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Abstract 

Objective:  Human precision cut lung slices (PCLS) are widely used as an ex vivo model system for drug discovery 
and development of new therapies. PCLS reflect the functional heterogeneity of lung tissue and possess relevant lung 
cell types. We thus determined the use of PCLS in studying non-coding RNAs notably miRNAs, which are important 
gene regulatory molecules. Since miRNAs play key role as mediators of respiratory diseases, they can serve as valuable 
prognostic or diagnostic biomarkers, and in therapeutic interventions, of lung diseases. A technical limitation though 
is the vast amount of agarose in PCLS which impedes (mi)RNA extraction by standard procedures. Here we modified 
our recently published protocol for RNA isolation from PCLS to enable miRNA readouts.

Results:  The modified method relies on the separation of lysis and precipitation steps, and a clean-up procedure 
with specific magnetic beads. We obtained successfully quality miRNA amenable for downstream applications such 
as RTqPCR and whole transcriptome miRNA analysis. Comparison of miRNA profiles in PCLS with published data from 
human lung, identified all important miRNAs regulated in IPF, COPD, asthma or lung cancer. Therefore, this shows suit‑
ability of the method for analyzing miRNA targets and biomarkers in the valuable human PCLS model.
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Introduction
MicroRNAs (miRNAs) are key transcriptional regula-
tors of mRNA in eukaryotic cells. They are among the 
most abundant classes of gene regulatory molecules 
and control a wide range of biological functions includ-
ing cellular proliferation, differentiation and apoptosis 
[1–3]. miRNAs are non-coding, single-stranded RNAs of 
20–23 nucleotides and negatively regulate their mRNA 
targets by degrading and/or inhibiting protein transla-
tion. miRNAs may have a broad function in fine-tuning 

the protein-coding genes and their discovery has revo-
lutionized our understanding of gene regulation [4–6]. 
Many studies now link dysregulated miRNA expression 
to diseases, leading to their increasing importance as bio-
markers and therapeutic agents [7–9]. The leading areas 
of miRNA diagnostics include the cancer field, neurologi-
cal and cardiovascular diseases [3, 10, 11]. For therapeu-
tic invention, approaches are made using miRNA mimics 
to inhibit tumor growth [12–15]. Furthermore, chem-
ically-modified antisense oligonucleotides are used to 
interfere with miRNA function (antagomirs) [16, 17] and 
their therapeutic efficacy was already shown for example 
in a cardiovascular disease setting [18–20]. Some RNA 
therapeutics have been approved or in phase III trials 
[21]. Accumulating number of investigations show a piv-
otal role of miRNAs in the pathogenesis of respiratory 
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diseases such as fibrosis, asthma or chronic obstructive 
pulmonary disease (COPD) [22–27]. Given these central 
role of miRNAs in lung diseases, they are candidates for 
prognostic or therapeutic biomarkers and novel thera-
peutic approaches.

Precision-cut lung slices (PCLS) are widely used for 
discovery and development of new drugs and therapies in 
lung diseases [28]. They are thin viable sections of lung 
tissue which can be cultured under normal cell culture 
conditions and exposed to agents such as drugs, chemi-
cals, nanoparticles, virus, bacteria or fungi [29]. PCLS 
reflect the functional heterogeneity of lung tissue and 
possess relevant cell types including airway and alveolar 
epithelial cells, smooth muscle cells, endothelial cells, 
and much more. Active populations of both innate and 
adaptive immune cells such as alveolar macrophages 
and T-cells can also be found in varying numbers within 
precision-cut lung slices. They have been proven to pro-
vide highly translational data [30, 31]. During work with 
PCLS the large amount of agarose in PCLS impedes RNA 
extraction according to standard procedures. There-
fore, we recently published an optimized protocol for 
RNA isolation from PCLS to perform gene expression 
analysis in this valuable model [32]. Despite increasing 
importance of miRNAs, we did not find so far studies 
describing the isolation and analysis of miRNA derived 
from PCLS. We thus aimed to establish an optimized 
protocol for isolating total RNA including miRNA from 
PCLS. Here we show miRNA from PCLS amenable for 
downstream applications such as RTqPCR or whole tran-
scriptome miRNA analysis. We also demonstrate the 
suitability of human PCLS as a model for lung specific 
miRNA investigations by comparing miRNA profiles of 
PCLS samples with published data from human lungs.

Main text
Methods
Human lung tissue and PCLS preparation
Human lung lobes were obtained from male and 
female patients who underwent lung resection for can-
cer. Tumor- free tissue was processed immediately on 
the day of resection. The average age of patients was 
70 ± 11 years. PCLS preparation, cultivation and storage 
are described in detail in Additional file 1.

Isolation of total RNA including miRNA
RNA including miRNA was isolated using the Mag MAX 
mirVana Total RNA Isolation Kit (ThermoFisher Scien-
tific) with several modifications. The detailed protocol 
and the RNA quality assessment are described in Addi-
tional file 1.

