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Abstract
Testing provides essential information for managing infectious disease outbreaks,

such as the COVID-19 pandemic. When testing resources are scarce, an important

managerial decision is who to test. This decision is compounded by the fact that

potential testing subjects are heterogeneous in multiple dimensions that are impor-

tant to consider, including their likelihood of being disease-positive, and how much

potential harm would be averted through testing and the subsequent interventions.

To increase testing coverage, pooled testing can be utilized, but this comes at a cost

of increased false-negatives when the test is imperfect. Then, the decision problem is

to partition the heterogeneous testing population into three mutually exclusive sets:

those to be individually tested, those to be pool tested, and those not to be tested.

Additionally, the subjects to be pool tested must be further partitioned into testing

pools, potentially containing different numbers of subjects. The objectives include

the minimization of harm (through detection and mitigation) or maximization of

testing coverage. We develop data-driven optimization models and algorithms to

design pooled testing strategies, and show, via a COVID-19 contact tracing case

study, that the proposed testing strategies can substantially outperform the current

practice used for COVID-19 contact tracing (individually testing those contacts with

symptoms). Our results demonstrate the substantial benefits of optimizing the test-

ing design, while considering the multiple dimensions of population heterogeneity

and the limited testing capacity.
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1 INTRODUCTION

Testing is a key element in managing disease outbreaks such

as the COVID-19 pandemic. As the WHO Director-General

states, “The most effective way to prevent infections and

save lives is breaking the chains of transmission, and to do

that you must test and isolate. We cannot stop this pan-

demic if we don’t know who is infected” (World Health

Organization, 2020). Unfortunately, inadequate testing capac-

ity for COVID-19 remains a serious problem in the United

States, especially as more people go back to work, schools,

and universities open, and stay-at-home restrictions are no

longer in place. Furthermore, “most of the very limited test-

ing capacity available today [for COVID-19] is being used

therapeutically (to ensure correct diagnosis for treatment) or

in an unprioritized manner” (Allen et al., 2020). However, as

we show in this paper, this is not necessarily the most effec-

tive utilization of the limited testing capacity for diseases such

as COVID-19, which are life-threatening, highly contagious,

have symptoms that are non-specific (e.g., flu-like), and can

be spread by presymptomatic and/or asymptomatic individ-

uals, which is thought to have played a major role in the
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COVID-19 pandemic (Bai et al., 2020; Gandhi et al., 2020;

Rothe et al., 2020; Zhang et al., 2020). Allocating the limited

testing capacity among the potential testing population for the

screening of such diseases, based on the heterogeneity of the

testing population with respect to key dimensions important

for testing, is the problem studied in this paper.

As a motivating example, consider contact tracing, where

people having had contact with known infected individuals

(i.e., with potential for disease transmission) are identified for

appropriate follow-up, which, in the case of COVID-19, can

involve isolation, quarantine, symptom monitoring, and/or

testing. For example, Burke (2020) describes contact trac-

ing for 10 COVID-19-infected subjects in the United States,

finding 445 contacts. Korea Centers for Disease Control and

Prevention (2020) describes the first 30 COVID-19 cases

in South Korea, and their 2370 contacts. These examples

show the scope of the problem, and how the number of

contacts, and thus potential transmission, grow quickly. In

both of these cases, testing was reserved for symptomatic

contacts; because transmission of COVID-19 from presymp-

tomatic and asymptomatic subjects is possible, this testing

decision is not necessarily optimal for reducing the spread of

the infection.

1.1 Screening under limited testing resources

We consider a testing facility and a population of subjects

that would potentially benefit from screening for a certain

disease. The facility has a limited testing capacity in each

testing period, therefore, it needs to determine which sub-

jects to test, and how to test them, so that it does not exceed

the testing capacity. The subjects are heterogeneous in multi-

ple dimensions that are important to consider for testing. The

screening test is an in vitro laboratory test that is conducted on

specimens (e.g., nasal swabs) collected from the subjects; the

specimens allow for pooled testing schemes, wherein spec-

imens from multiple subjects are combined into a pool and

tested with a single test (with follow-up testing performed as

needed, see below).

In particular, we consider a PCR testing machine (i.e., the

PCR test, the main technology used for COVID-19 testing as

well as for other infectious diseases), which has a tray with a

number of reaction wells (trays with 96 wells are common),

where a test is performed in each well, on either an individual

specimen or a pool of specimens. Thus the tray capacity dic-

tates the number of tests that can be performed per testing run

(Carter et al., 2020; Lu et al., 2020; Yelin et al., 2020). Once

the wells are loaded with specimens and testing reagents,

the machine runs for 2–4 h, at the conclusion of which test

results become available (Wiesbauer, 2020). (While the spe-

cific parameters are based on the testing platform used, our

models can handle the different platforms.) Thus, this testing

problem is characterized by batch testing, and the number of

batches that can be run per day determines the daily testing

capacity.

Potential testing subjects stochastically arrive over time,

and subjects are removed from testing consideration if not

tested within a given testing window. However, due to the

logistical complexities of, and the time required for, collecting

specimens for those subjects to be tested, this problem needs

to be discretized, thus using daily snapshots is very practical.

Therefore, given a set of potential testing subjects at the time

of decision-making and a daily testing capacity, we model

the tester’s problem as selecting those subjects to be tested

on the next testing day, along with how they are to be tested

(i.e., which specimens to pool and which specimens to test

individually), setting in motion specimen collection and pool

formation, after which testing is performed. Once pools are

formed for the day, how these pools and the individual testing

specimens are split among the multiple batches (e.g., trays) of

the day will not alter the expected number of tests for the day,

due to the additive nature of this function (Equation (3)). That

is, the tester can randomly use any of those specimens (pre-

formed pools or individual specimens) until the tray reaches

its capacity, and repeat this process throughout the day. A

practical rule of thumb, however, would be to test the pools

earlier during the day, to ensure that the required follow-up

individual tests are performed on the same testing day.

We model two important dimensions of population het-

erogeneity, that is, attributes that vary across subjects: (i)

positivity risk, that is, the probability of having the infec-

tion, and (ii) preintervention and postintervention harm, that

is, the consequences of the infection when undetected versus

detected (with subsequent intervention, e.g., isolation, quar-

antine, symptom monitoring, etc.), respectively. These two

dimensions are not necessarily correlated, that is, a subject

with low positivity risk may result in high levels of harm

(from a societal or individual point of view) if infected and

undetected. For example, in the context of COVID-19, the

positivity risk depends on the nature of exposure with an

infected individual, for example, activity, duration, proxim-

ity, environment (Centers for Disease Control and Preven-

tion, 2020b; Korea Centers for Disease Control and Preven-

tion, 2020; Wang et al., 2020); on the other hand, subjects with

larger social or professional networks (e.g., students, teachers,

healthcare professionals, grocery store workers) may lead to

a higher societal harm if undetected, due to a higher poten-

tial to spread the infection. We use the terms “intervention”

and “harm” in a broad manner. For example, an alternative

definition of harm could be the medical consequences if a

subject is not treated in a timely manner (which can be mea-

sured via traditional health outcome metrics, e.g., fatality

rate, QALY), while interventions would then include medical

treatments.

To improve coverage (the number of subjects tested) under

limited testing capacity, we incorporate pooled testing into the

testing strategy. In particular, we consider Dorfman testing,

which is used in public health screening (e.g., donated blood

screening, sexually transmitted disease screening, e.g., Apra-

hamian et al., 2016; McMahan et al., 2012, and the references
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therein), and is viable for COVID-19 testing (via the PCR

test), as recent examples demonstrate, for example, Abdal-

hamid et al. (2020), Boyd (2020), Eberhardt et al. (2020),

Joseph (2020), Kim et al. (2020), Pilcher et al. (2020), and

Yelin et al. (2020).

Compared to the aforementioned works, as well as other

relevant works in the general pooled testing literature (see

Section 1.2), the main contributions of our work include

designing pooled testing strategies that consider the multiple

dimensions of population heterogeneity, and the key perfor-

mance metrics of screening (harm mitigation and coverage

maximization) under limited testing capacity (i.e., when not

testing a subject is an option). While this analytical framework

applies to many infectious diseases, it applies particularly

well to COVID-19, because the most common test used for

COVID-19 is the PCR test, which has scarce capacity com-

pared to testing demand, and subjects have multi-dimensional

attributes that are important to consider in the testing deci-

sion.

A specimen (e.g., swab) collected from a subject con-

tains enough material for multiple tests. Under Dorfman

testing, material from multiple subjects is combined into a

single testing pool, and tested with a single test; if the pool

tests negative, then all subjects in the pool are classified as

test-negative; and if the pool tests positive, then all subjects

in the pool are individually re-tested (via additional mate-

rial from the specimens) and classified based on this outcome

(Dorfman, 1943). Dorfman testing can increase efficiency,

but if the test has imperfect sensitivity (true positive prob-

ability), then it will also have a higher false-negative rate

than individual testing, simply because a positive subject must

be tested twice to be classified as positive. Mathematically

speaking, the decision problem is to partition subjects into

three mutually exclusive sets under limited testing resources:

those individually tested, pool tested, and not tested. Addi-

tionally, those subjects tested in pools must be further par-

titioned into separate testing pools, potentially containing

different numbers of subjects. If any of the pools is too big or

too small, or has a combined positivity risk that is too large,

the efficiency of pooled testing will be reduced. Testing sub-

jects with multi-dimensional heterogeneity complicates the

pooling problem, because the subjects that are most benefi-

cial to test can also have a higher positivity risk, leading to a

higher number of tests. Thus, there can be a tradeoff between

harm mitigation and testing efficiency.

