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Summary

� Mycorrhizal fungi are central to the biology of land plants. However, to what extent mycor-

rhizal shifts – broad evolutionary transitions in root-associated fungal symbionts – are related

to changes in plant trophic modes remains poorly understood.
� We built a comprehensive DNA dataset of Orchidaceae fungal symbionts and a dated plant

molecular phylogeny to test the hypothesis that shifts in orchid trophic modes follow a step-

wise pattern, from autotrophy over partial mycoheterotrophy (mixotrophy) to full myco-

heterotrophy, and that these shifts are accompanied by switches in fungal symbionts.
� We estimate that at least 17 independent shifts from autotrophy towards full myco-

heterotrophy occurred in orchids, mostly through an intermediate state of partial myco-

heterotrophy. A wide range of fungal partners was inferred to occur in the roots of the

common ancestor of this family, including ‘rhizoctonias’, ectomycorrhizal, and wood- or

litter-decaying saprotrophic fungi. Phylogenetic hypothesis tests further show that associa-

tions with ectomycorrhizal or saprotrophic fungi were most likely a prerequisite for evolution-

ary shifts towards full mycoheterotrophy.
� We show that shifts in trophic mode often coincided with switches in fungal symbionts,

suggesting that the loss of photosynthesis selects for different fungal communities in orchids.

We conclude that changes in symbiotic associations and ecophysiological traits are tightly cor-

related throughout the diversification of orchids.

Introduction

The history of evolution and biodiversity is fundamentally a his-
tory of the evolution of species interactions (Margulis, 1991;
Thompson, 1999, 2005). Many of the major events in the diver-
sification of life can be traced back to the appearance of novel
species interactions (Szathm�ary & Smith, 1995). As such, the col-
onization and subsequent domination of land by plants – a fun-
damental turning point in the evolutionary history of the earth –
was probably facilitated by new interactions with mutualistic
symbiotic fungi (‘mycorrhizas’) that promote plant growth by
facilitating the acquisition of essential nutrients (e.g. phosphorus,
nitrogen and sometimes carbon) (Pirozynski & Malloch, 1975;
Selosse & Le Tacon, 1998; Field et al., 2015; Martin et al., 2017;
Feijen et al., 2018). Today, the symbiosis with mycorrhizal fungi
is found in over 90% of extant species of all major lineages of
land plants, except for mosses, and involves 40 000–50 000
species of three different fungal phyla (Brundrett & Tedersoo,
2018; Tedersoo et al., 2020). Based on the morphology of the
interaction and the identity of the interacting plants and fungi,
four major mycorrhizal types can be distinguished: arbuscular
mycorrhiza, ectomycorrhiza, ericoid mycorrhiza and orchid myc-
orrhiza (Smith & Read, 2008; van der Heijden et al., 2015;
Brundrett & Tedersoo, 2018).

Interestingly, phylogenetic mapping of these four mycorrhizal
types has shown that they are evolutionary-conserved and that
transitions between mycorrhizal types are relatively rare among
land plants, fueling questions about what drives these switches
(Feijen et al., 2018; Werner et al., 2018). Recent studies have
suggested that the composition of mycorrhizal fungal communi-
ties differs between plant nutritional modes, ranging from an
exclusively autotrophic to a fully mycoheterotrophic mode of life,
in which photosynthesis has been replaced by the uptake of car-
bon from root-associated fungi (Yagame et al., 2016; Jacquemyn
& Merckx, 2019). This raises the hypothesis that shifts in trophic
modes are correlated with switches in symbiotic associations in
land plants.