Quantitative real time RT‑PCR analysis (RTqPCR)
RTqPCR for miR-15a was performed using the miScript 
PCR system (Qiagen) and qPCR reactions were per-
formed using an ABI PRISM 7500 real-time PCR detec-
tion system (Applied Biosystems). Detailed conditions 
and efficiency calculation are described in Additional 
file 1.

Whole transcriptome miRNA analysis and data analysis
Whole transcriptome miRNA analysis was performed 
using Affymetrix GeneChip® miRNA 4.0 arrays (Ther-
moFisher Scientific) according to the manufacturer’s 
instructions. Briefly, 100  ng of total RNA was labeled 
with biotin using the flashtag™ HSR RNA labeling kit 
(ThermoFisher Scientific) and then hybridized for 18  h 
at 48 °C with the array, which was subsequently washed, 
stained, and read out with a GeneChip® Scanner 3000 
7G. The raw data are available at the Gene Expression 
Omnibus (GEO) site (http://​www.​ncbi.​nlm.​nih.​gov/​geo, 
accession number for this dataset GSE167705). Quality 
control of microarray analysis and visualization of the 
miRNA data were undertaken using metrics and meth-
ods contained in Transcriptome Analysis Console Soft-
ware (TAC 4.0, Thermo Fisher Scientific) as described in 
detail in Additional file 1.

Data comparison with published data from human lung
We searched NCBI PubMed and the Gene Expression 
Omnibus (GEO) repository for miRNA profiles from 
human lungs, and, for instance, we downloaded Raw.
CEL files from GSE81293 (Expression of miRNA from 
lung tissue from Systemic Sclerosis patients with inter-
stitial lung disease (SSc-ILD) and healthy controls [33]. 
Detailed re-analysis and comparison of data was per-
formed as described in Additional file  1. Furthermore, 
we compared our miRNA profiles with miRNAs that are 
implicated in respiratory diseases obtained from litera-
ture search.

Results and discussion
Application of an optimized protocol for RNA isolation 
including miRNA from PCLS and assessment of miRNA 
by RTqPCR
Inspired by our recently published protocol for RNA 
isolation [32], we established a protocol for isolation of 
total RNA including miRNA from PCLS which should 
be suited also for mRNA and miRNA analysis. We used 
in total 48 PCLS samples from three human donors and 
carried out treatments with five different substances 
at three different dose levels as indicated in Additional 
file  2: Table  S1. All samples yielded good RNA qual-
ity, i.e. high RNA purity with an A260/A280 ratio around 
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2.0 and high RNA integrity with a RIN value around 9.0 
(Additional file  2: Table  S1). Representative bioanalyzer 
results for RNA integrity with clear bands at 18 s and 28 s 
rRNA for n = 10 human PCLS are shown in Fig. 1a. Fur-
thermore, we used Agilent Small RNA assays to visualize 
the presence of small RNAs in the total RNA prepara-
tion (Fig.  1b). As expected for inclusion of small RNAs 
in samples the miRNA region around 20 nucleotides 
was visible as a small hill, while great amounts of tRNAs 
(73–95 nt), small 5 s rRNAs (120 nt) and 5.8 s rRNA (160 
nt) could be detected by peaks. Overall, the electrophero-
gram clearly visualized the presence of small RNAs in the 
samples.

Next we analyzed the expression of miR-15a, which 
is highly expressed in human tissues, rendering it as an 
ideal positive control for validating miRNA isolation and 
RTqPCR quality assessment [6]. RTqPCR analysis of sev-
eral human PCLS cDNA dilutions resulted in an accurate 
and linear detection (r2 = 0.9945) of miR-15a with high 
amplification efficiency (E = 91.2%) and a single peak in 
the melting curve (Fig. 1c). This shows also the suitabil-
ity of the isolated miRNA derived from human PCLS for 
RTqPCR based miRNA expression analysis.

Genome‑wide miRNA profiling in human PCLS and detection 
of characteristic pulmonary miRNAs
We performed genome-wide miRNA profiling for 
untreated control PCLS samples from n = 10 different 

donors. For comparison purposes with the control sam-
ples, we also included for analysis n = 9 PCLS samples, 
which were treated with three different dose of a chemical 
compound for risk assessment screening. We analyzed 
the miRNA data using quality control metrics and visu-
alization methods for gene expression arrays contained 
in the Transcriptome Analysis Console (TAC 4.0) soft-
ware. In all the miRNA arrays, the signal values obtained 
for the 5’ and 3’ hybridization controls, i.e. cRNA of bio-
tin genes bioB, bioC, and bioD from E. coli and cre gene 
from P1 bacteriophage, increased as expected from bioB 
to cre (Fig. 2a, b). This increase in the signal values for the 
hybridization controls was a reflection of their increas-
ing relative concentrations. Thus, all the miRNA arrays 
passed the hybridization control metrics, which were 
used in monitoring hybridization efficiency. Moreover, all 
the miRNA arrays also passed the thresholds for spike-
in controls consisting of five oligonucleotide probe sets 
to confirm poly(A) tailing, ligation, and lack of RNAses 
in the RNA samples (Fig. 2c). A log 2 signal values > 9.96 
were obtained for the five oligonucleotide probe sets in all 
the miRNA arrays. We also inspected the signal box plot 
of CHP files after normalization using the RMA method 
and we found that the miRNA arrays did not differ dra-
matically from each other (Fig. 2d). Figure 2e shows the 
graph after Principal Component Analysis (PCA) on 
CHP files, while Fig. 2f shows the hierarchical clustering 
graph of filtered 75 miRNAs from the comparison of one 