Our objectives are to provide a data-driven, optimization-

based framework for pooled testing design, which applies to

many infectious diseases; and to demonstrate the potential

benefits of this framework and derive specific insight in the

context of COVID-19 screening. To this end, our case study

utilizes realistic data to study contact tracing schemes for

COVID-19. We demonstrate the potential benefits of the pro-

posed testing strategies, with the hope that this will encourage

practitioners to utilize similar models to overcome the afore-

mentioned challenges in infectious disease screening. For this

purpose, we also discuss the practical aspects of using our

optimization-based approaches for decision-making, espe-

cially in the context of COVID-19.

1.2 Contributions

From a methodological perspective, to the best of our knowl-

edge, this paper is the first to analyze, and establish a theo-

retical framework for, the design of pooled testing strategies

while considering multiple dimensions of population het-

erogeneity and the limited testing capacity. Integrating the

multi-dimensional heterogeneity of the testing population and

the limited testing capacity with the pooled testing aspect

is the key feature of our models: in our setting, the tester

may not be able to test all the subjects in the testing popu-

lation, and needs to select which subjects to test, and how.

As a result, our performance metrics shifts from the tradi-

tional efficiency maximization paradigm commonly used in

the pooled testing literature, which minimizes the expected

number of tests needed for pooled testing so as to cover all the

subjects in the testing population, to coverage maximization

and harm mitigation under limited testing capacity. This is a

major departure from the pooled testing literature, and gives

rise to the new decision problems studied in this paper. In the

following, we first discuss the general pooled testing litera-

ture, followed by the more recent, COVID-19-specific pooled

testing literature.

The vast majority of the pooled testing literature assumes

a homogeneous population, for example, Aprahamian

et al. (2020), Eberhardt et al. (2020), Gollier and Goss-

ner (2020), Gupta and Malina (1999), Kim et al. (2007), and

Zenios and Wein (1998). Of particular relevance is the work

in Aprahamian et al. ( 2020), which considers a homoge-

neous testing population and unlimited testing capacity, with

the objective of minimizing the expected number of tests.

In particular, Aprahamian et al. (2020) derive closed-form

expressions for the optimal Dorfman pool size that minimizes

the expected number of tests in this setting under a determin-

istic prevalence rate of the population, but, needless to say,

these expressions do not extend to our setting, with popu-

lation heterogeneity, limited testing capacity, and different

objective functions. Such one-size-fits-all strategies, which

stem from the homogeneous population assumption, are often

suboptimal. A number of papers incorporate subject-specific

information into the modeling framework, but only through

a single attribute (i.e., subject positivity risk), for example,

Aprahamian et al. (2018, 2019), Hwang (1975), and McMa-

han et al. (2012). In contrast, this paper considers multiple

dimensions of population heterogeneity, and constructs

customized pooled testing strategies that are shown to sub-

stantially outperform existing approaches. The resulting

formulations belong to a class of difficult combinatorial

optimization problems, namely the constrained multivari-
ate set partitioning problem, which, even in their simplified

univariate unconstrained form are known to be NP-complete
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(Chakravarty et al., 1982). As a result, the existing literature

generally restricts the study to problem instances having a

particular form, for example, specific objective functional

forms or simple constraints (e.g., limit on the number of

subsets in the partition) (Aviran & Onn, 2002; Chakravarty

et al., 1985; Gal & Klots, 1995; Hwang et al., 1999, 2000;

Onn & Schulman, 2001).

We exploit the structure of our problem to extract key

insights on optimal testing designs, and take advantage of a

reformulation technique in which the underlying set partition-

ing problem is cast as a more tractable network flow problem

(Aprahamian et al., 2019). As a result, for coverage maxi-

mization, we are able to develop an exact polynomial-time

algorithm; and for harm mitigation, we provide a heuristic,

identify a set of conditions under which the heuristic solu-

tion converges to the optimal harm solution, and bound its

deviation from the optimal solution.

Because limited testing capacity continues to constrain

COVID-19 testing, there has been a recent interest in

exploring pooled testing for COVID-19, for example,

Abdalhamid et al. (2020), Boyd (2020), Eberhardt

et al. (2020), EurekAlert (2020), Gollier and Gossner (2020),

Joseph (2020), Lohse et al. (2020), Mallapaty (2020), News

Medical (2020), Park (2020), Wacharapluesadee et al. (2020)

and Yelin et al. (2020). However, most COVID-19 testing

is still performed via individual testing, and, at least ini-

tially, testing mainly focused on symptomatic subjects, which

made it difficult to detect those presymptomatic or asymp-

tomatic subjects who could spread the disease. Furthermore,

to the best of our knowledge, the pooled testing strategies

used for COVID-19 use pool sizes that are determined in

an ad hoc manner, and testing pools, for the most part, are

formed without considering the heterogeneity of the testing

population.

There is a recent stream of COVID-19-specific pooled test-

ing papers, but all these papers consider a homogeneous

population, for example, Abdalhamid et al. (2020), Eberhardt

et al. (2020), Gollier and Gossner (2020), Mallapaty (2020),

and Wacharapluesadee et al. (2020). In particular, Eberhardt

et al. (2020) use Monte Carlo simulation to compare the

efficiency of various pooled testing strategies, whereas Gol-

lier and Gossner (2020) determine an optimal pool size that

maximizes the proportion of pools that test negative, and

Mallapaty (2020) considers various pooled testing strate-

gies, including Dorfman testing, three-stage pooling schemes,

and a one-stage pooling scheme with overlapping pools. On

the other hand, Abdalhamid et al. (2020) and Wacharaplue-

sadee et al. (2020) study the efficiency of pooled testing for

COVID-19 using fixed pool sizes, of 5 and 10, respectively.

Our case study on contact tracing, an important tool in

managing disease outbreaks, illustrates the benefits of the

proposed testing strategies. Under realistic parameters, a com-

mon strategy, of individually testing only the symptomatic

contacts, increases harm (measured, in the case study, in

terms of future infections) by 261% over our harm mitigation

strategy. On the other hand, a strategy of individually test-

ing contacts with the highest expected harm (thus taking

into account both measures of heterogeneity considered in

this paper) increases harm by 99% over our harm mitiga-

tion strategy, underscoring the value of allowing for pooled

testing for a heterogeneous population (the harm mitigation

strategy often uses a combination of individual and pooled

testing in the case study). We also show that the objective

of maximizing coverage under limited tests (which is closely

related to a common pooled testing objective of minimiz-

ing the number of tests used, e.g., Abdalhamid et al., 2020;

Aprahamian et al., 2016, 2019; McMahan et al., 2012) sub-

stantially underperforms in terms of harm mitigation, espe-

cially if complete coverage is not attainable. We further study

the effect of estimation error in subject-specific parameters,

and find that when risk and preintervention harm values of

each subject randomly deviate by ±20% from their estimated

values, the expected harm resulting from our harm mitiga-

tion strategy only deviates by, on average, 4.1%, from its

estimated value, while significantly outperforming the other

strategies tested. Our numerical study also indicates that a

point estimation of subject-specific risk and harm values is

not necessary, rather, a practical approach of simply cate-

gorizing each subject with respect to their risk and harm

(e.g., high, moderate, low) works well for the proposed strate-

gies. This research is timely and important, and while it is

motivated by COVID-19, it is applicable to other infectious

diseases.

The remainder of this paper is organized as follows.

Section 2 discusses the notation and models; Section 3 pro-

vides key structural properties and algorithms; Section 4 dis-

cusses some limitations of, and practical considerations for,

our models; Section 5 presents a case study on contact tracing;

and Section 6 discusses the conclusions. All mathematical

proofs are relegated to the Appendix.

2 NOTATION, PRELIMINARIES, AND
MODELS

Testing serves to identify the subjects that are positive for

an infection. A test produces either a positive or a negative

outcome, and all test-positive subjects undergo some inter-

vention to mitigate harm. In each testing period (e.g., a day),

the tester (a certain testing facility) has a daily testing capacity

of N tests, and faces a testing population of S = {1, … , N},

where N > N (otherwise the trivial solution is to test each

subject individually, i.e., with one test per subject). Thus, N
and N are both known at the time the tester makes the test-

ing decision for the next testing period. Note that the tester

will need to solve the testing problem repeatedly, once for

each testing period, and will face a potentially different test-

ing population (with new arrivals and leftover subjects) in

each testing period, hence, the value of parameter N (and per-

haps N) may vary over time. However, for our purposes, the
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testing problem is solved for one period at a time, based on a

static testing population that is present at the current time, as

discussed in Section 1.1.

The tester can use Dorfman pooled testing to expand the

testing coverage (i.e., the number of subjects tested); and

wishes to design a testing strategy to either achieve the largest

harm reduction possible, or to maximize the coverage. The

test is not perfect, with sensitivity (true positive probabil-

ity, denoted by se), or specificity (true negative probability,

denoted by sp), that may be less than 1; and the test’s sensi-

tivity remains the same under pooled testing.

Throughout, we use the superscript index m to refer to a

subject, subscript index i to refer to a pool, and omit the index

to refer to all subjects in set S, that is, Xm for subject m and Xi
for pool i. We use |S| to denote the cardinality of set S.

Subjects are heterogeneous: subject m∈ S has positivity

risk, pm ∈ [0, 1], and if infected, then preintervention and

postintervention harm, 𝛾m
pre and 𝛾m

post, respectively, with inter-

vention benefit, 𝛿m ≡ 𝛾m
pre − 𝛾m

post(≥ 0) (i.e., intervention

reduces the harm). For analytical tractability, we assume that

each subject m∈ S is infected according to an independent

Bernoulli distribution with probability pm; if a positive sub-

ject is not detected (i.e., either not tested, or tested but not

detected), then the preintervention harm will be realized, and

if detected, then the postintervention harm will be realized;

and the harm faced by the society is additive.

