brain activity components are unlikely to be fully indepen-

dent in either domain, which questions the accuracy of ICA-based

ROIs (Harrison et al., 2015; Pervaiz et al., 2020). The PROFUMO

approach (Harrison et al., 2015) addresses this problem by dividing

the brain activity into probabilistic functional modes (PFMs) using a

Bayesian inference model. While PROFUMO maximizes the joint

independence of PFMs in space and time, there is no strict condition

for independence in either domain alone. Therefore, PFMs may over-

lap spatially and be correlated, allowing to investigate the functional

connectivity between them. Similar approaches, the Abraham, Dohm-

atob, Thirion, Samaras, and Varoquaux's (2013) and the DiFuMo

parcellation (Dadi et al., 2020), use dictionary learning to obtain soft,

mostly non-overlapping functional modes of brain activity.

Unlike many other functional and connectivity-based parcellation

approaches (see below), sICA and functional mode approaches are

rarely used for obtaining ROI atlases. Instead, they are typically

applied to construct ROIs from the present data in a truly data-driven

manner.

Functional parcellation approaches are more common in fMRI

studies than in analysis of MEG and EEG data. However, both ROIs

around activity peaks (Cottereau et al., 2015) and ICA approaches

(Chen, Ros, & Gruzelier, 2013) have been successfully applied on

source-modelled MEG and EEG.

Connectivity-based parcellations. Connectivity-based parcellations aim

to produce ROIs that contain voxels or source points with maximally

similar connectivity profiles. This approach resorts to a combination

of topological (connectivity, contiguity, compacity) and geometrical

(local continuity) criteria as a proxy for function (Varela et al., 2001),

and as means to define ROIs (cf. Sections 2.2.1 and 3.2). Note that,

while in principle allowing a certain degree of non-locality, such a prin-

ciple is mitigated by these a priori assumptions.

These parcellations can operate either at the level of single sub-

jects, producing individual ROIs, or at the group level, combining con-

nectivity observed in multiple subjects (Arslan et al., 2018).

Connectivity-based parcellation approaches may be roughly divided

into two classes: local gradient approaches and global similarity

approaches (Eickhoff et al., 2018; Schaefer et al., 2017).

The local gradient approaches detect ROI boundaries as sudden

changes in the connectivity landscape between two neighbouring

voxels (Schaefer et al., 2017). For example, the approach introduced

by Cohen et al. (2008) and further developed by Nelson et al. (2010)

creates for each of the seed points in a 3-mm grid a connectivity pro-

file similarity map compared to the rest of the seeds. An edge detec-

tion algorithm then detects the potential ROI boundaries in each of

these similarity maps. The group-level average of these boundaries

gives the probability of each voxel to be part of a ROI boundary, and

ROIs can be detected by applying a watershed algorithm on this prob-

ability map. Later, Power et al. (2011) complemented this parcellation

approach with a bunch of functionally defined ROIs to create the

Power atlas. Wig, Laumann, and Petersen (2014) and Gordon

et al. (2016) have suggested similar approaches.

The gradient approaches do not directly address the similarity of

voxel connectivity profiles, although they in practice often produce

ROIs with relatively high connectional homogeneity (Gordon et al.,

2016; Schaefer et al., 2017). Parcellation approaches based on global

connectivity similarity, on the other hand, cluster together voxels with

maximally similar connectivity profiles, independent on their spatial

location (Schaefer et al., 2017). For example, Craddock et al. (2012)

obtained ROIs using normalized cut (NCUT) spectral clustering that

maximizes similarity inside clusters and dissimilarity between clusters;

the optimization target may be either the temporal similarity of voxel

time series or the spatial similarity of their connectivity maps. Group-

level ROI atlases for a priori use, obtained from 41 subjects either by

averaging connectivity matrices before NCUT or by a second cluster-

ing round on cluster membership matrices, are available at several res-

olutions (Craddock et al., 2012). The approach of Shen et al. (Shen,

Papademetris, and Constable, 2010; Shen, Tokoglu, Papademetris,

and Constable, 2013) uses the same clustering method but addresses

the problem of group-level parcellation by a multigraph extension that

finds the optimal set of ROIs for multiple subjects at once. Also the

Shen ROIs, obtained from 79 subjects, are available as an a priori atlas

at multiple resolutions (Shen et al., 2013).

Since the parcellation approaches based on global similarity

explicitly optimize connectional homogeneity, they may produce ROIs

better suited for network nodes than those produced by the local gra-

dient approaches (Schaefer et al., 2017). However, the maximization

of global similarity does not necessarily lead to spatially continuous

ROIs (Schaefer et al., 2017). Craddock et al. (2012) solved this by

adding a continuity term to the clustering target function, while in the

Shen parcellation, the continuity requirement is implicitly included in

the multigraph approach (Shen et al., 2013).

The latest generation of connectivity-based parcellations com-

bines the local and global approaches and different features of the

data, possibly even multiple imaging modalities. The Brainnetome

atlas (Fan et al., 2016) of 210 cortical and 36 subcortical ROIs is con-

structed from the data of 40 subjects based on anatomical informa-

tion from MRI, structural connectivity from diffusion tensor imaging,

and functional activation and connectivity from fMRI during rest and

task. Glasser et al. (2016) applied a local gradient approach to detect

360 cortical and subcortical ROIs from the data of 210 subjects; the

multimodal data used in this approach included MRI to address mye-

lination and cortical thickness from MRI, task-fMRI to address activa-

tion, rest-fMRI to address functional connectivity, and the topography

of some areas, in particular the visual cortex. Schaefer et al. (2017)

combine global similarity of function (in terms of voxel time series),

local gradients of functional connectivity, and the spatial continuity

requirement into a gradient-weighted MRF model; the ROIs obtained

with this approach from the data of 1,489 subjects are available as a

priori atlases at several resolutions.
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Similarly to functional parcellations, connectivity-based

parcellation approaches are not particularly popular in MEG and EEG

studies. Due to differences in the temporal scale of imaging modali-

ties, connectivity-based a priori atlases constructed from fMRI data

may not be optimal for analysing MEG and EEG data. However, many

of the data-driven approaches are essentially network clustering

methods and can be applied on the source-point-level connectivity

matrix of MEG and EEG data to obtain connectivity-based ROIs.

Random parcellations. In addition to parcellations based on different

features of neuroimaging data, functional brain network nodes can be

defined at random. Typically, the random parcellations are used as a

reference, against which the other parcellation approaches are com-

pared (see, e.g., Craddock et al., 2012; Gordon et al., 2016). However,

Fornito, Zalesky, and Bullmore (2010) used ROIs grown around ran-

dom seeds only guided by spatial proximity to show that the size and

number of nodes affects the properties of functional brain networks.

Although random ROIs lack neurophysiological interpretation, they

have shown surprisingly high functional homogeneity (Craddock et al.,

2012; Gordon et al., 2016) and also yielded network properties com-

parable to those observed with optimized parcellation approaches

(Craddock et al., 2012).

Renormalization of ROIs' internal properties

In classic graph-theoretical analysis, nodes are considered as point-

like entities. However, unlike the nodes of theoretical graphs and

many real-life networks, ROIs are spatially extended and comprise

several lower-level units with individual dynamics. A network-

based treatment of the anatomical space partitioned into ROIs

could take a community structure or network-of-networks

approach (Gao, Li, & Havlin, 2014; Schaub, Delvenne, Rosvall, &

Lambiotte, 2017), wherein each ROI is treated as a sub-network or

as a network in its own right. The results about non-trivial connec-

tivity structure inside ROIs of anatomical and connectivity-based

parcellations (Ryyppö et al., 2018; Stanley et al., 2013) would sup-

port such an approach.

However, addressing the dimension reduction goal often requires

collapsing ROIs into equivalent point-wise nodes. The connectivity

between ROIs depends on the way the voxel or source point dynam-

ics inside ROIs are summarized or, in other words, how well ROIs'

internal structure is accounted for. However, while the importance of

properly defined ROI boundaries is already widely acknowledged, less

attention is paid on how the time series of individual voxels or source

points are combined to obtain a single ROI time series.

The by far most common approach is to obtain ROI time series as

an unweighted average of the time series of voxels or source points.