Orchids are particularly relevant to the investigation of this
hypothesis in more detail as they form unique mycorrhizas with
basidiomycete and ascomycete fungi, known as orchid mycor-
rhizas (OrM) (van der Heijden et al., 2015; Brundrett & Teder-
soo, 2018). Previous research has suggested that OrM probably
evolved from an ancestor with arbuscular mycorrhizal fungi, in
which the gain of OrM fungi is explained by pathogenic infection
(Yukawa et al., 2009; Rasmussen & Rasmussen, 2014). The evo-
lution of OrM has been regarded as one of the major drivers for
the evolutionary success of the Orchidaceae (Dressler, 2005; Ras-
mussen & Rasmussen, 2014; Chase et al., 2015; Givnish et al.,
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2015; Jacquemyn et al., 2017a). Moreover, unlike the majority
of green plants, orchids rely on carbon from OrM fungi for the
germination of their dust seeds, a phenomenon known as ‘initial
mycoheterotrophy’ (Leake, 1994; Rasmussen, 1995; Merckx,
2013). While most species likely become fully autotrophic as
adults, several partially mycoheterotrophic species retain the abil-
ity to obtain carbon from their mycorrhizal fungi to compensate
for photosynthesis (also termed mixotrophy; Selosse & Roy,
2009), and more than 250 fully mycoheterotrophic species have
completely replaced their photosynthetic capacity by the uptake
of fungal carbon (Jacquemyn & Merckx, 2019). Although these
trophic modes have also evolved outside the Orchidaceae, no
other plant family displays such a high frequency of shifts in
trophic modes (Merckx, 2013; Jacquemyn & Merckx, 2019).

Traditionally, orchid mycorrhizas have been considered to
consist primarily, if not only, of members of the ‘rhizoctonias’
complex, which comprises taxa from three distinct fungal fami-
lies: Tulasnellaceae, Ceratobasidiaceae and Serendipitaceae
(Smith & Read, 2008; Dearnaley et al., 2012), and this associa-
tion has been regarded as the ancestral state of the family
(Yukawa et al., 2009; Dearnaley et al., 2012; Weiß et al., 2016).
However, more recently, other saprotrophic and ectomycorrhizal
(ECM) fungal lineages have been found to form mycorrhizal
associations with orchids (Bidartondo et al., 2004; Dearnaley
et al., 2012; Ogura-Tsujita et al., 2021). The number and com-
position of fungal taxa associating with a single orchid are vari-
able and depend on the phylogenetic relatedness of the orchids
(Shefferson et al., 2010; Jacquemyn et al., 2011; Martos et al.,
2012), their developmental stages (Bidartondo & Read, 2008;
T�e�sitelov�a et al., 2015; Waud et al., 2017), ecological conditions
(Bidartondo et al., 2004; Jacquemyn et al., 2016; Duffy et al.,
2019) and also trophic modes (Motomura et al., 2010; Ogura-
Tsujita et al., 2012). Autotrophic orchids generally associate with
rhizoctonia fungi, while partially and fully mycoheterotrophic
orchids mostly associate with ECM and wood- and litter-
decaying fungi, suggesting that transitions in trophic modes are
probably linked to shifts in fungal lifestyles in Orchidaceae (Jac-
quemyn & Merckx, 2019). Detailed studies on Neottieae
(Selosse et al., 2004; Selosse & Roy, 2009; Yagame et al., 2016)
and Cymbidium (Ogura-Tsujita et al., 2012) have proposed an
evolutionary correlation between fungal lifestyle and trophic
mode in these taxa. However, this evolutionary correlation
remains to be tested in a comprehensive family-wide phyloge-
netic framework.

In the past two decades, the ecophysiology of orchids and the
identity of their fungal partners have been studied extensively,
fueled by the development of stable isotope measurements and
novel DNA sequencing methods (Gebauer & Meyer, 2003;
Bidartondo et al., 2004; Martos et al., 2009; Jacquemyn et al.,
2017b; Schiebold et al., 2017, 2018; Schweiger et al., 2019). In
this study, we compiled a family-wide dataset of mycorrhizal
interactions and orchid trophic modes, and employed a phyloge-
netic framework to test the hypothesis that shifts in trophic mode
in the orchid family are correlated with switches in fungal com-
munities. Specifically, we aimed to answer the following ques-
tions: what is the evolutionary history of fungal associations and

trophic modes within the family is the evolution towards myco-
heterotrophy correlated with switches in fungal communities and
what is the most common evolutionary scenario towards myco-
heterotrophy in Orchidaceae in the context of fungal partner
switches?