Then, for each subject in S, the tester must decide if the sub-

ject is to be tested or not, and if tested, whether individually

or in a pool, and if in a pool, then the size and composition

of the pool. The decision problem is to find the best feasible

partition of set S for a certain objective (i.e., minimize harm

or maximize coverage), under a limit on the number of tests

(N). We represent a partition by a combination of mutually

exclusive sets, 𝛀 = (Ω0,ΩI ,ΩP), such that ∪i∈ {0, I, P}Ωi = S,

and Ωi ∩Ωj = ∅, for all i, j∈ {0, I, P} : i≠ j; where the sub-

jects in Ω0 are not tested, those in ΩI are individually tested,

and those in ΩP are pool tested. We further partition the

pooled testing set, ΩP, into mutually exclusive subgroups

(testing pools), ΩP = (𝜔i)i = 1, … , g, for some g∈Z+, such

that |𝜔i|> 1 and the subjects in each subgroup 𝜔i are tested

together via Dorfman testing with pool size |𝜔i|. For any par-

tition 𝛀 of set S, we define random variables H(𝛀) and T(𝛀)

to respectively denote the harm and number of tests, and the

counting variable C(𝛀) to denote the coverage, for all sub-

jects in set S; and attach superscript index m and subscript

index i when referring to their counter-parts per subject and

per pool.

Specifically, our measure of harm represents a weighted

sum of false-negatives and true-positives, that is, an infected

subject will incur a preintervention harm if undetected, and

a (reduced) postintervention harm if detected. Because an

infected subject will be detected with probability se if tested

individually, and with probability se× se if tested within a

pool (i.e., the pooled test outcome is positive and the individ-

ual test outcome is positive), and not detected in the absence

of testing, the expected harm for any subject m∈ S follows:

E[Hm(𝛀)] =
⎧⎪⎨⎪⎩
(1 − se2)pm𝛾m

pre + se2pm𝛾m
post, if m ∈ ΩP

(1 − se)pm𝛾m
pre + se pm𝛾m

post, if m ∈ ΩI

pm𝛾m
pre, if m ∈ Ω0

,

with E[H(𝛀)] =
∑
m∈S

E[Hm(𝛀)]. (1)

The coverage indicator for any subject m∈ S follows:

Cm(𝛀) =

{
1, if m ∈ ΩP ∪ ΩI

0, if m ∈ Ω0

, with C(𝛀) =
∑
m∈S

Cm(𝛀).

(2)

Regarding the expected number of tests, following Apra-

hamian et al. (2019), for each pool Ωi, i = {0, I, P}:

E[Ti(𝛀)] =

⎧⎪⎪⎨⎪⎪⎩

∑
j=1,… ,g[1 + |𝜔j|(se − (se + sp − 1) if i = P

Πm∈𝜔j(1 − pm))],|ΩI|, if i = I
0, if i = 0

with E[T(𝛀)] =
∑

i={0,I,P}
E[Ti(𝛀)].

(3)

Thus, for any partition 𝛀, both the expected harm and cov-

erage of a subject depend only on whether the subject is in

set ΩI , ΩP, or Ω0, that is, for a subject that is pool tested, it

does not depend on the pool size or the other subjects in the

pool. On the other hand, the expected number of tests does

depend on both pool composition and size, because the prob-

ability that the pool tests positive is a nonlinear function of

the positivity risk of all the subjects in the pool.

The decision problem is to determine a partition 𝛀 of set

S, under a limit on the number of tests (N), so as to: (i) mini-

mize the expected harm, E[H(𝛀)], that is, harm minimization
problem (HP); or (ii) maximize the coverage, C(𝛀), that is,

coverage maximization problem (CP).

HP CP
minimize

𝛀
E[H(𝛀)] maximize

𝛀
C(𝛀) (4)

subject to E[T(𝛀)] ≤ N (5)

⋃
i={0,I,P}

Ωi = S, Ωi ∩ Ωj = ∅, i, j ∈ {0, I,P}, i ≠ j, (6)

where E[H(𝛀)], C(𝛀), and E[T(𝛀)] are as given in

Equations (1), (2), and (3), respectively. We use the super-

script *k, k∈ {H, C}, to denote an optimal partition to HP
and CP, respectively, that is, 𝛀*k denotes an optimal parti-

tion, which is comprised of sets Ω∗k
I , Ω∗k

P , and Ω∗k
0 , with an

optimal objective function value of C* ≡C(𝛀*C) for CP, and

E[H*]≡E[H(𝛀*H)] for HP.

Next, we establish important structural properties of opti-

mal partitions, which allow us to develop an exact algorithm

for CP and an effective heuristic for HP.
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3 STRUCTURAL PROPERTIES AND
ALGORITHMS

The ordering of the subjects in the potential testing popula-

tion (set S) with respect to a certain attribute will play a key

role in the proposed solution algorithms. To represent differ-

ent specific orderings of the subjects, we use the notation S(p)

and S(p× 𝛿) to respectively denote a nondecreasing order-

ing of the subjects in set S with respect to parameter p, and

with respect to parameter p× 𝛿, with ties broken arbitrarily

unless specified otherwise. In particular, sets S(p) and S(p× 𝛿)

are constructed to respectively focus on improvements in the

number of tests (Equation (5)) and the harm (Equation (4)).

Lemma 1 Among all partitions with car-
dinalities |ΩI |, |ΩP|, and |Ω0|, the partition
in which subjects {1, … , |Ω0|} in set S(p× 𝛿)

are not tested (i.e., in set Ω0), subjects
{|Ω0|+ 1, … , |Ω0|+ |ΩP|} in set S(p× 𝛿) are
tested in pools (i.e., in set ΩP), and subjects
{N − |ΩI |, … , N} in set S(p× 𝛿) are tested indi-
vidually (i.e., in set ΩI) minimizes the expected
harm, E[H(𝛀)], but this partition is not neces-
sarily feasible for HP.

Corollary 1 Consider that there is no pooled
testing (ΩP = ∅). Then, the partition in which
subjects {1, … ,N − N} in set S(p× 𝛿) are not
tested, and subjects {N − N + 1, … ,N} in set
S(p× 𝛿) are individually tested is optimal for
HP.

Lemma 1 and Corollary 1 consider partitions that follow

the ordered set S(p× 𝛿) (i.e., based on a nondecreasing order

of the subjects with respect to the parameter p× 𝛿), that is,

each group (individual testing, pooled testing, and no testing)

contains a number of subjects that are ordered consecutively

in set S(p× 𝛿). However, in general an optimal HP partition

does not necessarily follow an ordered set, and HP remains

𝒩𝒫 -hard (Chakravarty et al., 1982).

As we shall see subsequently, a relevant problem is to mini-

mize the expected number of tests when the only constraint is

that all subjects are tested. In this case, there exists an optimal

partition that follows the ordered set S(p) (i.e., based on a non-

decreasing order of the subjects with respect to the parameter

p), leading to an equivalent representation of the underlying

set partitioning problem as a network flow problem (Apra-

hamian et al., 2019), as summarized in Property 1.

Property 1 (From Aprahamian et al., 2019)

The problem of determining a partition of set
S that minimizes the expected number of tests,

E[T(𝛀(S))], under the constraint that all sub-
jects in set S are tested (Ω0 = ∅), can be for-
mulated as a Shortest Path Problem (SP(S))

on graph G = (V , E). Specifically, graph G is
comprised of vertex set, V = S(p)∪ {N + 1}, that
is, each subject in the ordered set S(p) repre-
sents a vertex (indexed based on the subject’s
order in set S(p)), with vertex N + 1 represent-
ing a dummy vertex; and edge set, E = {(i, j) :

i> j}, with edge (i, j) corresponding to a pool
comprised of subjects {i, i+ 1, … , j− 1}, with
weight corresponding to the expected number
of tests for the pool. In this graph representa-
tion, each path from vertex 1 to vertex N + 1

corresponds to an ordered partition of set S(p),

which we define as a partition in which every
pool is comprised of subjects with consecutive
indices in set S(p). Furthermore, the set of all
paths from vertex 1 to vertex N + 1 in G is equiv-
alent to the set of all ordered partitions of set
S(p).

Aprahamian et al. (2019) show that there
exists an optimal partition (i.e., which mini-
mizes the expected number of tests, under the
constraint that all subjects are tested) that is an
ordered partition of set S(p), and that this opti-
mal partition corresponds to the Shortest Path
from vertex 1 to vertex N + 1, which we denote
by 𝛀*SP(S). Because G is a directed acyclic
graph with nonnegative weights, the Shortest
Path Problem can be solved via a topological
sorting algorithm in 𝒪(|S|2).

To illustrate the paths implied by graph G in Property 1,

consider a testing population with 10 subjects (N = 10). Then,

path 1→ 5→ 11 in graph G corresponds to the ordered parti-

tion, {{1,2,3,4}, {5,6,7,8,9,10}}, that is, the four lowest risk

subjects are placed in one pool, while the remaining subjects

are placed in another pool. Observe that this grouping fol-

lows because the graph is constructed based on the ordered

set S(p).

Turning our attention to CP, the following algorithm takes

advantage of the fact that the coverage objective depends only

on whether a subject is tested (individually or in a pool) or not,

while for any given set of subjects to be tested, there exists an

expected number of test minimizing partition that follows the

ordered set S(p) (Property 1).

Theorem 1 ALGM-CP Part 1 solves CP to
optimality; and the optional Part 2 reduces the
expected harm (E[H]) without altering the cov-
erage. The computational complexity is 𝒪((N +
1)N2).