In the ideal case of functionally perfectly homogeneous ROIs, these

time series would differ from each other only in terms of independent

noise, and averaging would increase the SNR by eliminating this noise

(Stanley et al., 2013). In reality, however, in particular ROIs of a priori

atlases often show low to mediocre functional homogeneity (Göttlich

et al., 2013; Korhonen et al., 2017; Stanley et al., 2013). Therefore,

unweighted averaging often leads to losing information (Stanley et al.,

2013) and in the worst case to spuriosities in observed connectivity

(Korhonen et al., 2017).

An obvious way to decrease the loss of information in

unweighted averaging is to assign the voxel or source point time

series with weights before averaging. For example, the approach of

S. Palva et al. (2011) addresses the possible phase inhomogeneity

inside ROIs in source-reconstructed MEG/EEG data: source points on

different walls of a sulcus tend to have a phase difference of π, leading

to signal cancelation if their time series are averaged without further

consideration (Ahlfors et al., 2010; Cottereau et al., 2015). To avoid

this, S. Palva et al. (2011) first calculated the phase distribution inside

ROIs, identified the two groups of source points with different phases,

and before averaging shifted the phase of one of these groups by π

while keeping the amplitude intact. Another, also MEG/EEG-oriented

approach (Korhonen, Palva, & Palva, 2014) weighted source point

time series by their ability to retain their original dynamics in a simu-

lated MEG/EEG measurement (forward modelling) and source recon-

struction. The approach increases functional homogeneity, measured

in terms of phase synchrony, of ROIs and decreases spurious connec-

tivity between ROIs. However, because of the weight thresholding of

this approach, many source point time series get weight 0 and get

excluded from further analysis (Korhonen et al., 2014).

In studies of fMRI data, the weighted average approach has been

applied by defining the ROI time series in terms of the strongest intra-

ROI principal component analysis (PCA) components (Sato et al.,

2010; Zhou et al., 2009). In this approach, the number of components

to use remains as a free parameter; in the work of Zhou et al. and Sato

et al., the number was relatively low, typically less than 10.

As an extreme case of weighted averaging, the time series of a

single source point can be selected to represent the whole ROI. In this

approach, all but the chosen source point time series are assigned

with weight 0. For example, Hillebrand, Barnes, Bosboom, Berendse,

and Stam (2012) used as ROI time series the source point time series

with the highest signal power within the ROI, while O'Neill

et al. (2017) used the time series of ROIs' centres of mass. While this

approach avoids the possibly corrupting effects of averaging, it volun-

tarily discards the information from a vast majority of source points.

Furthermore, it does not account for the risk of the highest-power

source point being an outlier or having particularly low SNR.

In parcellation approaches based on spatially overlapping func-

tional modes (see section “Functional parcellations” above), averaging
voxel or source point time series is less straightforward. These

parcellations often require more sophisticated ways for renormalizing

ROI time series. For example, Dadi et al. (2020) obtained the time

series of their functional modes in terms of linear regression.

A separate time series renormalization step is not included in all

parcellation approaches. The sICA approaches as well as some func-

tional mode approaches define ROIs as the spatial origins of certain

signal components, and these components are obviously used as ROI

time series. In MEG/EEG analysis, time series renormalization can be

overcome also by the beamformer source reconstruction approach

(van Veen, van Drongelen, Yuchtman, & Suzuki, 1997). This

approach filters the signals of measurement sensors to detect the
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independent activity originating on a set of source points on the brain

surface; if the number of these source points is small enough and their

location is motivated by, for example, anatomy or function observed

in previous studies, the source-reconstructed signals can be directly

used as ROI time series.

3.3 | Edge identification

In addition to space parcellation, another key step in brain network

reconstruction requires identifying edges. Edges play a double role in

the network structure: on the one hand, they incorporate the struc-

ture's relational information; on the other hand, in the statistical

mechanics approach, the system's degrees of freedom are represen-

ted by the interactions, so that edges, rather than nodes constitute

the system's genuine particles, their maximum number playing the role

of the system's volume (Gabrielli, Mastrandrea, Caldarelli, &

Cimini, 2019).

Edges are usually designed to reflect essential aspects of brain

dynamics and function. Thus, in principle, edges should incorporate as

much neurophysiological detail as required by the study's purpose.

However, the neurophysiological plausibility of edge metrics is sub-

jected to a number of other constraints. Any metric operationalizing

the functional elements that edges are supposed to handle necessarily

reflects a specific angle under which brain activity is envisioned

(e.g., dynamical or information-theoretic) and is predicated upon basic

assumptions on brain dynamics and function. For instance, how infor-

mation is transported, that is, whether via modulations of mean firing

rates (Litvak, Sompolinsky, Segev, & Abeles, 2003; Shadlen &

Newsome, 1998), through temporally precise spike-timing patterns

(Abeles, 1991; Buzsaki, Llinas, Singer, Berthoz, & Christen, 1994), or

otherwise, and how it is processed at various spatial and temporal

scales of neural activity, are still poorly understood though seemingly

context-specific phenomena. To provide a mathematical characteriza-

tion of known properties, edge reconstruction has mainly drawn its

conceptual framework from nonlinear dynamics and synchronization

theory (Arenas, Díaz-Guilera, Kurths, Moreno, & Zhou, 2008;

Boccaletti, Kurths, Osipov, Valladares, & Zhou, 2002), and information

theory (Rieke, Warland, van Steveninck, & Bialek, 1999), to produce a

variety of edge metrics with various characteristics (Pereda et al.,

2005; Rubinov & Sporns, 2010). This conceptual background allows

addressing dynamics, but only somehow indirectly function. For

instance, information-based metrics would at first sight seem to

directly quantify a crucial ingredient of brain function. However, only

part of the information effectively transferred can be thought to have

a genuine functional meaning, due to both thermodynamic and infor-

mational inefficiency of neural circuitry (Sterling & Laughlin, 2015;

Still, Sivak, Bell, & Crooks, 2012). Moreover, understanding the func-

tional meaning of information transfer in heavily coarse-grained sig-

nals is not straightforward.

Finding an adequate mathematical representation constitutes a

further set of constraints to the physiological plausibility of connectiv-

ity metrics. Each metric comes with its own set of characteristics and

shortcomings. For instance, metrics may quantify statistical

dependency (often referred to as functional connectivity6) or causal

interactions (effective connectivity) (Friston, 1994; Horwitz, 2003);

may be linear or nonlinear (Paluš, Albrecht, & Dvoř�ak, 1993). Some

connectivity metrics may be symmetric, while others, for example,

Granger causality (Ding, Chen, & Bressler, 2006; Granger, 1969;

Hlav�ačkov�a-Schindler, Paluš, Vejmelka, & Bhattacharya, 2007), con-

nectivity estimates from graph learning algorithms (e.g., Sun et al.,

2012), or transfer entropy (Schreiber, 2000; Vicente, Wibral, Lindner, &

Pipa, 2011) are directed and asymmetric. Measures may or may not

distinguish between direct and indirect connectivity (Smith et al.,

2011; Vejmelka & Paluš, 2008). Carefully selected matrix regular-

izators may embed assumptions about network structure, for example,

sparsity or modularity, into estimation of coherence-based connectiv-

ity metrics (Qiao et al., 2016). Finally, given the role of oscillations in

brain activity (Başar, 2012; Fries, 2005; Schnitzler & Gross, 2005;

Varela et al., 2001), connectivity is sometimes evaluated in a

frequency-specific way both in EEG and fMRI data analysis (Brookes

et al., 2011; Hipp & Siegel, 2015), and corresponding frequency-

specific networks at rest (Boersma et al., 2011; Hipp, Hawellek, Cor-

betta, Siegel, & Engel, 2012; Qian et al., 2015) and associated with the

execution of cognitive tasks (Wu, Zhang, Ding, Li, & Zhou, 2013), can

be reconstructed from electrophysiological data, which are inherently

broadband, but also from relatively narrow-band BOLD fMRI record-

ings (Thompson & Fransson, 2015).

Statistical limitations reducing a given metrics' ability to track

dynamics and function may also be specific to each connectivity met-

ric. For instance, the minimum time-interval required to estimate a

simple linear correlation is much shorter than the corresponding one

for Granger causality. More generally, complex mutual relationships

are grossly simplified and most metrics do not allow accounting for

functionally meaningful neurophysiological properties such as feed-

back loops, or inhibition.