Materials and Methods

Orchid mycorrhiza, fungal lifestyle, and trophic mode

To compile a family-wide dataset of orchid fungal associations,
we searched for molecular data using the keywords ‘orchid myc-
orrhizal fungi’ in Mendeley Reference Management Desktop (be-
fore August 2019) and only retained articles that contained
fungal nuclear ribosomal internal transcribed spacer (ITS) acces-
sions generated with either Sanger or high-throughput sequenc-
ing (HTS) techniques. By manually checking and filtering the
obtained articles, c. 250 were kept as original references for the
orchid mycorrhiza dataset. The final dataset contained informa-
tion on 750 orchid species covering nearly all major clades of
orchids (20 tribes and 39 subtribes belonging to five subfamilies)
(see Supporting Information Table S1). In addition, we searched
for isotope data of the orchid species included in our mycorrhizal
dataset. For each orchid species, all available DNA accessions of
the markers’ ITS, matK, rbcL and trnL-F, were downloaded from
the NCBI GenBank database.

Taxonomic information was assigned to each fungal sequence
using USEARCH v.11 (Edgar, 2010). We further categorized the
sequences at the family level because half of all sequences could
not be assigned to a lower taxonomic level (genus or species) by
blasting against the UNITE local database (Abarenkov et al.,
2010). Detailed procedures of fungal operational taxonomic unit
(OTU) clustering and taxonomic assignment are described in
Notes S1. After removing fungal families associated with only a
single orchid species, we assigned the remaining fungal families
in Basidiomycota and Ascomycota to different lifestyles based on
the information provided in the original publications (Dearnaley
et al., 2012; Tedersoo & Brundrett, 2017; P~olme et al., 2020)
supplemented by FUNGUILD (Nguyen et al., 2016) using default
parameters. We categorized the rhizoctonia families (Tulasnel-
laceae, Ceratobasidiaceae, and Serendipitaceae – Sebacinales
‘group B’) as ‘rhizoctonia-like’ fungi (RHI). Families mainly
comprising ECM fungi (Sebacinaceae – Sebacinales ‘group A’,
Thelephoraceae, Russulaceae, and others) were classified as ECM.
Families mainly containing saprotrophic fungi (e.g. Mycenaceae,
Psathyrellaceae) were classified as saprotrophic (SAP). Fungal
families having both ECM and SAP fungi were classified as the
ECM/SAP lifestyle. Because a large number of fungal families
contain members that are pathogens, endophytes, or belong to
unknown ecological guilds, we adopted a conservative approach
in all further analyses by restricting the number of fungal families
to the 17 families that are known to contain putative orchid myc-
orrhizal fungi (Table 12.1 in Dearnaley et al., 2012).

Based on morphological descriptions and stable isotope signa-
tures (13C and 15N), we assigned orchid species to three trophic
modes: autotrophy (AU), partial mycoheterotrophy (PMH), and
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full mycoheterotrophy (MH). Due to the inconsistency in 13C
and 15N signatures of several orchids, either a strict or more
relaxed definition of PMH was adopted. A detailed description of
the criteria to assign an orchid to one of the trophic modes can
be found in Notes S1.

Orchid phylogeny reconstruction and divergence time
estimation

To reconstruct a time-calibrated phylogeny of Orchidaceae, we
performed a relaxed molecular clock analysis with BEAST v.2.5
(Bouckaert et al., 2019) using backbone trees from Chase et al.,
(2015), Chomicki et al., (2015) and Givnish et al., (2015).
Sequence alignment, phylogenetic reconstruction, and time cali-
bration are described in detail in the Notes S1.

Phylogenetic signal

Pagel’s lambda (k) (Pagel, 1999) was used to investigate whether
the distribution of the character states of trophic mode and fun-
gal lifestyle showed some degree of phylogenetic signal on the
orchid phylogeny. The k value was estimated using ‘fitDiscrete’
function in the R package GEIGER (Pennell et al., 2014).