ALGM-CP works as follows: Part 1 of the algorithm max-

imizes coverage by finding a feasible set S0 (i.e., the set of

subjects that are not tested) with minimum cardinality. Ini-

tially starting with a set S0 that is empty (i.e., all subjects
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Algorithm. CP (ALGM-CP)

Initialization: Let N̂ = N, S0 = ∅, S1 = ∅, S2 = S(p) (breaking ties via a non-increasing order of p × 𝛿).

PART 1: Maximizing Coverage

Step 1: Solve SP(S2) and determine 𝛀∗SP(S2).

Step 2: If E[T(𝛀∗SP(S2))] > N, set S0 = S0 ∪ {N̂}, S2 = S2 ⧵ {N̂}, N̂ = N̂ − 1, and go to Step 1; else (i.e.,

E[T(𝛀∗SP(S2))] ≤ N), set 𝛀(S2) = 𝛀∗SP(S2), and go to Part 2.

PART 2: Reducing Harm

Initialization: Re-order S2 so as to keep the non-decreasing order of p, while breaking ties following a

non-decreasing order of p × 𝛿.

Step 3: Set S1 = ΩI(S2), S2 = S2 ⧵ S1, and Ñ = |S2|.
Step 4: Set S1 = S1 ∪ {Ñ}, S2 = S2 ⧵ {Ñ}.

Step 5: Solve SP(S2) and determine 𝛀∗SP(S2).

Step 6: If E[T(𝛀∗SP(S2))] + |S1| > N, set S2 = S2 ∪ {Ñ}, S1 = S1 ⧵ {Ñ}, 𝛀(S2) = 𝛀∗SP(S2), and go to Step

7; else (E[T(𝛀∗SP(S2))] + |S1| ≤ N), set Ñ = Ñ − 1, and go to Step 4.

Step 7: Set s0 = |S0|, S0+1 = S0 ∪ S1, and obtain ordered set S0+1(p × 𝛿). Set S0 ⊆ S0+1(p × 𝛿) ∶ S0 =
{1, · · · , s0}, S1 = S0+1(p × 𝛿) ⧵ S0.

Output: Optimal partition is to test all subjects in set S1 individually, subjects in set S2 according to partition

𝛀(S2), and not test subjects in set S0, that is, Ω∗C
0

= S0, Ω∗C
I = S1 ∪ ΩI(S2), and Ω∗C

P = ΩP(S2),
with C(𝛀∗C) = |Ω∗C

P | + |Ω∗C
I |.

are tested), at each iteration the algorithm fixes set S0, and

determines the minimum expected number of tests required

to test the remaining subjects, that is, in set S2 = S∖S0, which

contains those subjects that can be either tested individually

or in a pool, based on partition 𝛀*(S2): if a feasible solution

exists (i.e., the number of tests required for set S2 does not

exceed N), then maximum coverage is attained, and Part 1 is

completed; otherwise, the highest risk subject (i.e., the sub-

ject that contributes most to the number of tests) in set S2 is

moved to the no testing set S0, and the process is repeated

until a feasible solution is found, that is, maximum coverage

is attained.

Given an optimal coverage partition from Part 1, Steps 3–6

then obtain an alternative optimal coverage partition (if one

exists) in which the value of the optimal coverage is attained,

while a number of the highest risk subjects in the pooled test-

ing set are moved to the individual testing set S1 (this improves

harm without altering coverage, see Equation (1)). This is

done by moving the subject with the highest p× 𝛿 value (i.e.,

the subject that contributes the most to the expected harm

function) in set S2 to set S1: if this solution is feasible (i.e.,

the number of tests required for sets S1 and S2 does not

exceed N), then the incumbent partition is updated and the

process is repeated, otherwise the algorithm moves to Step 7.

Then, Step 7 swaps the subjects in sets S0 (no testing set) and

S1 (individual-testing set), if feasible, to reduce harm, again

without altering the coverage. This follows because the sub-

jects in sets S0 and S1 can be interchanged without altering the

number of tests (Equation (3)), but the composition of sets S0

and S1 does affect harm (Equation (1)).

While ALGM-CP produces a partition 𝛀*C that is optimal

for CP, that is, with maximum coverage C∗ = |Ω∗C
I | + |Ω∗C

P |
(with |Ω∗C

0 | subjects not tested), this partition is also opti-

mal for HP for some special cases. Further, this CP-optimal

partition allows us to derive a lower bound for HP, via con-

structing an alternative partition having the same coverage as

𝛀*C, but one that is not necessarily feasible with respect to

constraint (5).

Lemma 2

1. Consider that se = 1. If the partition pro-
duced by ALGM-CP is such that Ω∗C

0 = ∅,

then this partition must be optimal for HP.

2. If the partition produced by ALGM-CP is
such that C∗ = N, then this partition must be
optimal for HP.

Lemma 3 Construct a partition in which sub-
jects {1, … , |Ω∗C

0 |} in set S(p× 𝛿) are not
tested, subjects {|Ω∗C

0 | + 1, … ,N − N} in set
S(p× 𝛿) are pool tested, and subjects {N − N +
1, … ,N} in set S(p× 𝛿) are individually tested,

where |Ω∗C
0 | denotes the size of the no testing

group in the CP-optimal partition. The harm
corresponding to this partition provides a lower
bound for HP:
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E[H∗] ≥
|Ω∗C

0
|∑

m∈S(p×𝛿)∶m=1

pm𝛾m
pre +

N−N∑
m∈S(p×𝛿)∶m=|Ω∗C

0
|+1[

(1 − se2)pm𝛾m
pre + se2pm𝛾m

post
]

+
N∑

m∈S(p×𝛿)∶m=N−N+1

[
(1 − se)pm𝛾m

pre + se pm𝛾m
post

]
≡ LB(H∗).

Next we provide a heuristic for HP that utilizes the ordered

set S(p× 𝛿) (breaking ties arbitrarily), and has computational

complexity 𝒪((N + 1)N3).
ALGM-HP works as follows: the algorithm initially starts

by including the N subjects with the highest p× 𝛿 values in set

S1, which contains those subjects that are tested individually,

and does not assign any subject to set S0, which contains those

subjects that are not tested. In Steps 1 and 2, the algorithm

fixes sets S0 and S1 in an iterative manner, and determines

a partition of set S2 = S∖(S0 ∪ S1) that minimizes the num-

ber of tests needed to test all the subjects in set S2, given by

𝛀*(S2): if this partition is not feasible with respect to the test-

ing capacity constraint (i.e., the number of tests required for

sets S1 and S2 exceeds N), then the algorithm moves to Step

3, where the subject with the lowest p× 𝛿 value (i.e., the sub-

ject that contributes the least to the expected harm function)

in set S2 is moved to the no testing set S0, and the process

is repeated until a feasible solution is found, that is, set S0

has the smallest feasible cardinality. If the partition in Steps

1–3 is better than the current incumbent partition, then the

incumbent partition is updated; otherwise the current incum-

bent partition remains unchanged (Steps 4 and 5). Then in

Step 6 the algorithm reduces the number of subjects that are

individually tested (i.e., the cardinality of set S1) by one, and

the process, that is, Steps 1–6, is repeated until the individual

testing set S1 is empty, which corresponds to the last evaluated

solution before the algorithm terminates in Step 7, at which

point all possible cardinalities of set S1, |S1| = 0, … ,N, are

considered.

The following lemma characterizes the special cases for

which ALGM-HP produces an optimal solution for HP.

Lemma 4

1. Consider that se = 1. If the partition pro-
duced by ALGM-HP is such that either|ΩH

I | + |ΩH
P | = C∗, or ΩH

0 = ∅, then this
partition must be optimal for HP.

2. If pm = p, ∀m∈ S, the partition produced by
ALGM-HP is optimal for HP.

4 MODEL LIMITATIONS AND
PRACTICAL CONSIDERATIONS

For analytical tractability, our models rely on certain assump-

tions that may not necessarily hold in reality. In order to

reduce the gap between the mathematical models developed

in this paper and their practical application for designing

COVID-19 testing strategies, we discuss some limitations of

our models, and how they could be addressed in practice.

• Dilution effect: We assume that test sensitivity

remains unchanged with pool size. In reality,

test sensitivity may reduce as pool size increases

because of the dilution of the viral load of the

disease-positive specimen(s) in the pool by the

disease-negative specimens; this phenomenon is

referred to as the dilution effect in the literature,

for example, Nguyen et al. (2019). To model

test sensitivity as an explicit function of pool

size, extensive testing data are needed, and in

the absence of such data, the tester can sim-

ply impose an upper bound on the allowable

pool sizes (i.e., a pool size limit) so that the

dilution effect is negligible for pool sizes that

do not exceed the upper bound. This is a com-

mon approach in the pooled testing literature,

and is the direction we pursue in the case study

(Section 5). This is also in alignment with cur-

rent studies that investigate the sensitivity of the

PCR test for COVID-19, and indicate that the

dilution effect is negligible up to certain pool

sizes, for example, Lohse et al. (2020), Mallap-

aty (2020), and Yelin et al. (2020).

• Risk and harm estimation: Our models are

constructed for the general setting where the

risk and harm of each subject have continu-

ous values. As a result, the number of possible

subject categories (i.e., unique risk and harm

combinations) is infinite. While this allows for

modeling flexibility, the computational times

for ALGM-HP do not scale well for realistic

problem instances (e.g., over a thousand subjects

in the testing population). On the other hand, we

also assume that each subject’s risk and harm

are known with certainty. In practice, risk and

harm values are unobservable, and need to be

estimated, and it is realistic to consider that one

can estimate these variables in the form of cate-

gorical variables (e.g., high, moderate, low), as

we do in the case study. In addition to being

practical, this setting, with a discrete number of

subject categories, allows us to improve the effi-

ciency of ALGM-HP substantially, by taking

into consideration that subjects in each category

are identical (hence interchangeable).