Other limitations may stem from the edge reconstruction process

itself, which may not take into account key available aspects of brain

dynamics. For instance, synaptic pathways' finite conduction velocity

and paths' varying length, give rise to dynamical phenomena such as

partial synchrony (Hoppensteadt & Izhikevich, 1997), and poly-

synchrony (Stewart, Golubitsky, & Pivato, 2003), wherein some neu-

rons oscillate synchronously while others do not, but also

asynchronous behaviour, including polychrony, that is, time-locked

but asynchronous firing patterns (Izhikevich, 2006), and traveling

waves (Muller, Chavane, Reynolds, & Sejnowski, 2018). To account

for these phenomena, time lags should be incorporated into the

dynamics at any scale of the analysis. In practice, though, recon-

struction often turns out to be independent of system's characteris-

tic time scales and at zero-lag, producing dynamically spurious

edges and ultimately distorting the temporal complexity of function.

Moreover, if connectivity metrics reflect interregional communica-

tion and information transport modes, they should be stationary nei-

ther in time nor in the anatomical space. The indication would then

be to reconstruct with region-specific, possibly time-varying con-

nectivity metrics (Malagarriga, Villa, García-Ojalvo, & Pons, 2017;
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Zanin, Pereda, et al., 2021) and time-lags (Novelli, Wollstadt,

Mediano, Wibral, & Lizier, 2019).

Brain recording devices' characteristics, for example, the sources

of noise and artefacts of the device (cf. Section 3.5.2) or the physio-

logical signal's characteristic used by each technique to characterize

brain activity, may constitute further constraints to the physiological

meaningfulness of reconstructed edges. For instance, fMRI's poor

temporal resolution severely constrains the range of possible metrics,

so that functional connectivity is typically estimated through the Pear-

son correlation between brain regions. It also forces evaluating met-

rics over a time-window which may span the whole available epoch

(Bastos & Schoffelen, 2016), spuriously compressing dynamics

(cf. Section 3.5).

On the other hand, sophisticated edge identification can help to

compensate for noise in network structure. In MEG and EEG analyses,

a common source of such noise is signal mixing, that is, false edges

caused by the fact that the dynamics of each source are captured by

multiple measurement sensors (for details, cf. Section 3.5.2). A signifi-

cant part of the false edges created by signal mixing are zero phase

lag connections (Palva et al., 2018) and can therefore be eliminated by

using connectivity metrics insensitive to zero phase lag connectivity,

such as the imaginary part of coherence (Nolte et al., 2004), phase lag

index (Stam et al., 2007), imaginary phase locking value (Palva & Palva,

2012), weighted phase lag index (Vinck et al., 2011), or orthogonalized

correlation coefficient (Hipp et al., 2012; Brookes et al., 2012). As a

downside, using these metrics means losing information about the

true zero phase lag connections as well.

Overall, the particular metric that is being used results from a

combination of functional assumptions, available mathematical tools,

and constraints associated with the recording technique, and the spe-

cific goals of a given study. An important illustration of this statement

is represented by the prominence of bivariate connectivity measures

both in functional brain imaging (Bastos & Schoffelen, 2016) and elec-

trophysiology (Lehnertz, 2011; Pereda et al., 2005), though multivari-

ate ones have also been proposed (Lizier, Heinzle, Horstmann,

Haynes, & Prokopenko, 2011). Whether pairwise connectivity reflects

a true brain operating mode is all but a well-established fact. The

rationale for this choice can at least partially be traced to extra-

physiological factors, ranging from a long-established conceptual

framework dating back to the very onset of neuropsychological

modelling, to early studies suggesting the preponderance of pairwise

connectivity in neural activity (Schneidman, Berry, Segev, & Bialek,

2006), but also availability of analytical tools. However, even at short

time scales, peaks in pairwise correlations may well be non-local net-

work effects involving other neuronal populations and feeling the

influence of external fields (Roudi, Dunn, & Hertz, 2015).

3.3.1 | Effects of edge metrics on network
properties

The choice of a particular metric or class of metrics may potentially

induce a corresponding change in properties of the associated

network structure. For instance, the relation used to identify edges

may affect the reconstructed network's topological and metric proper-

ties (Zanin, Pereda, et al., 2021) (cf. Section 3.6.1). Furthermore, while

the choice of the embedding space is essentially a discretionary

choice unrelated to network analysis (cf. Section 3.3), the edge metric

determines the nature of the attractor space7 and the set of opera-

tions allowed on it8 by inducing a specific matrix, hence a particular

space with its geometrical properties (Amari & Nagaoka, 2007). For

example, normalized covariance matrices are associated with positive

definite matrices, while the Pearson's correlation is associated with

positive semi-definite matrices. The space induced by these matrices

may not be a vector space, so that some operations (e.g., subtractions)

may not be well-defined, and equipping it with a distance may be

arduous (Bonnabel & Sepulchre, 2010; Lenglet, Rousson, Deriche, &

Faugeras, 2006; Pennec, Fillard, & Ayache, 2006). For instance, when

directly applied to covariance matrices, classical matrix computations

may yield inaccurate results and numerical artefacts (Arsigny, Fillard,

Pennec, & Ayache, 2007). While Whitney's embedding theorem

(Whitney, 1936) ensures that an n-dimensional manifold can at least

be embedded into a 2n-dimensional Euclidean space, affording an

extrinsic view of the true space, an intrinsic view independent of the

embedding space requires a different geometry (Pennec, 2006). One

possibility consists in representing the underlying space as a Riemann-

ian manifold, that is, a manifold M equipped with metrics on the tan-

gent spaces which vary smoothly from point to point (Amari &

Nagaoka, 2007). The structure of a Riemannian manifold can be speci-

fied by a Riemannian metric, that is, a continuous collection of scalar

products on the tangent bundle T*M at each point of M, which is

invariant under affine transformations (cf. Figure 3). This allows exten-

ding Euclidean properties to the manifold. Importantly, this also allows

using classification or prediction algorithms, which cannot act in a Rie-

mannian manifold (Krajsek, Menzel, & Scharr, 2016; Pervaiz

et al., 2020).

F IGURE 3 Manifold M and the corresponding tangent space

Tp*M at point p. At each point p of M, there is one and only one
tangent vector, and a scalar product can be defined in the associated
tangent space T*M. If M is the space of positive definite matrices,
T*M is identified with the Euclidean space of symmetric matrices. The
M 7! T*M homomorphism allows replacing the Riemannian metric in
M with the Euclidean metric in T*M, and treating the projected
connectivity matrices in the tangent space as Euclidean objects
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A similar structure arises naturally when considering diffusion

tensor images, in which each voxel is associated with the symmetric

positive definite matrix induced by the covariance tensor image

(Lenglet et al., 2006; Pennec et al., 2006), or when aggregating data

from different subjects of a given experiment, which induce a mani-

fold where each point is the dynamic covariance matrix (Ng,

Varoquaux, Poline, Greicius, & Thirion, 2015; Varoquaux, Baronnet,

Kleinschmidt, Fillard, & Thirion, 2010), as well as in genuine functional

methods such as Hidden Markov models (HMMs; cf. Sections 2.1.1

and 3.4.1).

Equipped with a Riemannian geometry, the space has in principle

additional structure with respect to a topological manifold. On the

one hand, Riemannian tangent space parameterization allows preserv-

ing the geometry of functional connectivity. This has a clear meaning

when analysing the brain's anatomical structure, as the tangent space

parameterization preserves the geometry of anatomy-embedded

functional connectivity, but its meaning is less straightforward in the

functional space, which is not guaranteed to be a smooth manifold

even when the dynamical space is (cf. Section 2.1.1). On the other

hand, for a given Riemannian space, a further discretionary element is

given by the choice of a distance among the many available ones that

can be defined on the space of covariance matrices. Each of these dis-

tances has specific properties (Arsigny et al., 2007; Yger, Berar, &

Lotte, 2016), and relative task-specific performance level, some per-

forming better in terms of classification accuracy, while others are

better in terms of computational efficiency (Chevallier, Kalunga, Bar-

thélemy, & Monacelli, 2021).

Finally, different edge metrics may also induce different physics

associated with the system's network structure. For instance symmet-

ric connectivity readily accounts for equilibrium systems, whereas,

asymmetric coupling matrices can be thought of as out-of-equilibrium

systems with breakdown of detailed balance. In this perspective,

choices associated with edges and the way these are constructed, for

example, hybrid reconstruction with space- and time-varying proper-

ties, represent not only a technical but also a theoretical challenge, in

that they induce spaces with non-trivial geometries and

corresponding physics.