Ancestral state estimations

Ancestral state reconstruction was used to trace the evolutionary
history of trophic modes and symbiotic associations represented
by fungal lifestyles over the reconstructed orchid phylogeny.
Ancestral state reconstructions were performed with the
‘make.simmap’ function in the R package PHYTOOLS (Revell,
2012) using stochastic character mapping (Bollback, 2006). An
initial model with independent rates of state transitions (‘All
Rates Different’, ARD) was applied among symbiotic associa-
tions and trophic modes, respectively. Because MH is associated
with rampant plastid gene loss (Graham et al., 2017) and is thus
likely irreversible (Merckx, 2013), we specified the transition
rates from MH to PMH and AU as zero in the state transition
rate matrix (Q matrix). The ancestral states of trophic mode were
inferred based on both a relaxed and a strict definition of PMH.
In addition, analyses of ancestral state reconstruction were also
performed using ‘MultiState’ Markov chain Monte Carlo
(MCMC) analysis implemented in BAYESTRAITS v.3, adopting
the same model for each discrete trait as with stochastic character
mapping. We ran each of our analyses for 1010 000 iterations
with the first 10 000 generations as burn-in. Reversible-jump
MCMC analyses (Green, 1995; Pagel & Meade, 2006) were
applied to reduce model complexity and over-parameterization.

Hypothesis tests

Discrete Independent and Dependent models in BAYESTRAITS

detected correlated trait evolution between symbiotic association
and trophic mode (Notes S1). However, with this approach, the
path of trait evolution was not yet evident. Therefore, we com-
bined the two traits into a coupled multistate character and

performed explicit hypothesis tests to verify plausible evolution-
ary scenarios towards MH. By setting constraints on the Q
matrix, we tested which state was best supported to be the inter-
mediate state that enabled the evolution of mycoheterotrophy
(Notes S1). To compare models, we estimated the marginal like-
lihood of the free model where no constraints were set to the Q
matrix. One constrained model disallowing specific transitions
between states in the Q matrix that best fitted the data will result
in the marginal likelihood that differs most significantly from the
less constrained free model. We ran each ‘MultiState’ analysis in
triplicate for 106 generations and calculated the average marginal
likelihood using a stepping stone sampler. Finally, we compared
the constrained models with the free model by Bayesian informa-
tion criterion (BIC), and the model with the lowest BIC value
was selected.

Results

Mycorrhizal interactions in Orchidaceae

Adopting a strict definition of PMH, a total of 455 AU, 27
PMH, and 37 MH orchid species were used for phylogenetic
reconstruction (Table S2). Under a relaxed definition of PMH,
there were 414 AU, 69 PMH species, and 37 MH species
(Table S2). After removing fungal families that associated with a
single orchid species, a total of 68 fungal families in Basidiomy-
cota and Ascomycota were identified based on ITS sequences
generated from both Sanger and HTS techniques (Fig. S1).
Autotrophic orchids (455 species) were associated with the high-
est diversity of fungal taxa (66 fungal families), and shared 67%
and 50% of their fungal families with PMH and MH orchids,
respectively (Fig. S2). The number of fungal families detected in
our dataset showed small differences between Sanger sequencing
and HTS techniques (see details in Notes S1; Fig. S3). Seventeen
of all detected fungal families that have previously been identified
as putative orchid mycorrhiza fungi (Dearnaley et al., 2012) were
mapped on the orchid phylogeny (Figs 1, S4), including three
rhizoctonia families (Tulasnellaceae, Ceratobasidiaceae and
Serendipitaceae), seven families mainly comprising ECM fungi
(Sebacinaceae, Thelephoraceae, Russulaceae, Tuberaceae,
Clavulinaceae, Hymenogastraceae, Inocybaceae), and seven fami-
lies containing SAP and/or ECM fungi (Pezizaceae, Pyronemat-
aceae, Hymenochaetaceae, Marasmiaceae, Psathyrellaceae,
Mycenaceae, Physalacriaceae). The three rhizoctonia families
were present in the roots of 454 (87.5%) of 519 orchid species,
followed by major ECM families (e.g. Sebacinaceae, Thele-
phoraceae, and Russulaceae) (Figs 1, S4).