• Risk independence: We assume that each sub-

ject becomes disease-positive independently of

the other subjects. While this assumption is

reasonable in general, there may be cases where
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Algorithm. HP (ALGM-HP)

Initialization: Set S1 = {N − N + 1,… ,N} from set S(p × 𝛿), S0 = ∅, S2 = S(p × 𝛿) ⧵ S1, Ñ = 1, N̂ = N − N + 1,

E[H] = ∞.

Step 1: Solve SP(S2) and determine 𝛀∗SP(S2).

Step 2: If E[T(𝛀∗SP(S2))] + |S1| > N, go to Step 3; else, go to Step 4.

Step 3: If Ñ ≤ N̂, set S0 = S0 ∪{Ñ}, S2 = S2 ⧵ S0, Ñ = Ñ + 1, and go to Step 1; else (Ñ > N̂), go to Step 6.

Step 4: Set s0 = |S0|, S0+1 = S0 ∪ S1, and obtain ordered set S0+1(p × 𝛿). Set S0 ⊆ S0+1(p × 𝛿) ∶ S0 =
{1,… , s0}, S1 = S0+1(p × 𝛿) ⧵ S0.

Step 5: Set Ω0 = S0, ΩI = S1 ∪ Ω∗SP
I (S2), ΩP = Ω∗SP

P (S2).
If E[H] > E[H(𝛀)], set S∗

2
= S2, S∗

1
= S1, S∗

0
= S0, 𝛀∗SP(S∗

2
) = 𝛀∗SP(S2), and E[H] = E[H(𝛀)];

else (E[H] ≤ E[H(𝛀)]) go to Step 6.

Step 6: Set S1 = S1 ⧵ {N̂}, S0 = ∅, S2 = S(p × 𝛿) ⧵ S1 and N̂ = N̂ + 1.

Step 7: If N̂ > N, stop; else go to Step 1.

Output: The resulting partition is to test all subjects in set S∗
1

individually, subjects in set S∗
2

according

to partition 𝛀∗SP(S∗
2
), and not test subjects in set S∗

0
, that is, ΩH

0
= S0, ΩH

I = S1 ∪ ΩI(S2), and

ΩH
P = ΩP(S2), with E[H(𝛀H)] = E[H].

the disease status of certain subjects is positively

correlated, for example, subjects belonging to

the same household. However, the proportion

of correlated subjects should be fairly small

within the large testing population, and hence

this assumption should not significantly impact

the performance of the resulting testing strate-

gies.

• The need for a second swab: In general, a nasal

swab, commonly used for COVID-19 testing via

a PCR test, has sufficient genetic material for

multiple tests: Once the RNA is extracted, the

lab dilutes the RNA sample for testing (under

both pooled testing and individual testing pro-

tocols), and there is sufficient leftover RNA for

multiple tests, which can be used for individual

follow-up testing as needed. Indeed, the current

literature on COVID-19 pooling and the liter-

ature on pooled testing in other contexts state

that one specimen per subject is typically suffi-

cient for pooled testing, for example, Ben-Ami

et al. (2020); and the Centers for Disease Control

now provides discussion and guidance on pool-

ing for COVID-19 (Centers for Disease Control

and Prevention, 2020a), which includes issues

like dilution, but does not discuss the need to

obtain another swab. Therefore, while there may

be occasional cases where a second swab may

be necessary, which may cause logistical chal-

lenges, we do not anticipate these cases to be in

the majority.

5 CASE STUDY

To demonstrate the proposed harm mitigation and cover-

age maximization approaches to testing design, we consider

a case study of COVID-19 contact tracing via a PCR test.

Throughout, we refer to the testing designs generated by

ALGM-CP and ALGM-HP, which respectively maximize

coverage and mitigate harm, as the CP and HP strategies.

Our objectives in the case study are two-fold: (1) To com-

pare the performance of CP and HP strategies with a testing

strategy used in practice for contact tracing (Burke, 2020;

Korea Centers for Disease Control and Prevention, 2020). To

this end, we conduct a Monte Carlo simulation of a 12-week

testing period, where subject risk and harm estimates are

assumed to be accurate. (2) To analyze the sensitivity of

the results to uncertainty in harm and risk estimates, and

to variations in test sensitivity; and to quantify the bene-

fits of considering the two dimensions (risk and harm) of

population heterogeneity in testing design. To this end, we

conduct a second Monte Carlo simulation that randomly

perturbs subject risk and harm values from their estimated

values.

Next we describe the data and sources (Section 5.1),

followed by discussion of the two simulation studies

(Section 5.2).

5.1 Data and data sources

We construct a realistic scenario of a testing population com-

prised of potentially infected subjects (e.g., identified via con-

tact tracing), to which new subjects are added stochastically

over time. The testing population is generated based on data
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TABLE 1 Proportion of subjects in each subject category based on
positivity risk and harm

Harm (preintervention
and postintervention)
(𝜸pre, 𝜸post)

High (6.49, 0) Low (3.08, 0)

Positivity risk (p) Symptomatic

household (0.10)

0.061% 0.549%

Asymptomatic

household (0.05)

0.439% 3.951%

Symptomatic other

(0.005)

1.159% 10.431%

Asymptomatic other

(0.0025)

8.341% 75.069%

in two contact tracing studies (Burke, 2020; Korea Centers

for Disease Control and Prevention, 2020), which respectively

describe contact tracing for 10 COVID-19-infected subjects

in the United States (with their 445 contacts), and the first

30 COVID-19 cases in South Korea (with their 2370 con-

tacts), as well as some other data from the literature. Each

subject has an estimated positivity risk (p), and preinterven-

tion and postintervention harm (𝛾pre, 𝛾post), where the latter

represents an infected subject’s potential for spreading the dis-

ease (i.e., estimated number of new infections caused by the

subject) if the disease is undetected (not tested, or tested but

not detected) versus detected via testing (resulting in some

intervention), respectively. We divide the subjects into eight

categories based on their positivity risk and preintervention

and postintervention harm, as we detail below.

With respect to the positivity risk, the subjects are divided

into household (5% of all subjects) and other categories (in

line with Burke, 2020; Korea Centers for Disease Control and

Prevention, 2020), which report the proportion of household

subjects as 4.3% and 5%, respectively), with household sub-

jects having a higher risk. Each category is further divided

into symptomatic (12.2% of subjects) and asymptomatic sub-

jects (in line with Burke, 2020), which reports 12.2% of all

subjects to be symptomatic; (Burke, 2020) does not break

down the symptomatic subjects among household and other

subjects, and we use 12.2% for both categories). The harm

measure, as defined here, was not a concept discussed in either

contact tracing paper (Burke, 2020; Korea Centers for Disease

Control and Prevention, 2020), hence, we assume that around

10% of the subjects in each risk category is in the high-harm
(high-spreader) category, and the remaining in the low-harm
(low-spreader) category. The resulting proportion of subjects

in each category is depicted in Table 1.

Next we discuss how one can estimate the positivity risk

and harm of each subject category in general, and detail how

we estimate the values used in Table 1.

Positivity risk: The probability that disease transmis-

sion from an infected subject to a contact occurs (p) can

be estimated based on the nature of their interaction, for

example, activity, duration, proximity, environment (Centers

for Disease Control and Prevention, 2020b; Korea Centers for

Disease Control and Prevention, 2020; Wang et al., 2020).

Furthermore, both Burke (2020) and Korea Centers for Dis-

ease Control and Prevention (2020) report the transmission

rates from infected to uninfected subjects for both household

members and all subjects.

In particular, from Burke (2020), the estimated positiv-

ity risk is 0.45% for all subjects, and 10.5% for household

members; and from Korea Centers for Disease Control and

Prevention (2020), the estimated positivity risk is 0.55% for

all subjects, and 7.56% for household members. We set the

positivity risk of symptomatic subjects to 10% for house-

hold subjects (similar to the rate reported in Burke, 2020),

and 0.5% for other subjects (similar to the rates reported in

Burke, 2020; Korea Centers for Disease Control and Pre-

vention, 2020). Burke (2020) and Korea Centers for Disease

Control and Prevention (2020) do not provide this information

for asymptomatic subjects, hence we assume their positivity

risk to be 50% of their symptomatic counterparts (i.e., for

asymptomatic subjects, 5% for household subjects and 0.25%

for other subjects); see Table 1.

Harm: We measure the preintervention and postinterven-

tion harm (𝛾pre, 𝛾post) in terms of the expected number of

new infections from a disease-positive subject if the subject

is undiagnosed versus diagnosed, respectively. This concept

of harm is similar to the reproduction number R0, but indi-

vidualized, considering the value of a diagnosis in limiting

the disease spread. While one strategy is to isolate all sub-

jects without testing, this is not always practical, especially

as the number of contacts increases, for example, in Korea

Centers for Disease Control and Prevention (2020), the num-

ber of contacts per infected subject ranged from 15 to 649.

Furthermore, not all contacts can be identified, and it may be

more difficult to isolate, without testing, some essential work-

ers, such as medical workers, due to labor shortages. Thus,

in the absence of a diagnosis, the preintervention harm of a

contact can be estimated based on their social/professional

networks, living arrangement (institutional, roommate, large

family), and profession.