3.3.2 | Classical versus Bayesian reconstruction

The standard way of identifying edges in functional networks is a

frequentist one, in that a single value (e.g., the correlation coefficient

or any other synchronization metric) is extracted from each pair of

nodes and encoded as the weight of the corresponding edge. This

approach, besides creating problems related with the pruning of the

network, as we will see below, further has another disadvantage:

the uncertainty about the edge is lost. In other words, any metric can

only yield an estimation of the real connectivity strength, due to fac-

tors like the finiteness of the time series, or the presence of observa-

tional noise. The solution to this can be found in Bayesian statistics

(Bolstad & Curran, 2016). Specifically, Bayesian inference considers

data to be fixed, and the model parameters to be random, as opposed

to what frequentist inference does. Furthermore, Bayesian

inference—unlike frequentist—estimates a full probability model,

including hypothesis testing. Disregarding such uncertainty may lead

to the detection of wrong topological structures, and specifically to an

overestimation of the presence of regularities and non-trivial

(i.e., non-random) structures (Zanin, Belkoura, Gomez, Alfaro, &

Cano, 2018).

3.3.3 | Pruning and binarization

The natural result of the previous edge identification step is, in many

cases, a weighted clique: when the metric used to estimate functional

connectivity yields a value and not a statistical test, a weight is

assigned to each edge, corresponding to the detected functional

strength. Afterwards, such cliques are usually binarized, that is, the

fully connected graphs are pruned according to some rule applied to

edge weights, and unitary weights are assigned to surviving edges.

The direct analysis of the weighted cliques would in principle repre-

sent the best solution, as they codify all the available information

about the dynamics of the brain; on the other hand, any pruning pro-

cedure inevitably deletes some information. Still, network binarization

entails some important advantages.

Brain networks are expected to be naturally sparse, as increasing

the connectivity implies a higher physiological cost, although the true

anatomical and, as a consequence, dynamic connectivity density might

be grossly underestimated (Wang & Kennedy, 2016). Secondly, most

of the topological metrics available in network theory have originally

been developed for unweighted graphs, to only subsequently be

adapted to weighted ones; therefore, a larger set of (better validated)

tools is available to the researcher. Furthermore, edges with small

connectivity values may just be the result of statistical fluctuations or

of noise, such that deleting them can improve the understanding of

the system, and in some cases even avoid biases (van Wijk, Stam, &

Daffertshofer, 2010). A pruning can also help deleting indirect, second

order correlations, which do not represent direct dynamical relation-

ships (Vakorin, Krakovska, & McIntosh, 2009). Lastly, network analysis

benefits from their graphical representation, which is meaningful only

in the case of sparse structures.

Two main alternatives for network binarization are available,

respectively called absolute and proportional thresholding. In the for-

mer case, all edges whose strength exceeds an absolute threshold τ

are retained, while all the others are deleted (V�aša, Bullmore, & Patel,

2018). This usually yields networks with a different number of edges

across subjects, and most importantly, across groups (e.g., between

control subjects and patients). This may lead to statistically significant

differences in network metrics, even when these are not due to

underlying disease-related topological differences. As such, this

approach has been suggested to be less appropriate for case–control

studies (Nichols et al., 2017). The second approach partly overcomes

this issue, by including in each network a fixed number of the stron-

gest edges, hence the name of proportional (van den Heuvel et al.,

2017); note that this approach is often referred to in literature as an
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analysis in which the density (Jalili, 2016) or network cost (Achard &

Bullmore, 2007) is kept constant.

Thresholds are important tools for revealing a system's structure.

For instance, if the underlying space can be thought of as a differential

manifold, its topology can be defined by analysing the level sets of a

function defined on this manifold (Milnor, 1963). Changes in the mani-

fold topology can be related to the critical points of a sufficiently gen-

eral function; for instance, under certain hypotheses, phase

transitions can be related to changes in the topology of the level sets

of the system's Hamiltonian (Caiani, Casetti, Clementi, & Pettini,

1997; Casetti, Pettini, & Cohen, 2000).

The dynamical and functional structure of the attractor underly-

ing a given network representation should ideally be robust with

respect to the way the network is built. However, each threshold type

can be thought of as a particular cut into the relevant space, highlight-

ing a specific set of properties of the underlying system, and is associ-

ated with its own renormalization flow, percolation threshold and, as

a consequence, phenomenological properties. Suppose a given condi-

tion, for example, a pathology, only involves a change in dynamical

coupling strength, but no change in overall network topology. Then,

an absolute threshold may spuriously indicate that a given condition

modifies topology when it actually does not. Conversely, a propor-

tional threshold highlights the structure of networks of strongest

edges, independent of the magnitude of the coupling strength. How-

ever, if genuine function is a non-linear function of coupling strength,

proportional thresholding may incorrectly consider functionally

inequivalent networks as indistinguishable. Another aspect that is

worth considering when using thresholds is that the optimum fraction

of actual edges needed to characterize the system may be condition-

specific and this may correspond to a significantly higher percentage

of edges then the one typically retained in the analysis (Zanin et al.,

2012). Finally, in the presence of nonlinearities, the importance of

edges is not necessarily proportional to their strength. Moreover,

weak edges have been shown to have a strong impact on network

topology; their inclusion can induce transitions from fractal to small-

world universality classes (Gallos, Makse, & Sigman, 2012; Rozenfeld,

Song, & Makse, 2010), and affect network dynamics and the pro-

cesses taking place on it (Csermely, 2004; Karsai, Perra, &

Vespignani, 2014).

3.4 | Network dynamics

In practice, network reconstruction of brain function often turns out

to be independent of the underlying dynamics, in particular of the sys-

tem's characteristic time scales. This means that more often than not,

functional brain networks are constructed as static networks: connec-

tivity estimates are calculated over the whole measurement time

series, so that the obtained network structure represents the average

connectivity over the whole measurement. This approach may help to

increase sensitivity of connectivity estimates and therefore produce

less noisy networks (Smith et al., 2011; Van Dijk et al., 2010). How-

ever, since the brain needs to respond to varying stimuli in a

continuously changing environment, it is natural to assume that also

functional connectivity changes in time (Hutchison et al., 2013).

Therefore, the static approach probably does not reveal the full pic-

ture of functional connectivity. An important step towards deeper

understanding on the dynamics of functional networks is the concept

of chronnectome (Calhoun, Miller, Pearlson, & Adalı, 2014; Iraji, DeR-

amus, et al., 2019). While the connectome (Sporns, Tononi, & Kötter,

2005) represents static connectivity between brain areas, the

chronnectome involves also a temporal dimension, describing

the brain function as a set of reoccurring, temporal connectivity pat-

terns (Calhoun et al., 2014).

Dynamics of functional brain networks can be addressed from

multiple different viewpoints. In what follows, we adopt the threefold

division of Iraji, Miller, Adali, and Calhoun (2020): changes in network

edges, changes in boundaries of ROIs used as network nodes, and

changes in both edges and nodes, that is, time-varying networks with

time-dependent nodes.9

3.4.1 | Edge dynamics

Changes in edge weight and related network structure have been

widely reported in functional brain networks extracted from both

fMRI and MEG/EEG data. These changes take place both at longer

time scales, that is, across the human lifespan (fMRI: Meunier, Achard,

Morcom, & Bullmore, 2009; Hwang, Hallquist, & Luna, 2013; Cao

et al., 2014; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015; Gu

et al., 2015; Marek, Hwang, Foran, Hallquist, & Luna, 2015;

MEG/EEG: Micheloyannis et al., 2009; Smit et al., 2012; Boersma

et al., 2013; Vecchio, Miraglia, Bramanti, & Rossini, 2014; Hou et al.,

2018; Moezzi et al., 2019) or between health and disease (fMRI: Cal-

houn, Eichele, & Pearlson, 2009; MEG/EEG: Stam et al., 2009; Buldú

et al., 2011; de Haan et al., 2012), and at shorter scales, between dif-

ferent cognitive tasks (fMRI: Sako�glu et al., 2010; Richiardi, Eryilmaz,

Schwartz, Vuilleumier, & van de Ville, 2011; Shirer et al., 2012;

Leonardi, Shirer, Greicius, & van de Ville, 2014; MEG/EEG: Bassett,

Meyer-Lindenberg, Achard, Duke, & Bullmore, 2006; Palva, Monto,

Kulashekhar, & Palva, 2010; Hipp, Engel, & Siegel, 2011; O'Neill et al.,

2015, 2017) and also spontaneously over time in rest (fMRI: Honey,

Kötter, Breakspear, & Sporns, 2007; Shehzad et al., 2009; Allen et al.,

2014; Liao et al., 2015; MEG/EEG: Chu et al., 2012; de Pasquale

et al., 2012; de Pasquale, Della Penna, Sporns, Romani, & Corbetta,

2016). Even spontaneous changes in functional connectivity are not

random: functional brain networks fluctuate between states of differ-

ent metastable connectivity profiles (Calhoun et al., 2014; Ma, Cal-

houn, Phlypo, & Adalı, 2014; Núñez et al., 2021) and increased and

decreased global efficiency (Cocchi et al., 2017; Zalesky, Fornito,

Cocchi, Gollo, & Breakspear, 2014). In particular, the community

structure of functional brain networks tends to reorganize over time

and between different tasks (Bassett et al., 2011; Jones et al., 2012).