Ancestral states of trophic mode and symbiotic association

Both stochastic character mapping and ‘MultiState’ MCMC
analysis inferred that the common ancestor of orchids was most
likely autotrophic at adult stage (Figs 2a,b, S5, S6). From the
ancestral state of AU, there have been 42 or 28 transitions to
PMH, and 17 or 18 shifts to MH by using the relaxed and strict
definition of PMH, respectively (Figs S5, S6). Few transitions
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were detected directly from AU to MH using both definitions of
PMH (Figs S5, S6). Shifts to mycoheterotrophy mainly occurred
in the subfamilies Vanilloideae (Vanilleae), Orchidoideae
(Orchideae, Cranichideae, Diurideae), and Epidendroideae
(Neottieae, Gastrodieae, Wullschlaegelieae, Epidendreae, Cymbi-
dieae) (Figs S5, S6). By tracing transitions in trophic modes
through geological time, we showed a general trend of transitions
from AU towards PMH and MH, and transitions to MH were
predated by transitions to PMH (Fig. S7a). Full mycoheterotro-
phy appeared only recently in the evolutionary history of

Orchidaceae at the start of the Oligocene (c. 35 million years ago;
Fig. S7a).

Ancestral state reconstruction using both methods of stochastic
character mapping and ‘MultiState’ MCMC analysis inferred
that each symbiotic association has a comparatively equal proba-
bility of the ancestral state (Figs 2c, 3), indicating that the ances-
tor of orchids was probably associated with a broad range of
fungi. Most transitions started from the combined state R + E + S
to a variety of symbiotic associations, mainly including ECM and
SAP fungi (Fig. 3c). The majority of transitions to ECM and
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wood- or litter-decaying SAP fungi involved 34 orchid genera
belonging to nine tribes (Fig. 3), of which six genera do not con-
tain PMH or MH species (Table S2). By trancing transitions in
symbiotic associations through geological time, we inferred a
general trend of shifts from a fungal community comprising
diverse fungal lifestyles in the ancestor of orchids towards more
specialized fungal lifestyles among extant lineages of Orchidaceae
(Fig. S7b). A large proportion of evolutionary shifts towards an
exclusive association with rhizoctonia-like fungi was observed,
whereas only a small proportion of transitions towards ECM and
wood- or litter-decaying SAP fungi was detected (Fig. S7b).

Phylogenetic signals and trait correlations

We detected a robust phylogenetic signal for both trophic mode
and fungal lifestyle (Table S3). A strong correlation between trophic
mode and symbiotic association was inferred by both the Discrete
Independent and Dependent models, as supported by Bayes factor
scores (Table S4). Furthermore, our ‘MultiState’ analyses of trophic
mode and symbiotic association showed that the fourth model is
favored with the lowest BIC compared with the other three models,
which sets constraints on the forward transition from autotrophic
states (states 1, 2 and 3) to mycoheterotrophic states (states 4 and 5)
(Table 1). This model assumes that a forward transition from AU
to MH is associated with an obligate intermediate transition of
symbiotic association – a combination of rhizoctonias and ECM or
SAP fungi (Notes S1). By setting further constraints on the reverse
direction of transitions, our results showed that the sixth model best
fitted our data (Table 1). This model assumes that the reverse transi-
tion from the MH to the AU state only occurs from the intermedi-
ate symbiotic association with a combination of rhizoctonias and
ECM or SAP fungi (Notes S1).