In particular, to estimate the preintervention harm, 𝛾pre,

we use estimates of R0 for COVID-19. The meta-analysis

in Alimohamadi et al. (2020) leads to a mean R0 value for

COVID-19 of 3.38± 1.40, with a range of 1.90–6.49. We set

𝛾pre to 6.49 for high-spreaders (the upper bound of the range in

Alimohamadi et al., 2020), and 3.08 for low-spreaders, which,

when weighted by the proportions of high- and low-spreaders

in Table 1, yields the mean in Alimohamadi et al. (2020). For

both categories, we set the postintervention estimated number

of transmissions, 𝛾post, to 0 (Table 1).

Daily testing capacity: Daily testing is limited by the

capacity of the PCR testing machine. A common limit on the

number of tests that can be performed by a PCR machine

is 96 per testing run (i.e., the number of wells in a tray,

see Section 1) (Carter et al., 2020; Lu et al., 2020; Yelin

et al., 2020). Each testing run requires 2–4 h, including

the preparation time (extracting and reverse transcribing the
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RNA) (Wiesbauer, 2020). Hence, we assume a testing run of

3 h and a total of three runs per day, leading to a maximum

daily number of tests of N = 3 × 96 = 288.

Pool size limit: Recent studies indicate that screening for

COVID-19 using a pooled PCR test does not lead to a notice-

able deterioration in classification accuracy for pools of up to

30 subjects, that is, the dilution effect is negligible for pools of

30 or less, for example, Lohse et al. (2020), Mallapaty (2020),

and Yelin et al. (2020). As a result, we consider a pool size

limit of 30.

Test sensitivity and specificity: The sensitivity of the PCR

test is shown to be in the range 71%–98% for COVID-19

(Arevalo-Rodriguez et al., 2020). Therefore, we consider a

test sensitivity of se= 0.90 as our base value, and complement

this with one-way sensitivity analysis on the se parameter.

For test specificity, we consider sp = 0.95 based on Surkova

et al. (2020) and Watson et al. (2020).

5.2 Simulation analysis

We present the results of two simulation studies, which

respectively consider that the estimated subject risk and

harm values are accurate (Section 5.2.1), and not accurate

(Section 5.2.2).

5.2.1 Simulation study under accurate risk and harm
estimates
We first compare CP and HP strategies with a contact tracing

strategy used in practice (Burke, 2020; Korea Centers for Dis-

ease Control and Prevention, 2020), namely the Symptomatic
Individual Testing Strategy (SI), which individually tests

only the symptomatic subjects in the potential testing set, up

to the daily testing capacity.

The Monte Carlo simulation spans a 12-week period, with

each week consisting of five testing days (Monday through

Friday). For each testing day, we randomly generate a set of

potential testing subjects, the size of which is uniformly dis-

tributed between 1500 and 2500 subjects. Each new subject

is randomly assigned to one of the eight categories based on

the proportions in Table 1; this categorization also provides

the subject’s risk and harm. Subjects not tested on the day

they arrive roll over to the next testing day (with the excep-

tion discussed below); if they are still not tested on the second

day after their arrival, then they are removed from testing

consideration. Because the subjects in each category are inter-

changeable, as a policy, within each of the eight categories, we

give testing priority to those subjects that were rolled over. On

each Friday, all subjects that are not tested are removed from

testing consideration. This policy reflects the importance of

timely testing. Thus, the set of potential testing subjects on

each testing day consists of the newly arriving subjects plus

any subject that has rolled over from the previous testing day.

We repeat this process for each of the 12 weeks independently.

Figure 1A,B depict the weekly coverage and harm from HP,

CP, and SI strategies, along with the size of the potential

testing set and the lower bound on the optimal harm (from

Lemma 3). We discuss our findings below.

• Coverage: Not surprisingly, of the three strate-

gies, CP leads to the highest coverage, testing,

on average, 95.6% of the total testing popula-

tion per week, and achieving full coverage on 7

out of the 60 testing days in the study period.

HP tests, on average, 83.5% of the total test-

ing population per week, and never reaches full

coverage. This happens because, from a harm

mitigation perspective, it becomes more advan-

tageous to individually test some high-risk,

high-harm subjects rather than expand coverage

to low-risk, low-harm subjects. SI, which does

not use pooled testing, has much lower cover-

age, with an average coverage of only 12.4%.

Detailed weekly coverage results are displayed

in Figure 1A.

• Expected harm: The baseline expected weekly

harm without any testing (i.e., the preinter-

vention harm) is 197.8 on average, which HP
reduces to 43.7 (a reduction of 78%). Of the

three strategies considered, HP incurs the low-

est expected weekly harm, and its harm closely

tracks the lower bound on the optimal harm,

LB(H*), from Lemma 3. CP and SI increase the

expected weekly harm respectively by 118.3%

and 261.0%, on average, over HP. The poor

harm performance of SI stems from its low

coverage, coupled with the fact that SI uses

the presence of symptoms as the sole test-

ing criterion, which does not perfectly coin-

cide with risk and harm values, for example,

for COVID-19, there is considerable spread

(and thus harm) from asymptomatic subjects

(Burke, 2020; Korea Centers for Disease Control

and Prevention, 2020). Detailed weekly harm

results are displayed in Figure 1B.

Furthermore, HP and CP use pool sizes between 5 and 23,

well below the pool size limit of 30. While the pool sizes used

for household members range between 5 and 7, those used for

other categories range between 15 and 23.

5.2.2 Simulation study under inaccurate risk and harm
estimates
Next, we expand our analysis to the setting where subject

harm and risk estimates are not perfectly reliable. We do this

through a second Monte Carlo simulation that simulates 1

week of testing under randomly perturbed subject risk and

harm values. In addition to CP and HP, we consider two

hypothetical strategies in the simulation, so as to illustrate the

benefits of using two dimensions of heterogeneity and how

this interacts with pooled testing. The new strategies are:
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FIGURE 1 (A) The coverage (C) and (B) expected harm (E[H]) for CP, HP, and SI strategies over a 12-week testing period

FIGURE 2 The distribution of expected harm (E[H]) for CP, HI, HP, HP(risk), and SI strategies over a 1-week testing period

• The Highest Harm Individual Testing Strat-
egy (HI), which individually tests the N subjects

with the highest expected harm, that is, p× 𝛿.

• The Risk-based HP Strategy (HP(risk)),
which allows for pooled testing, but considering

only one dimension of population heterogene-

ity, namely the risk. (This is equivalent to the

current HP strategy, with the difference that all

subjects are assumed to have identical harm,

i.e., 𝛿m
pre = 1, 𝛿m

post = 0, ∀m∈ S).

In the second simulation, we use the potential testing pop-

ulation generated for the first week of the simulation in

Section 5.2.1, comprised of 9965 potential testing subjects.

Then, in each of the 1000 replications, we randomly perturb

each subject’s risk and preintervention harm by ±20% from

their estimates given in Table 1. The results are displayed in

Figures 2 and 3B; and we discuss our findings below.

• Expected harm: We depict the distribution (over

1000 replications) of the expected weekly harm

incurred by each strategy (Figure 2). The harm

incurred by HP is the lowest, and has the nar-

rowest range (with an average of 47.4, and

a range of 46.7 to 48.0). This is followed

by the one-dimensional HP variation, namely

HP(risk) (with an average of 51.7), and then by

HI, CP, and SI, with average values of 90.0,

106.5, and 166.3, respectively. Observe that the

weekly harm values for HP, CP, and SI are

higher than those reported for the first week of

the first simulation (Section 5.2.1), because the

uncertainty in risk and harm is more likely to

increase the expected harm than decrease it (that

is, p× 𝛿 deviates within the range of −36% to

44%).

• Testing composition: Table 2 shows the distri-

bution of the week’s potential testing popula-

tion among individual testing, pooled testing,

and no testing sets under the different strate-

gies, and Figure 3A,B depict how the various

subject categories are placed into the differ-

ent sets. CP maximizes coverage (at 95.9% for

this first week) by solely using pooled testing,

and, as a result, by neglecting those high-risk

subjects (i.e., symptomatic household contacts)

who are less efficient to test in pools due to

their high positivity risk. As opposed to this,

HP individually tests symptomatic high- and

low-harm household contacts, as well as asymp-

tomatic high-harm household contacts: this is

because these high-risk subjects are not only

less efficient to test in pools, but also lead to

a higher number of false-negatives when pool

tested, making individual testing a better option

for them.
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FIGURE 3 The number of subjects in the individual testing, pooled testing, and no testing sets (|ΩI | , |ΩP | , |Ω0|), for each subject category in Table 1, for

CP, HI, HP, HP(risk), and SI strategies over a 1-week testing period. (A) Household contacts. (B) Other contacts

TABLE 2 The number of subjects in the individual testing,
pooled testing, and no testing sets (|ΩI | , |ΩP | , |Ω0|) for CP, HI,
HP, HP(risk), and SI strategies over a one-week testing period
(with 9965 potential testing subjects)

Individually
tested (|𝛀I |)

Pool tested
(|𝛀G |)

Not tested
(|𝛀0|)

CP 0 9555 410

HP 130 8056 1779

HP(risk) 76 8325 1564

HI 1440 0 8525

SI 1248 0 8717

While HP(risk) individually tests symptomatic high- and

low-harm household contacts (similar to HP), it pool tests

asymptomatic high-risk household contacts (unlike HP); and

the composition of other contacts that are pool tested under

this strategy is skewed more towards those with a higher pos-

itivity risk. This leads to not being able to test some of the

high-harm subjects in the asymptomatic other category, who

may have a relatively high contribution to the expected harm

(Table 1 and Equation (1)). On the other hand, both HI and SI
solely use individual testing, but HI outperforms SI in terms

of harm. This is because HI prioritizes the testing of subjects

with the highest expected harm (p× 𝛿), while SI only tests

symptomatic subjects, which is an imperfect measure of risk

and harm.