The time-dependent connectivity of single ROIs is assumed to reflect

their function: flexible or transient nodes with frequently changing

connectivity play different roles during different tasks, while more
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stable nodes form the long-term backbone of functional connectivity

(Allen et al., 2014; Ryyppö et al., 2018; Salehi, Karbasi, Barron,

Scheinost, & Constable, 2020; Zalesky et al., 2014).

Methods used to estimate functional connectivity (cf. Section 3.3)

measure similarity of node signals over time. Therefore, they do not

allow estimation of temporally point-like edges that would be charac-

teristic to temporal networks (Holme & Saramäki, 2012). Instead, most

studies on the short-scale dynamics of functional brain networks use

time windows. In this approach, the neuroimaging time series are

divided into a set of consequent or overlapping time windows and a

network is constructed inside each window (Hutchison et al., 2013;

Yu et al., 2018). The windows should be short enough to catch the

changes in functional connectivity, while too short a window length

easily results in noisy connectivity estimates (Hutchison et al., 2013;

O'Neill et al., 2018; Sako�glu et al., 2010). The optimal window overlap

depends on the research question at hand, and varies from zero in the

case of consequent time windows (e.g., Bassett et al., 2011) to

the maximal overlap between one-sample size sliding windows used

to obtain time-resolved connectivity (Cocchi et al., 2017; Zalesky et al.,

2014). Typically, networks constructed in different time windows

share a common set of nodes, which allows investigating evolution of

both single edges and more global network properties over time. Sep-

arated time windows can be combined into a single network with mul-

tilayer approaches using time windows as layers (Bassett et al., 2011)

or with hypergraph approaches where the nodes of the hypergraph

represent the edges of networks calculated in time windows (Bassett,

Wymbs, Porter, Mucha, & Grafton, 2014; Davison et al., 2015; Gu

et al., 2017).

Despite the popularity of the time window approach, the inter-

pretation of its outcomes is not fully straightforward. In particular, sta-

tistical significance of the observed changes in functional connectivity

needs to be evaluated carefully, and probability to detect significant

connectivity fluctuations can be surprisingly low (Hindriks et al., 2016;

O'Neill et al., 2018). This limitation can be partially overcome by

HMMs that use Bayesian inference to divide the data into states with

characteristic activity and connectivity patterns and previously

unknown lifetimes (Baker et al., 2014; Vidaurre et al., 2016; Vidaurre

et al., 2018; Vidaurre, Smith, & Woolrich, 2017; Woolrich et al., 2013)

(cf. Section 3.5) or by time-frequency analysis where wavelet transfer

coherence is used to quantify the similarity of two signals as a func-

tion of time and frequency (Chang & Glover, 2010). However,

although these approaches detect areas showing similar dynamics at a

certain time point, they do not construct networks and do not there-

fore allow further network-oriented analysis.

3.4.2 | Changes in ROI boundaries

So far, most studies of functional brain network dynamics have con-

centrated on connectivity between static ROIs. However, both inter-

nal connectivity structure and functional homogeneity of ROIs change

over time (Ryyppö et al., 2018). Therefore, if the aim is to minimize

information losses in node renormalization, ROIs should change in a

time-varying fashion. For example, Salehi et al. (2020) used exemplar-

based clustering (Salehi, Karbasi, Shen, Scheinost, & Constable, 2018)

to define time-dependent functional ROIs from fMRI data. Boundaries

of these ROIs varied between cognitive tasks, and the ROI configura-

tion allowed predicting which task the subject was facing and how

well they performed in it.

The spatial chronnectome approach (Iraji, DeRamus, et al., 2019)

divides the brain into sources or temporally synchronized neural

assemblies. These sources can be, for example, ROIs or larger func-

tional systems (sometimes referred to as brain networks); nodes of

functional brain networks represent the sources (Iraji et al., 2020).

Sources do not need to be static objects; instead, they can manifest

themselves as a set of spatial states of voxels strongly synchronized

with the source time series (Iraji, DeRamus, et al., 2019). Since the

spatial location of sources may change in time, their connectivity can-

not be modelled by static nodes (Calhoun et al., 2014).

As an example of the changing spatial states of sources, Iraji,

DeRamus, et al. (2019) reported four different states present in fMRI

data, each consisting of a partly different set of voxels, for the well-

known default mode network (Fox et al., 2005). In another fMRI

study, Iraji, Fu, et al. (2019) detected the spatial states for nine brain

systems and further clustered them into functional modules of those

spatial states of different systems that co-occurred more often than

others. Similar time-varying spatial states of the so-called resting-state

networks have been reported also in MEG data (de Pasquale et al.,

2010; O'Neill et al., 2015), although, to the best of our knowledge,

these states have not been considered as candidates for network

nodes.

3.4.3 | Time-varying networks with time-
dependent nodes

Very few studies have so far applied network tools to investigate

functional brain networks with time-dependent nodes. The approach

introduced by Nurmi, Korhonen, and Kivelä (2019) is based on multi-

layer networks. Layers of this network represent time windows and

nodes are defined independently on each layer by clustering fMRI

voxels into ROIs with maximal functional homogeneity. Edges inside

layers quantify functional connectivity in terms of Pearson correlation

or some other similarity measure (cf. Section 3.3), while inter-layer

edges represent spatial overlap of ROIs. After constructing the net-

work, the approach allows more sophisticated analysis in terms of, for

example, multilayer motifs (Battiston, Nicosia, Chavez, & Latora,

2017) or multilayer clustering analysis (Mucha, Richardson, Macon,

Porter, & Onnela, 2010).

Using time-dependent nodes requires particular methodological

rigor: renormalizing ROI boundaries over time may lead to fluctuating

number of nodes, and care should be taken when comparing the asso-

ciated topologies. However, given the growing evidence for the

dynamic nature of brain networks, the benefits of brain network anal-

ysis with time-dependent nodes are obvious (Iraji et al., 2020; Nurmi

et al., 2019; Ryyppö et al., 2018). Indeed, the study of spatiotemporal
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dynamics of brain networks is one of the most important future direc-

tions for network neuroscience, and the appearance of new network

approaches with time-dependent nodes is merely a question of time.

3.5 | Missing data, sub-sampling and errors

The general assumption in experimental science is that available data

accurately sample the underlying dynamical system. However, while

the last decades have gifted neuroscience with considerably expanded

access to finer spatio-temporal scales of brain anatomy and dynamics,

empirical neuroimaging data should always be treated as incomplete

observations of a system with vastly heterogeneous pieces of hard-

ware, with various aspects of the reconstruction process potentially

inducing missing edges or nodes and, more generally, biased sampling

of the relevant space.

On the one hand, instrumental techniques such as EEG or MEG do

not necessarily ensure a correct sampling of the underlying dynamical

system. Confounding variables may arise at various preprocessing

stages, both in EEG/MEG and fMRI analysis (Pereda et al., 2005). Fur-

thermore, the aspect of neural activity captured by other techniques

may afford an insufficient representation of relevant variables responsi-

ble for the dynamics. For instance, poor definition of connectivity

dynamics may cause fMRI-based networks to miss information that

may be crucial to the discrimination between conditions, for example,

pathology-specific brain dynamics, in spite of its good spatial definition

(Zanin, Ivanoska, et al., 2021). On the other hand, discretionary choices

throughout the reconstruction process may create or annihilate edges

even for a given resolution level (cf. Section 3.3.2). At a more concep-

tual level, the effective scales at which the reconstruction is carried out

have important consequences on the resulting network structure. This

is not just because topological network properties of an inherently mul-

tiscale system such as the brain are scale-dependent (Gallos et al.,

2012), but is also to do with the effective sparseness of neural net-

works. On the one hand, even at the scales typical of standard system-

level neuroimaging techniques, neural circuitry is probably far more

connected than often acknowledged (Wang & Kennedy, 2016). On the

other hand, discretizing connections between a limited number of

nodes entails that these are average connectivities, and the active units

they approximate actually travel indirectly through a multitude of poly-

synaptic paths unaccounted for by the connection matrices between

macroscopic ROIs (cf. “A priori atlases or data-driven parcellations?”
section above) or of typical EEG-based analyses (Gramfort et al., 2013),

whether sensor- or source-based (cf. Section 3.5.1) (Gal�an, 2008;

Robinson, 2013b; Robinson et al., 2016). All these factors concur in

inducing a recording technique- and variable-specific (Angulo, Moreno,

Lippner, Barab�asi, & Liu, 2017) observability of brain dynamics, and as a

consequence, of the underlying functional space, the extent of which is

still incompletely understood.