Discussion

Evolutionary shifts in symbiotic associations

Our results suggest that the common ancestor of orchids proba-
bly did not associate with fungi of a single lifestyle, but rather

with a fungal community of multiple lifestyles (Figs 2c, 3).
Although rhizoctonias were most likely part of this community,
as previously suggested by Yukawa et al. (2009), our analyses
indicate the possibility of a much wider partner breadth in the
ancestors of orchids (Figs 2c, 3). Our results further show that
the largest proportion of evolutionary shifts in symbiotic associa-
tions occurred from the combined state of rhizoctonias, ECM,
and SAP fungi (R + E + S) towards more specialized associations
(Fig. 3c). Similarly, a dual symbiotic association was also recently
inferred as a prerequisite for shifts between major mycorrhizas
among land plants (Werner et al., 2018). These studies collabora-
tively support the overall hypothesis that the evolution of symbi-
otic shifts follows a stepwise process, in which fungal partners in
a later stage of a mycorrhizal association have been latently pre-
sent in the fungal community of the ancestor (Selosse et al., 2010;
van der Heijden et al., 2015; Jacquemyn & Merckx, 2019; Suet-
sugu & Matsubayashi, 2021).

Support for this so-called ‘waiting room’ hypothesis (Selosse
et al., 2010, 2018; van der Heijden et al., 2015) has been
mounting. For instance, several ECM fungi colonizing orchid
roots are also endophytes in surrounding plants or even in
orchid tissues, such as Sebacinaceae (Selosse et al., 2009;
Oliveira et al., 2014; Weiß et al., 2016) and Tuberaceae
(Gryndler et al., 2014; Schneider-Maunoury et al., 2018).
Likewise, some groups of free-living SAP fungi have been sug-
gested to transit to a mycorrhizal association with orchid
species through an endophytic state, such as Mycenaceae
(Martos et al., 2009; Ogura-Tsujita et al., 2009) and
Psathyrellaceae (Yamato et al., 2005; Yagame et al., 2007;
Ogura-Tsujita & Yukawa, 2008). These findings suggest that
the ability to associate with non-mycorrhizal fungi is probably
a predisposition for tight mycorrhizal associations in Orchi-
daceae (e.g. Shubin et al., 2009). However, due to the lack of
microscope observations or germination tests, we cannot be
sure that all fungal taxa recorded in this study are truly myc-
orrhizal, and thus some might reside in orchid roots as endo-
phytes. Considering that a large number of fungal associates
of orchids was recorded in this study (Figs S1, S2), previous
studies, especially those that have restrictions in primer sets
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and sequencing methods, may have overlooked a wide range
of fungal associates that reside in orchid roots (Selosse et al.,
2010, 2018).

Evolutionary shifts in trophic modes

Our analyses further show that from the ancestral autotrophic
state (Figs 1, 2a,b), shifts from AU or PMH to MH have
occurred at least 17 times across the orchid family (Figs S5, S6),
accounting for a large fraction of the estimated total of 40 of
these shifts across land plants (Merckx & Freudenstein, 2010;
Merckx, 2013; Jacquemyn & Merckx, 2019). The occurrence of
mycoheterotrophy in orchids exhibits phylogenetic conservatism
and is mainly confined to nine tribes in the subfamilies Vanil-
loideae, Orchidoideae, and Epidendroideae (Figs S5, S6). In
addition, a recent study has shown that in the early divergent sub-
family Apostasioideae a photosynthetic orchid species is poten-
tially mycoheterotrophic due to its enriched 13C and 15N

signatures (Suetsugu & Matsubayashi, 2021). As the 13C and
15N signatures of only few species have been investigated, and
because these isotopes cannot detect low degrees of PMH in
orchids, especially for those associated with rhizoctonias
(Gebauer et al., 2016; Schiebold et al., 2018; Schweiger et al.,
2019), the number of shifts to mycoheterotrophy may have been
underestimated here.

