Table 2.
Performance comparison of the five machine learning classification models used
Conditional random forest (M1) | Random forest (M2) | Ordinal forest (M3) | Partitional tree (M4) | Conditional inference tree (M5) | |
---|---|---|---|---|---|
Accuracy | 0.70 (0.54–0.83) | 0.79 (0.64–0.90) | 0.77 (0.61–0.88) | 0.65 (0.49–0.79) | 0.79 (0.64–0.90) |
Sensitivity | |||||
Discharge | 1.00 | 0.97 | 0.87 | 0.77 | 0.97 |
Decease | 0.00 | 0.63 | 0.75 | 0.50 | 0.63 |
ICU | 0.00 | 0.00 | 0.20 | 0.20 | 0.00 |
Specificity | |||||
Discharge | 0.00 | 0.38 | 0.54 | 0.62 | 0.38 |
Decease | 1.00 | 0.97 | 0.89 | 0.74 | 0.97 |
ICU | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 |
PPV | |||||
Discharge | 0.70 | 0.78 | 0.81 | 0.82 | 0.78 |
Decease | NaN | 0.83 | 0.60 | 0.31 | 0.83 |
ICU | NaN | NaN | 1.00 | 0.50 | NaN |
NPV | |||||
Discharge | NA | 0.83 | 0.63 | 0.53 | 0.83 |
Decease | 0.81 | 0.92 | 0.94 | 0.87 | 0.92 |
ICU | 0.88 | 0.88 | 0.90 | 0.90 | 0.88 |
Detection rate | |||||
Discharge | 0.70 | 0.67 | 0.60 | 0.53 | 0.67 |
Decease | 0.00 | 0.12 | 0.14 | 0.09 | 0.12 |
ICU | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 |
ICU, intensive care unit; NaN, not a number (one or more values is a 0); NPV, negative predictive value; PPV, positive predictive value.