Partial information on the structure could in principle be dealt

with by resorting to maximum entropy models (Squartini, Caldarelli,

Cimini, Gabrielli, & Garlaschelli, 2018) (cf. Section 2.2.2). These models

yield ensembles of graphs whose topology is maximally random, given

a chosen set of structural properties used as constraints, naturally pro-

viding a null distribution for quantities that are not directly con-

strained (Jaynes, 1957), which can be used to approximate an

unknown under-sampled probability distributions.

Thinking of observed data as the output of a process obeying

detailed balance and with pairwise couplings, the model parameters

can be inferred using equilibrium statistics, and likelihood maximiza-

tion. In general, though, the generating process is unknown, and what

is sought is a statistical description of the data in terms of a simpler

model matching some property of the observed data, from the mean

activity of individual populations and the correlations between them

(Meshulam et al., 2017; Roudi, Tyrcha, & Hertz, 2009; Schneidman

et al., 2006; Tang et al., 2008; Tkačik, Schneidman, Berry II, & Bialek,

2009; Tkačik et al., 2013), to specific combinations of activity and

silence (Ganmor, Segev, & Schneidman, 2011) or higher-order correla-

tions (see Yeh et al., 2010, Savin & Tkačik, 2017, and Nguyen et al.,

2017 for critical reviews of maximum entropy methods in neurosci-

ence). Time-dependent variants could provide tractable null models

for the time-varying dynamics of neural activity as an alternative to

latent linear dynamical systems models. These methods prove

unwieldy for very high-dimensional spaces (Roudi et al., 2015), but

can in principle be used at sufficiently coarse-grained scales.

The partial information issue can also be dealt with through func-

tional and effective network inference methods. These methods, which

are designed to infer minimal models of the parent sets for each target

node in the network (Runge, 2018; Sun, Taylor, & Bollt, 2015) or at

least to identify features of its structure and dynamics, and to reflect

the properties of groups of nodes in the structure (Novelli & Lizier,

2020), can be used to minimize spurious edges (Novelli et al., 2019).

Model-based edge-prediction methods (Clauset, Moore, & Newman,

2008; Guimerà & Sales-Pardo, 2009) yield relative probabilities for

the probability of edge existence, given a generative model fitted to

the observed data, which can then be used to reconstruct the network

given the number of missing or spurious edges. However, information

on missing edges is in general not available in neuroimaging studies.

Recently, a Bayesian network-reconstruction method has been pro-

posed which allows optimal estimates of network structure from com-

plex data in arbitrary formats (Newman, 2018). However, this method

assumes uniform error rates and the existence of each edge is esti-

mated via repeated measurements. Peixoto (2018) developed a similar

approach, applying nonparametric Bayesian inference to a model cou-

pling generative models of network structure, incorporating given

topological properties, and models of the noisy measurement process.

This method yields a reconstructed network together with its associ-

ated uncertainty estimate, based on the posterior distribution over all

possible reconstructions and allows handling single edge measure-

ments without direct error estimates.

3.5.1 | Subsampling in electrophysiological studies

Electrophysiological techniques generally suffer from severe space

under-sampling. This problem is particularly acute when identifying
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nodes with recording sensors. Identifying nodes with sensors drastically

under-sample electrical activity at scales not observable by system-level

electrophysiological techniques leading to a coarse graining of the

dynamics. This introduces a spatial scale irrespective of the actual sys-

tem organization, resulting in spatial correlations in the topology of

reconstructed networks, and ultimately affects topological network

properties (Lee, Kim, & Jeong, 2006; Stumpf, Wiuf, & May, 2005).

Limitations in the amount of data and in the reliability of edge

estimation (due to the presence of noise, of common sources or the

inability of most estimators to distinguish between direct and indi-

rect interactions) likely lead to the spurious addition, deletion or

changes in the nature of edges. Spurious edges between nodes of

similar degree may for instance decrease the average shortest path

length and increase the clustering coefficient (Lee et al., 2006),

leading to erroneously classify them as assortative, even when their

true structure is disassortative (Bialonski, 2012). On the other hand,

randomly sub-sampled scale-free networks generally turn out not

to be scale-free (Stumpf et al., 2005). Finally, in multiple electrode

recordings, each sensor picks up many sources at small scales, but

their number constrains the sampling on large ones, and this can

lead to distortions in global topological properties of the

reconstructed network (Gerhard, Pipa, Lima, Neuenschwander, &

Gerstner, 2011).

3.5.2 | Noise and noise reduction

Functional neuroimaging measurements, like every physiological

recording, are a mixture of real signal and noise. For example,

subject motion (Power et al., 2014; Power, Barness, Snyder,

Schlaggar, & Petersen, 2012; van Dijk, Sabuncu, & Buckner, 2012),

physiological noise from breathing and heartbeat (Birn, Smith,

Jones, & Bandettini, 2008; Chang, Cunningham, & Glover, 2009;

Chen et al., 2020; Dagli, Ingeholm, & Haxby, 1999; Shmueli et al.,

2007), fMRI scanner drift (Hutchison et al., 2013), and noise from

electric devices in MEG and EEG (Hämäläinen et al., 1993; Michel &

Brunet, 2019) increase the noise level of measurement signals, lead-

ing to undesired increase in functional connectivity variance both

inside and between subjects (Pervaiz et al., 2020). There are several

ways to reduce the noisy component of the neuroimaging time

series, including finite impulse response filters (Vorobyov &

Cichocki, 2002), Kalman filters (Bartoli & Cerutti, 1983), spectral

interpolation (Leske & Dalal, 2019), and wavelet transformation

(Olkkonen, Pesola, Olkkonen, Valjakka, & Tuomisto, 2002; Yu,

2009). Unfortunately, many preprocessing steps applied to increase

the SNR, for instance global signal regression (Fox, Zhang, Snyder, &

Raichle, 2009; Gotts et al., 2013) or spatial smoothing (Alakörkkö,

Saarimäki, Glerean, Saramäki, & Korhonen, 2017; Fornito, Zalesky, &

Breakspear, 2013; Stanley et al., 2013; Triana, Glerean, Saramäki, &

Korhonen, 2020; Wu et al., 2011), may have unexpected and unde-

sired effects on the observed network structure.

The importance of well-reasoned measurement and preprocessing

pipelines has been widely covered in the literature (e.g., Andellini,

Cannatà, Gazzellini, Bernardi, & Napolitano, 2015; Aurich, Alves

Filho, Marques da Silva, & Franco, 2015; Michel & Brunet, 2019;

Shirer, Jiang, Price, Ng, & Greicius, 2015). Therefore, in what follows,

we will concentrate on methods proposed for handling the noise

remaining in the network structure after network construction.

These methods are particularly important when working on large,

public datasets that, while opening insights on brain function at pop-

ulation level (Van Essen et al., 2013; Vidaurre et al., 2018), deny the

end user the control on data collection and sometimes even on data

preprocessing.

Noise in network structure is particularly problematic in studies

including comparison of networks, for example, between different

tasks or subject groups. Low SNR, together with the rigorous signifi-

cance threshold required by the high number of comparisons, makes

it hard to detect the often subtle differences between groups

(Zalesky, Fornito, & Bullmore, 2010). The statistical power may be

increased already at the network construction stage by reducing the

number of nodes, using larger ROIs instead of measurement voxels or

source points. However, an inaccurate definition of ROIs can easily

lead to spurious network structure (cf. section 3.2.1).