• Two dimensions of heterogeneity: HP and

HP(risk) are similar, except that the for-

mer considers both risk and harm, while

the latter considers only risk. As a result

of ignoring the harm dimension, HP(risk)
increases the expected weekly harm by 9.1%

over HP. HP(risk) does not individually test

any subject, as discussed above, and this is

what causes most of the difference. (Over-

all, HP(risk) coverage is slightly higher than

HP, due to not using individual testing, but

lower than CP, as it selects subjects to be

tested based on high risk, and not efficiency.)

HI also uses both dimensions of heterogene-

ity, but it only performs individual testing;

this leads to an increase in expected weekly

harm of 89.8% over HP, demonstrating, once

again, the value of pooled testing in this con-

text.

• Test sensitivity: We next discuss findings

from a one-way sensitivity analysis on the test

sensitivity parameter, se. For illustrative pur-

poses, we discuss our results for HP for a base
case (se = 0.9). In particular, at each sensi-

tivity value, we derive the true HP strategy,

evaluate both the base case and the true HP
strategies, and compare them. The efficiency

(the expected number of tests) in the base

case HP decreases (increases) as test sensitiv-

ity decreases (increases), because the pooled

test detects the true-positives in the pool

less (more) frequently, decreasing (increas-

ing) the number of individual follow-up tests,

but this effect is small, for example, when se
changes from 0.90 to 0.85, the base case has

only a 1.9% reduction in the expected num-

ber of tests. On the other hand, the expected

harm increases (decreases) as test sensitivity

decreases (increases), because the test’s abil-

ity to detect the true-positives reduces, for

example, when se changes from 0.90 to 0.85,

the base case has a 33% increase in harm,

while HP specifically derived for se = 0.85

has a 30% increase over the base case. Thus,

most of the increase in harm comes from

having a less sensitive test, and not due to a

change in testing design.

As this case study demonstrates, using multiple dimensions

of heterogeneity, in conjunction with the option to select sub-

jects for individual or pooled testing, or no testing at all, can

significantly reduce harm.
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6 CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

The models in this paper can be used to design testing strate-

gies for infectious diseases under scarce testing resources,

and should be informed by data-driven estimates of key

parameters, as well as an intervention strategy (a portfo-

lio of interventions). The choice of interventions provides

the structure needed for estimating the preintervention and

postintervention harm, which could be extended to represent

a multi-dimensional harm vector (i.e., intervention-specific).

We consider harm and intervention in a broad manner. For

example, in the case study we measure harm in terms of

the number of future infections, but as we move towards

effective treatments for COVID-19, harm can be considered

from the perspective of testing to detect people in need of

treatment. This is especially important if there are limits

on treatment capacity and/or advantages to early treatment,

for example, before symptoms manifest. Our case study on

COVID-19 screening demonstrates the substantial benefits

of a data-driven, optimization-based framework that incor-

porates multiple key subject-specific characteristics and the

limited testing capacity into the testing design. The key take-

away of this paper is that both aspects of the problem (i.e.,

key dimensions of population heterogeneity and test scarcity)

are essential to consider by testing facilities for designing

screening strategies for harm mitigation. This paper pro-

vides decision-makers with the necessary analytical tools to

achieve this objective.

This paper can be extended in a number of ways. The

models studied in the paper can be generalized to consider

stochastic risk and harm, which are unobservable in real-

ity; or to consider that the disease status of some subjects

may be correlated. In addition, test sensitivity is generally

dependent on disease dynamics, testing too “early,” when

the subject’s viral load is low, can miss an infected subject,

while testing too “late” can result in increased harm. There-

fore, as a future direction, integrating the models presented

in this paper with a disease progression model (e.g., Nguyen

et al., 2019) could be beneficial. One could utilize such an

integrated model to design strategies that might test a subject

multiple times, based on an optimal schedule. Integrating the

models presented in this paper with an epidemiology model

could provide valuable insights, because part of the larger

goal of testing is to reduce the effective reproduction number

to below 1, so that the outbreak disappears. Another important

dimension is to study the testing design when the tester can

utilize a combination of screening tests (e.g., antibody test and

a PCR test) such that, when combined, these tests can reduce

the misclassification probability.
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APPENDIX A

A.1 Mathematical proofs

We define:

ΔHP−I(p, 𝛿) ≡ (1 − se2)p 𝛾pre + se2p 𝛾post − (1 − se)
p 𝛾pre − se p 𝛾post = (se − se2)p 𝛿 (≥ 0)

ΔH0−P(p, 𝛿) ≡ p 𝛾pre − (1 − se2)p 𝛾pre − se2

p 𝛾post = se2 p 𝛿 (> 0), (7)

respectively denoting the reduction in expected harm when

testing a subject in a pool versus individually, and when not

testing versus testing in a pool.

We first provide a supporting lemma that will be used in the

subsequent proofs.

Lemma A.1

1. E[TP(ΩP)] is strictly increasing in pm,

∀m∈ΩP.

2. ΔHP− I(p, 𝛿) is nondecreasing in p × 𝛿, and
ΔH0−P(p, 𝛿) is strictly increasing in p × 𝛿.

Proof of Lemma A.1

1. For any subgroup 𝜔i ∈ΩP, i = 1, … , g, and

any subject m∈𝜔i, we have that E[TP(ΩP)]

is linear in pm, and the coefficient of pm,|𝜔i|(se+ sp − 1)Πk∈𝜔i∖{m}(1 − pk), is strictly

positive, and the result follows.

2. We have that ΔHP− I(p, 𝛿) and ΔH0−P(p, 𝛿)

are linear in p and the coefficients of p,

(se− se2) and se2 respectively, are nonnega-

tive, and the result follows.
▪

Proof of Lemma 1 We show that among all

partitions with fixed cardinalities |Ω0|, |ΩI |, and

|ΩP|, there exists a partition in which the no test-

ing set, Ω0, includes |Ω0| subjects with the low-

est p× 𝛿 values, that is, subjects {1, … , |Ω0|}

in set S(p× 𝛿), and the individual testing set,

ΩI , includes |ΩI | subjects with the highest p× 𝛿

values, that is, subjects {N − |ΩI |+ 1, … , N} in

set S(p× 𝛿) (hence the pooled testing set, ΩP,

includes subjects {|Ω0|, … , N − |ΩI |}), such

that this partition attains the minimum expected

harm, E[H(𝛀)], in the absence of constraint (5).

We start by showing that the no testing

set, Ω0 includes subjects {1, … , |Ω0|} in set

S(p× 𝛿). To this end, assume that there is

a partition in which the no testing set, Ω0,

does not include the |Ω0| subjects having

the lowest values of p× 𝛿, and this partition

yields the minimum expected harm E[H(𝛀)].

Then, there must exist two subjects, i and

j, such that i∈Ω0 : i∈ S(p× 𝛿), i> |Ω0| and

j∈ΩI ∪ΩP : j∈ S(p× 𝛿), j≤ |Ω0|: If j∈ΩI , then

swapping subjects i and j alters the harm by

ΔH0−P(pi, 𝛿i)+ΔHP− I(pi, 𝛿i)−ΔH0−P(pj, 𝛿j)

−ΔHP− I(pj, 𝛿j)> 0; and if j∈ΩP, then swap-

ping subjects i and j alters the harm by

ΔH0−P(pi, 𝛿i)−ΔH0−P(pj, 𝛿j)> 0, where both

inequalities follow by definition of set S(p× 𝛿),

and because ΔH0−P(p, 𝛿) is strictly increasing

in p× 𝛿 and ΔHP− I(p, 𝛿) is nondecreasing in

p× 𝛿 (Lemma A.1). In either case, we have

identified a partition that leads to a harm that

is reduced over the original partition, without

affecting the cardinalities of sets |Ω0|, |ΩI |, and

|ΩP|.

Similarly, we show that the individual testing

set, |ΩI |, contains subjects {N − |ΩI |+ 1, … , N}

in set S(p× 𝛿). To this end, assume that there

is a partition in which the individual test-

ing set, ΩI , does not include the |ΩI | subjects

https://doi.org/10.1136/bmj.m1808
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having the highest values of p× 𝛿, and this

partition yields the minimum expected harm

E[H(𝛀)]. Then, there must exist two sub-

jects, i and j, such that i∈ΩI : i∈ S(p× 𝛿),

i<N − |ΩI | + 1 and j∈Ω0 ∪ΩP : j∈ S(p× 𝛿),

j≥N − |ΩI | + 1: if j∈Ω0, then swap-

ping subjects i and j alters the harm by

ΔH0−P(pj, 𝛿j)+ΔHP− I(pj, 𝛿j)−ΔH0−P(pi, 𝛿i)

−ΔHP− I(pi, 𝛿i)> 0; and if j∈ΩP, then swap-

ping subjects i and j alters the harm by

ΔHP− I(pj, 𝛿j)−ΔHP− I(pi, 𝛿i)≥ 0, where both

inequalities follow by definition of set S(p× 𝛿),

and because ΔH0−P(p, 𝛿) is strictly increasing

in p× 𝛿 and ΔHP− I(p, 𝛿) is nondecreasing in

p× 𝛿 (Lemma A.1). In either case, we have

identified a partition that leads to a harm that is

either reduced or unchanged over the original

partition, without affecting the cardinalities of

sets |Ω0 | , |ΩI |, and |ΩP|. Thus, the partition

in which the no testing set, Ω0, includes the

lowest p× 𝛿 subjects, the individual testing set,

ΩI , includes the highest p× 𝛿 subjects, and ΩP
contains all other subjects, yields the lowest

expected harm, among all partitions having

cardinalities |Ω0 | , |ΩI |, and |ΩP|. ▪

Proof of Corollary 1 The result follows from

Lemma 1, because the partition described in

the corollary arises as a special case of that

in Lemma 1, with |Ω0| = N − N, |ΩP | = 0,

and |ΩI| = N. Further, this partition uses N
tests, and hence is feasible with respect to con-

straint (5). ▪

Property A.1 Consider that there is no indi-
vidual testing (ΩI =∅). Then, in light of Part 1 of
Lemma A.1 among all partitions in which |ΩP|

subjects are pool tested, the partition in which
|ΩP| subjects with the highest p values, that is,

subjects {1, … , |ΩP|} in set S(p), are pool tested
yields the minimum expected number of tests,

E[T(𝛀)].