Transitions to MH occurred dominantly through an interme-
diate stage of PMH (Figs S5, 6), which is in line with previous
phylogenetic studies on narrower phylogenetic scales (Selosse &
Roy, 2009; Motomura et al., 2010; Ogura-Tsujita et al., 2012;
Yagame et al., 2016; Jacquemyn & Merckx, 2019). Furthermore,
stable isotope studies have confirmed that 13C and 15N signatures
of PMH orchids are on a dynamic continuum between AU and
MH (Jacquemyn et al., 2017b; Schiebold et al., 2018; May et al.,
2020). These findings corroborate the hypothesis that transitions
to MH are accomplished by a gradual increase in the level of
mycoheterotrophy, rather than by abrupt shifts of AU to MH.
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This gradual transition has also been suggested in the genus
Pyrola in the family Ericaceae, where a similar full range of
trophic modes has been observed (Tedersoo et al., 2007; Zimmer
et al., 2007; Hynson et al., 2009).

Correlation between symbiotic switches and trophic mode
shifts

Ancestral state reconstructions show that symbiotic switches often
co-occur with shifts in trophic modes (Figs 1, 3, S4–S6). Discrete
Independent and Dependent models further revealed a strong cor-
relation between transitions in trophic modes and fungal partners
across the orchid phylogeny (Table S4). Such correlation has been
suggested based on observations in genus-level analyses (Bidar-
tondo et al., 2004; Selosse et al., 2004; Motomura et al., 2010;
Ogura-Tsujita et al., 2012; Jacquemyn et al., 2016, 2017b; Yagame
et al., 2016). Fully mycoheterotrophic orchids primarily associate
with either ECM or wood and litter-decaying SAP fungi, while rhi-
zoctonias dominate the associations of their autotrophic relatives
(Motomura et al., 2010; Ogura-Tsujita et al., 2012; Yagame et al.,
2016), suggesting that full or partial loss of photosynthesis selects
for different mycorrhizal communities. Therefore, the evolutionary
transition from AU over PMH to MH was accompanied by a shift
in fungal partners from rhizoctonias to ECM or SAP fungi in the
orchid family (Figs 1, 3; Table 1). The latter fungal groups are
often detected alongside rhizoctonia-like fungi in the roots of
autotrophic orchids, and here we infer that the association with a
broad range of fungal partners was the ancestral state in orchids
(Fig. 3). The symbiotic shift to ECM or wood- and litter-decaying
saprotrophic fungi is therefore likely an essential predisposition for
the evolution of mycoheterotrophy (Table 1). The trophic mode
shift to mycoheterotrophy seems thus to go in parallel with
increased importance of ECM and SAP fungi while gradually dis-
carding the rhizoctonias that were associated with the autotrophic
ancestors.

In arbuscular and ECM systems, several experimental studies
have shown that plants can reward greater nutrient-providing sym-
bionts with increased carbon supplies, and thus ‘choose’ optimal
fungal partners from the local environment (Bever et al., 2009;
Kiers et al., 2011; Bogar et al., 2019). An increased level of myco-
heterotrophy requires an increased dependence on fungal carbon,
ultimately replacing photosynthesis in MH plants. Because carbon
is the primary resource that non-photosynthetic mycoheterotrophic
plants receive from their mycorrhizal interactions, Taylor & Bruns
(1997) hypothesized that the driving force for orchids to change
their fungal partners is to obtain a more stable and higher amount
of carbon and/or nitrogen. It has been suggested that ECM fungi,
which are tightly associated with forest trees, or SAP fungi living
on dead wood or decaying leaves are more beneficial partners for
mycoheterotrophic orchids in deeply shaded forest habitats than
rhizoctonias, which may have limited SAP capabilities (Roberts,
1999). Recent genomic studies have shown that multiple lineages
of ECM fungi exhibit a reduced capability to acquire C from soil
organic matter and plant cell walls, which is elucidated by rampant
loss of genes encoding lignocellulose-degrading enzymes present in
their SAP ancestors (Miyauchi et al., 2020). Interestingly, ECM
fungi have evolved novel and species-specific genes, which may
contribute to their tight symbiotic associations with forest trees
(Kohler et al., 2015; Hess et al., 2018; Miyauchi et al., 2020), and
in this way provide more stable nutrient supplies to nearby orchids
species in the tripartite network (Merckx, 2013).
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