Coarse-graining approaches avoid this problem by reducing net-

work dimensionality after connectivity estimation. For example,

network-based statistic (Zalesky, Fornito, & Bullmore, 2010)

improves statistical power by searching for network components,

that is, clusters of edges, that differ significantly between subject

groups instead of testing for single edges. In the approach of Kujala

et al. (2016), the nodes of the coarse-grained network are modules

of voxel-level network, while edge weights between the modules

represent the number of significant voxel-level edges. The small

number of nodes in the coarse-grained network allows intuitive

comparisons between rest and task states or healthy and diseased

populations (Kujala et al., 2016). In the analysis of network dynam-

ics, applying PCA on the connectivity patterns before clustering

them into connectivity states may help to reduce the dimensionality

and therefore to control the noise (Kafashan, Palanca, & Ching,

2018; Laumann et al., 2010).

In addition to the issues raised by high dimensionality, networks

constructed from MEG and EEG data suffer from noise characteristic

for these imaging modalities: artificial and spurious connectivity due

to signal mixing (Palva & Palva, 2012; Schoffelen & Gross, 2009). In

electrophysiological measurements, each measurement sensor col-

lects signals from several neighbouring brain sources. Therefore, artifi-

cial connectivity is observed between each pair of neighbouring

sources. Furthermore, when the signals of two sources are connected

by a true functional edge, the neighbours of these two sources appear

to be connected to each other by spurious edges. Signal mixing is

most prominent in sensor-space analysis, while source reconstruction

separates the signals of different sources to some extent (Kujala et al.,

2006; Palva & Palva, 2012; Schoffelen & Gross, 2009), particularly if

the source reconstruction approach is optimized for detecting inde-

pendent signal components. Examples of such approaches include the

combination of ICA and sLORETA algorithm used by Chen

et al. (2013), the minimum overlap component analysis approach by
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Marzetti, del Gratta, and Nolte (2008), and the multivariate auto-

regressive (MVAR)-EfICA approach (G�omez-Herrero, Atienza,

Egiazarian, & Cantero, 2008) that combines PCA and ICA to remove

zero-time lag similarities, MVAR modelling to quantify time-delayed

similarities, and swLORETA to localize the cortical sources.

Clever definition of network edges can significantly reduce arti-

ficial connectivity (cf. Section 3.3), albeit at the cost of losing also

true connections with zero phase lag. The hyperedge bundling

approach (Wang et al., 2018) handles spurious connectivity by turn-

ing the network into a hypergraph (Battiston et al., 2020) with

hyperedges connecting groups of nodes. The hyperedges are

defined so that each of them should contain a true functional con-

nection and all of its spurious reflections (Wang et al., 2018).

Although edge bundling slightly reduces the spatial resolution of

connection mapping, the approach detects true connections with

high accuracy and notably reduces the number of false positive con-

nections (Wang et al., 2018).

When using machine-learning based classifier algorithms for

detecting connectivity differences between tasks or subject groups,

noise together with small sample sizes may increase variance in

classifier weights and therefore reduce classification accuracy

(Ng et al., 2015). Moreover, the connectivity estimates used as clas-

sification features are often interrelated, which violates the

assumptions of most classification algorithms (Ng et al., 2015).

These issues can be partly alleviated with tools from Riemannian

geometry (Ng et al., 2015; Pervaiz et al., 2020) (cf. Section 3.1).

Effects of noise can be further reduced by applying conventional

matrix regularization techniques in the ambient space where the

data have been collected (Pervaiz et al., 2020) or covariance shrink-

age estimators (Chen, Wiesel, Eldar, & Hero, 2010; Ledoit & Wolf,

2004; Rahim, Thirion, & Varoquaux, 2019) either in the ambient

space or in the tangential space of the Riemannian manifold.

3.6 | Assessing and improving network
reconstruction

In the absence of a set of principled criteria for the choice of net-

work reconstruction parameters, a fundamental question in network

neuroscience is understanding the extent to which the topological

properties of the reconstructed networks are intrinsic of the system

under description or, at least, are robust with respect to the way

networks are reconstructed from experimental recordings (Papo,

Zanin, & Buldú, 2014; Stanley et al., 2013; Zalesky, Fornito, Har-

dling, et al., 2010; Zanin et al., 2012). Reconstruction methods in

general and renormalization procedures in particular have been

shown to potentially qualitatively affect topological properties

(Gallos et al., 2012; Stumpf et al., 2005). Specifically, a study on

node renormalization found that global topological properties such

as small-worldness may be robust to the parcellation technique and

overall number of nodes, although the quantitative aspect of these

properties may be grossly affected (Zalesky, Fornito, Hardling,

et al., 2010).

3.6.1 | Looking backward, looking forward: From
statistics to data mining

When the functional brain networks of two or more groups, for exam-

ple, of patients suffering from given pathologies, are extracted and

characterized, it is only natural to hope to see a difference between

them, or, in other words, that the pathology under study translates

itself into a different network structure. The next logical step is

thus to assess the significance of such difference, and specifically

of the difference between some topological metrics calculated on

the networks.

Traditionally this has been performed by resorting to statistics.

Given the two probability distributions yielded by the considered met-

ric for the two sets of subjects, the equality of their average can be

assessed through a Welch's t test; alternatively, the hypothesis that

both distributions are equivalent (i.e., not just the average) can be

tested through a Kolmogorov–Smirnov test. In both cases, the result

will be a p-value, which has to be compared against a desired signifi-

cance level, and eventually corrected for multiple comparisons. Leav-

ing aside the important discussion about the fallacies associated with

only relying on the p-value in science (Dixon, 2003; Goodman, 1999;

Goodman, 2008), it is important to highlight that such tests only pro-

vide an assessment of the equality of the two distributions (or of their

mean values), but yield little information about the usefulness of the

result.

To clarify this point, suppose that the result consists in two probabil-

ity distributions, of the same shape and only slightly shifted (i.e., almost

perfectly overlapping). Provided enough samples (i.e., subjects and net-

works) are available, the resulting test will detect a statistical significant

difference, independently on the magnitude of the shift. Nevertheless, it

would be virtually impossible to create a diagnostic test from this result:

the minimal difference between both distributions implies that any

applied criteria would have an almost random output (Lin, Lucas Jr, &

Shmueli, 2013).

The previous example illustrates an important point: statistical

significance of results does not equate to usefulness. How can then

this latter aspect be assessed? The solution can be found in data min-

ing (Han, Pei, & Kamber, 2011; Vapnik, 2013), and specifically in the

score yielded by a classification algorithm trained to discriminate

between the two subject classes using the metrics extracted from the

complex functional networks. High classification scores (thus, low

errors) imply that the differences between the two groups are not

just significant, but also useful for the creation of discrimination rules.

In a more abstract way, the difference between statistics and data

mining can be interpreted as a temporal one: the former looks back-

ward, at what the differences were in the past data, while the latter

looks forward, that is, at what these data tell us about future

patients.

The interplay between p-value and classification score is a com-

plex one, being a function not just on the difference between the two

groups, but also on the number of available instances—see figure 6 in

Zanin et al. (2016). As already seen, a large number of instances may

yield significant p-values even in the absence of a useful difference;
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on the other hand, having only few instances may cause unreliable

classification results (due to an overfitted learning), which needs to be

confirmed through a p-value examination. As such, it is convenient to

take both into account when evaluating the relevance of a functional

network analysis.

3.6.2 | Effects on brain network characteristics

One fundamental issue is to appraise the extent to which the proper-

ties of the reconstructed system are invariant with respect to the dis-

cretionary steps in the network reconstruction process.

In more general terms, this issue is to be framed within the con-

cept of generalizability, that is, how universal are the results obtained

with a specific analysis. Generalizability has traditionally been tackled

from two different points of view. On the one hand, one can perform

test–retest analyses, that is, record the same subjects two or more

times and compare the resulting networks, for then checking if the

resulting networks kept the same properties over time. Several studies

have addressed this issue (Deuker et al., 2009; Hardmeier et al., 2014;

Höller et al., 2017), and observed that generalizability depends on fac-

tors such as frequency band or length of time series. On the other

hand, one may check how the resulting topological metrics depend on

methodological decisions such as the used software package

(Mahjoory et al., 2017), the chosen frequency band (Pashkov &

Dakhtin, 2019), scalp versus source data (Antiqueira, Rodrigues, van

Wijk, da Costa, & Daffertshofer, 2010; Lai, Demuru, Hillebrand, &

Fraschini, 2018; Palva, Monto, & Palva, 2010), anatomical versus

dynamical networks (Ponten, Daffertshofer, Hillebrand, & Stam,

2010), or in general the combination of different steps (Pervaiz et al.,

2020). Possibly, the most complete example of such analysis has been

proposed in (Botvinik-Nezer et al., 2020), where 70 independent

teams were asked to process the same data with the aim of testing a

same set of hypotheses.