Proof of Theorem 1 We start by showing that

Part 1 of ALGM-CP solves CP to optimality.

In Part 1 of the algorithm, the value of |Ω0|

is iteratively increased from a starting value of

zero. In each of the aforementioned iterations,

the algorithm fixes the value |Ω0| and identifies

the partition that minimizes the expected num-

ber of tests. Solving this optimization problem

can be achieved by noting that (for fixed car-

dinality |Ω0|) the partition that minimizes the

expected number of tests, E[T(𝛀)], places the

highest |Ω0| risk subjects in set Ω0 (Part 1 of

Lemma A.1) and tests the remaining subjects

according to the optimal scheme provided by

Aprahamian et al. (2019) (Property 1). Part 1

of the algorithm terminates as soon as it iden-

tifies the first value of |Ω0| (denoted by |Ω∗
0|)

that leads to a feasible partition, because further

increasing |Ω0| does not improve the coverage.

Because the partition obtained at each iteration

minimizes the expected number of tests (for the

corresponding |Ω∗
0| value), |Ω∗

0| represents the

smallest possible number of subjects that are

not tested. Consequently, Part 1 provides a solu-

tion with the maximum possible coverage, C∗ =
N − |Ω∗

0|. Associated with this optimal solu-

tion are the sets Ω∗
I and Ω∗

P, which respectively

correspond to the set of individually and pool

tested subjects. Note that C∗ = |Ω∗
I | + |Ω∗

P|, as|Ω∗
0| + |Ω∗

I | + |Ω∗
P| = N. ▪

Next, we show that Part 2 of ALGM-CP reduces the

expected harm without altering the coverage of the Part 1

solution. In Part 2 of the algorithm, Steps 3–6 maximize the

number of individually tested subjects in set Ω∗
I ∪ Ω∗

P while

conserving the coverage C* that was identified in Part 1. This

is achieved by an iterative procedure in which the number of

individually tested subjects, |ΩI |, is fixed and the expected

number of tests is minimized on the remaining subjects. This

is done by noting that (for fixed cardinality |ΩI |) the partition

that minimizes the expected number of tests, E[T(𝛀)], places

the highest |ΩI | risk subjects in set ΩI (Part 1 of Lemma A.1)

and tests the remaining subjects according to the optimal

scheme provided by Aprahamian et al. (2019) (Property 1).

This procedure is repeated until feasibility is no longer sat-

isfied. Note that the aforementioned procedure tests every

subject in set Ω∗
I ∪ Ω∗

P, which is why the optimal coverage

identified in Part 1 is maintained. Finally, Step 7 rearranges

the subjects in sets Ω∗
0 and Ω∗

I while conserving the cardinali-

ties of these sets. Since the cardinalities are not impacted, then

the total number of subjects getting tested is fixed and hence

the optimal coverage, C*, will not be impacted. Moreover,

since the expected number of tests for subjects that are either

individually tested or not tested is independent of their risk,

Step 7 will not impact the feasibility of the solution. Given

this, and in light of Part 2 of Lemma A.1, assigning the |Ω∗
I |

subjects with the highest p× 𝛿 values in set Ω∗
0 ∪Ω∗

I to set Ω∗
I

and the remaining subjects to set Ω∗
0 provides the best possi-

ble harm. As such, Step 7 maintains the optimal coverage and

feasibility while reducing the harm.

Regarding the computational complexity of ALGM-CP,

there exists an algorithm with complexity 𝒪(N2) that solves

SP(S) (Property 1); and Part 1 of the algorithm solves

Problem SP(S) N −C* + 1 times (at most N times since

C* ≥ 1) and Part 2 of the algorithm solves SP(S) C* times

(at most N times since C* ≤N). Thus, ALGM-CP solves

Problem SP(S) N + 1 times, and the result follows.
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Proof of Lemma 2

1. If se = 1, we have that ΔHP− I(pm, 𝛿m) = 0,

∀m∈ S, and E[H(𝛀)] becomes independent

of which subjects are tested individually or

pool tested, as long as those subjects are

tested (Equation (1)). We also have that

ΔH0−P(pm, 𝛿m)> 0, ∀m∈ S, that is, testing

any subject (either individually or in a pool)

will reduce the harm, compared to not testing

the subject. Therefore, any feasible partition

with Ω0 = ∅ must be optimal for HP.

2. If C∗ = N, then by Theorem 1, it is feasi-

ble to test at most N subjects; and in case

of no pooled testing, i.e., ΩP = ∅, it is feasi-

ble to test N subjects individually. Then, Part

2 of ALGM-CP results in individually test-

ing the subjects with the highest p× 𝛿 values.

Since ΔHP− I(pm, 𝛿m)≥ 0, ∀m∈ S, we have

that, for any set of subjects, individually test-

ing them will either reduce, or not affect, the

harm over pool testing these subjects. There-

fore, individually testing the subjects with

the highest p× 𝛿 values must be optimal for

HP, and the result follows.
▪

Proof of Lemma 3 By definition, C* is the

maximum number of subjects that can be tested;

and N is the maximum number of subjects

that can be tested individually. Therefore, in

an optimal solution to HP we must have that,|Ω∗H
I | ≤ N and |Ω∗H

I | + |Ω∗H
P | ≤ C∗. Fur-

thermore, because ΔH0−P(pm, 𝛿m)> 0, ∀m∈ S,

testing reduces the harm over not testing, and

because ΔHP− I(pm, 𝛿m)≥ 0, ∀m∈ S, individ-

ual testing does not increase the harm over

pooled testing (Equation (7)). In addition, for

any fixed cardinalities, |Ω0|, |ΩI |, and |ΩP|, indi-

vidually testing subjects with the highest p× 𝛿

values, and not testing subjects with the low-

est p× 𝛿 values, leads to the lowest expected

harm (Lemma 1). Therefore, the partition in

which the N subjects with the highest p× 𝛿 val-

ues are individually tested, the N −C* subjects

with the lowest p× 𝛿 values are not tested, and

the remaining subjects are pool tested, provides

a lower bound on the optimal harm, E[H*]. ▪

Proof of Lemma 4

1. We start by proving the result under the

condition that ΩH
0 = ∅. If se = 1,

we have that ΔHP− I(pm, 𝛿m) = 0, ∀m∈ S,

and the expected harm, E[H(𝛀)], becomes

independent of which subjects are tested

individually and which subjects are tested

in pools, as long as those subjects are

tested (Equation (1)). We also have that

ΔH0−P(pm, 𝛿m)> 0, ∀m∈ S, that is, test-

ing reduces the harm over not testing

(Equation (7)). Therefore, any feasible parti-

tion with Ω0 = ∅ must be optimal for HP.

Next we prove the result under the condi-

tion that |ΩH
I (S(p × 𝛿))| + |ΩH

P (S(p × 𝛿))| =
C∗. By definition of C*, it is feasible to

test at most C* subjects. By Lemma 1, and

since ΔH0−P(pm, 𝛿m)> 0, ∀m∈ S, we have

that testing the C* subjects with the highest

p× 𝛿 values must be optimal for HP, if such

a partition is feasible. By the condition pro-

vided in the lemma, we have that |ΩH
I (S(p ×

𝛿))|+ |ΩH
P (S(p×𝛿))| = C∗, and by definition

of ALGM-HP, this partition tests the sub-

jects with the highest p× 𝛿 values. There-

fore, the partition suggested by Lemma 1,

that is, not testing subjects {1, · · · , |ΩH
0 |}

in set S(p× 𝛿), individually testing subjects

{N−|ΩI | , · · ·, N} in set S(p× 𝛿), and pool

testing the remaining subjects, is feasible,

and hence, must be optimal for HP.

2. First, we prove that there exists an opti-

mal partition Ω*H in which the Ω∗H
I subjects

with the highest p× 𝛿 values are individu-

ally tested, the Ω∗H
0 subjects with the lowest

p× 𝛿 values are not tested, and the remain-

ing subjects are pool tested. By Lemma 1, if

this partition is feasible, then it must be opti-

mal for HP. Since pm = p, ∀m∈ S, then the

expected number of tests is independent of

the partition of the subjects as long as |Ω∗H
I |,|Ω∗H

P |, and |Ω∗H
0 | remain unchanged. Then,

this partition is feasible, and hence, must be

optimal for HP.

Next, we prove that ALGM-HP generates

this specific partition. The algorithm enu-

merates over the number of individually

tested subjects, |ΩH
I |, and for each case,

maximizes the number of subjects that are

pool tested, |ΩH
P |. In particular, one of the

iterations of ALGM-HP considers the case

where |ΩH
I | = Ω∗H

I , and since pm = p,

∀m∈ S, we must have that |ΩH
P | = Ω∗H

P .

Therefore, the result follows because the

partition provided by ALGM-HP individu-

ally tests the subjects with the highest p× 𝛿

values, and does not test the subjects with the

lowest p× 𝛿 values.
▪


