Table 4. Performance of the deep learning methods: summary table.
Method | DSC [rank] | |
---|---|---|
Full-trained | Fine-tuned | |
U-Net-ResNet34 | 0.853±0.082 [1] | 0.762±0.207 [11] |
U-Net-MobileNet | 0.830±0.194 [2] | 0.755±0.230 [11] |
LinkNet-ResNet34 | 0.828±0.131 [3] | 0.797±0.178 [8] |
LinkNet-MobileNet | 0.827±0.116 [5] | 0.789±0.201 [7] |
PSPNet-ResNet34 | 0.813±0.155 [6] | 0.769±0.172 [12] |
U-Net-InceptionV3 | 0.811±0.128 [8] | 0.804±0.190 [6] |
PSPNet-InceptionV3 | 0.805±0.168 [6] | 0.784±0.159 [11] |
FPN-ResNet34 | 0.803±0.191 [3] | 0.764±0.240 [9] |
PSPNet-MobileNet | 0.794±0.160 [10] | 0.792±0.174 [10] |
FPN-InceptionV3 | 0.792±0.189 [8] | 0.814±0.173 [4] |
LinkNet-InceptionV3 | 0.780±0.214 [8] | 0.758±0.217 [12] |
FPN-MobileNet | 0.762±0.198 [12] | 0.779±0.219 [7] |
Data format is mean ± standard deviation [rank]; methods are listed in descending order of mean DSC for full-trained networks. A lower rank indicates a higher position in the standings. DSC, Sørensen-Dice coefficient; FPN, Feature Pyramid Networks.