While it has theoretically been shown that some connectivity pat-

terns are more stable, and hence appear more frequently in any analy-

sis (Malagarriga et al., 2017), the previous studies also highlight that

the topological metrics of the reconstructed networks strongly

depend on the methodological choices made by the researcher. This is

clearly a problem, as it undermines the generalizability of results; but

also represents an advantage. Specifically, this variability of results

suggests that different choices help focusing on different aspects of

brain dynamics, and hence some may be more suitable for different

tasks, for example, for the identification of a specific pathology. This

condition-specific character has been exploited in various studies

(Bosch, Herrera, L�opez, & Maldonado, 2018; Yu, Lei, Song, Liu, &

Wang, 2019; Zanin et al., 2012), in which the idea is to use the score

of a classification task to guide the generation of the network (see

Figure 4). In spite of promising results, it is not clear how this strategy

affects generalizability, that is, if the best reconstruction process is

universal for a given condition, or whether this depends on the char-

acteristics of the studied data.

4 | CONCLUDING REMARKS

Defining what is functional in brain activity is an arduous task. Func-

tional network reconstruction should ultimately lead to the characteri-

zation of functional brain activity and could therefore assist in

addressing this question. However, as we illustrated, the image of

function that it provides is at least partially dependent on prior

assumptions on function. Thus, the answers to fundamental questions

such as “How much of brain phenomenology does a network repre-

sentation help in revealing?,” “How do network properties emerge?,”
“Do they have a functional meaning?,” “What network-related aspect

of brain activity can we expect to be able to reconstruct from stan-

dard neuroimaging technique recordings?” depend to some extent on

the way these networks are reconstructed and, more specifically,

F IGURE 4 A general recipe for post
hoc iterative network reconstruction
parameter update. Instead of fixing
parameters (e.g., edge density, which
topological metric to extract) a priori, the
proposed methodology involves
reconstructing networks using a large set
of different parameters; the
corresponding discrimination power is

then evaluated using a classification
problem, and the combination yielding the
clearest difference between two groups
of patients is chosen as the most
informative one. See Zanin et al. (2012)
for details
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on the (often covert) assumptions underlying the reconstruction pro-

cess. The extent to which methodology matters is poorly understood,

and various questions are still unanswered. For instance, are all net-

work properties equally sensitive to methodological choices? The

existing literature suggests that some properties may be more robust

than others. For example, very similar scale-free and small-world fea-

tures of brain networks are observed using different node definition

strategies (Arslan et al., 2018), even with randomly selected nodes

that most probably do not match the true functional organization of

the brain (Fornito et al., 2010). However, although the selected brain

parcellation may matter relatively little in simple network analysis in

healthy subjects, the role of node definition is probably more crucial

when aiming to detect the subtle changes in network structure due

to, for example, diseases or aging (Arslan et al., 2018).

To evaluate the extent to which a network representation genu-

inely documents the way the brain carries out the functions it is sup-

posed to fulfil is ultimately tantamount to determining whether the

topological properties are intrinsic or extrinsic, leading to a better

understanding of emergence of functional dynamics (Atmanspacher,

2012). To do so, implies steps at various levels.

At a network representation level, this involves constructing a

structure which is able to document, and ideally, to generate, these

properties. On the one hand, although several aspects of edge (and

node) definition are largely independent of the space in which the

network is constructed, and much of what has been said here

equally applies to structures such as multi-layer graphs, hypergraphs,

or simplices (Battiston et al., 2020), constructs alternative to the

standard network structure may modify microscopic network scale

properties and introduce new ones. For instance, in a simplex, not

only nodes but also edges have non-trivial degree. Thus, these

structures may affect topology, geometry and underlying physics of

the reconstructed network. On the other hand, revisiting the basics

of functional network reconstruction and its main goal leads to rec-

onsidering the very identity and role of the structure to be used in

pursuit of that goal. Can a structure of time dependent, possibly

spatially overlapping nodes still be called a network and analysed as

such? In the same vein, network neuroscience will likely undergo a

trajectory wherein nodes and connections will be thought of in a

different way, possibly integrating different known properties of

neural activity such as inhibition or complex feedback loops. Their

specification will as a consequence change from its current one.

While network features have historically been predicated upon

dynamical system and information theory, to render representations

more context-independent, network neuroscience will possibly

increasingly summon constructs from disciplines such as computa-

tional topology (Carlsson, 2009; Edelsbrunner & Harer, 2010; Petri

et al., 2014; Reimann et al., 2017; Stolz, 2014; Zomorodian, 2005)

or statistical physics (Bianconi & Rahmede, 2016), and explanations

at various levels (Marr, 1982) and of different types (Illari &

Williamson, 2012; Tozzi & Papo, 2020). New constructs may include

neurophysiological properties, such as inherent disorder and lack of

translational invariance, and may result in representations with non-

trivial emergent geometry (Bianconi & Rahmede, 2017) accounting

for phenomenology as yet poorly documented, at least in network

terms, for example, topological phase transitions (Santos et al.,

2019) or frustration (Gollo & Breakspear, 2014). Ultimately, this

may help changing representations of brain function not just by pro-

ducing constructs more robust to the specification of the space in

which they are embedded as well as inter-subject variability and

noise, but also by changing the underlying vision of brain function in

the first place.

At the assessment level, this will involve checking the statistical

but, more importantly, also the functional significance (Demirel, 2014;

Ma et al., 2009) of the network properties emerging from brain imag-

ing data analysis. Overall, the series of relevant questions should then

be: is the mapping from data to networks reliable? Is it statistically sig-

nificant? Is it functionally significant? Ultimately, though, genuine

breakthroughs will also require parallel conceptual advances in the

way bona fide brain function is understood at various levels, which

would allow incorporating “stylized facts” within the network con-

struction process. Such descriptions may help determining when the

functional space can be endowed with a network representation, how

reproducible it is, and when this representation ceases to be appropri-

ate, at least as a modelling tool (Papo, 2019).

Finally, an aspect that silently underpins most functional net-

work reconstruction efforts, but that is seldom made explicit is that

a complex network representation is a very simplified representa-

tion of brain activity, usually focused on some specific aspects, for

example, how information is propagated in different brain regions;

and seeking answers to specific questions, for example, how a

pathology modifies this propagation. A representation may be use-

ful without being a model of brain functioning, and its worth

context-specific rather than general. As in simplified underground

maps, where the way stations and lines and their spatial location are

tailored towards a specific aim without representing the system as a

whole with all its characteristics, network neuroscientists should

choose those elements that yield the representation that best

serves their specific goals.
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ENDNOTES
1 A field is a physical quantity that assigns a value to each of its points.

For instance, a vector field assigns a vector to each point in a subset of

space. Thus, for EEG data, each point may be identified with an elec-

trode, and at each time point, one would have the output of this

electrode (or some function of it). For fMRI data, this may be represen-

ted by the BOLD signal at a given voxel.
2 A point a of a subset S topological space X is isolated if the inter-

section of some neighbourhood of a with S consists of the point a alone;

in other words a is isolated if it is an element of S but it has a

neighbourhood which does not contain any other points of S.
3 A Hausdorff space is a topological space in which any two points have

non-intersecting neighbourhoods.
4 In classical and statistical mechanics, the configuration space of a physi-

cal system is the set of all possible positions that this system can reach.
5 Redundancy is a property of systems in which components are dupli-

cated allowing the implementation of alternative functional channels

when subparts of the system break down. Degeneracy is a property of

systems in which structurally different elements carry out the same

function (Edelman & Gally, 2001; Tononi et al., 1999).
6 In this review, we reserve the term functional for genuine function, that

is, a system's ability to perform a task, which we distinguish from bare

dynamics (cf. Section 2.1). In this sense, connectivity, which constitutes

the microscopic scale of the analysis, is prima facie considered as a

dynamical phenomenon.
7 In the study of dynamical systems, an attractor (or limit set) is a set or a

space towards which a system evolves irreversibly in the absence of

disturbances.
8 At system-level scales, the set of operations allowed on the

reconstructed network structure generally differs from the operations

actually carried out by the system.
9 Iraji et al. (2020) refer to these classes as temporal, spatial, and spatio-

temporal dynamics.
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