Fig. 1  Assessment of RNA quality for human PCLS. a Representative bioanalyzer results using Agilent RNA 600 Nano assay showing the integrity of 
RNA isolated from 10 different human PCLS samples (virtual RNA gel format and electropherogram depicting fluorescence units versus run time in 
seconds). b Representative bioanalyzer results using Agilent Small RNA assay visualizing the presence of small RNAs (electropherogram depicting 
fluorescence units versus run time in seconds). c miScript PCR assay for miR-15a, calibration curve and melting curve using several human PCLS 
cDNA dilutions
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Fig. 2  Quality control of miRNA data. Affymetrix microarrays were subjected to quality control criteria specified in Transcriptome Analysis Console 
(TAC 4.0), i.e. (a, b) 5’ and 3’ hybridization controls, (c) spike-in controls and d signal box plot. e Principal component analysis (PCA) mapping of the 
miRNA data, showing majority of untreated control samples in one group and treated samples in another group. f Hierarchical clustering of filtered 
genes (Fold Change <  −2 or > 2, P-Value < 0.05, 75 miRNAs, listed in Additional file 5: Table S4) in samples treated with T1-HD vs. untreated control. 
T1 = Methyl acrylate (CAS 96–33-3), LD = 0.1 mM, MD = 0.3 mM, HD = 1 mM
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treatment group vs untreated control. In both PCA and 
hierarchical clustering graphs, we observed essentially 
separate clustering of treated samples especially in the 
high dose (HD) from the untreated ones. Heterogeneity 
was evident though in the control group presumably due 
to differences in donor origin.

The lung has a unique miRNA expression profile and 
characteristic miRNA signatures are linked to specific 
pathological condition [5, 24, 34]. Therefore, we assessed 
the miRNA profile obtained in human PCLS (Additional 
file  3: Table  S2), according to the maintenance of char-
acteristic pulmonary miRNAs. In detail, our data indi-
cated that miR-195 and miR-200c which are uniquely 
expressed in lung were detected and that several impor-
tant miRNAs for physiological lung functions [5, 34, 35] 
such as let-7, miR-145/146a/b, miR-155, miR-15/16/17, 
miR-26a and miR-29 were also expressed in human 
PCLS (Additional file 4: Table S3). We also checked the 
data for expression of characteristic miRNAs associated 
with specific pathological condition. Major miRNAs 
described in idiopathic pulmonary fibrosis with puta-
tive functions in aberrant inflammatory responses and 
in regulation of extra cellular matrix synthesis, collagen 
expression, matrix metalloproteases (MMP) expression 
and epithelial-mesenchymal transition [25, 27, 36, 37] 
such as let-7d, miR-145, miR-199, miR-200b/c, miR-21, 
miR-26a, miR-29a/c and miR-92a (and several others, see 
Additional file 4: Table S3) could be detected in human 
PCLS. miRNAs such as miR-125a/b, miR-145/146a, miR-
149, miR-15b and miR-199a (Additional file 4: Table S3) 
are described as mediators of the TGFß signaling cascade 
and of genes with impact on the development and pro-
gression of COPD, inflammatory response, and airway 
epithelial repair after injury. They are involved in regu-
lation of airway smooth muscle function, Th2 response 
activation, macrophage differentiation, recruitment of 
eosinophils, regulation of matrix metalloproteases, and 
intensification of unfolded protein responses which con-
tributes to lung cell apoptosis and lung inflammation [25, 
35, 38]. miRNAs described with important function in 
asthma are mainly involved in the promotion of chronic 
inflammation with effects on T helper 2 (Th2) cells [5, 25] 
such as miR-106a, miR-126, miR-145/146a, miR-181a, 

miR-21 and miR-221/222, which were also detectable in 
PCLS (Additional file  4: Table  S3). Furthermore, miR-
NAs have also been implicated in the regulation of cel-
lular pathways including differentiation, proliferation and 
survival linked to cancer [5, 23, 35]. Some miRNAs which 
act as tumor suppressors are downregulated in lung can-
cer as e.g. members of the let-7 family, miR-100, miR-16 
and miR200b, others as e.g. miR-146b, miR-155, miR-21 
and miR-221/222 act in promoting tumor formation and 
were also detected (Additional file 4: Table S3). Overall, 
we show good comparison of our miRNA dataset (Addi-
tional file 3: Table S2) with published data from healthy 
human lung (GSE81293) [33] (Fig. 3). Indeed, of the lung 
disease-associated miRNAs compared, 59 of 65 miRNAs 
exhibited more or less similar expression in PCLS and in 
the lung tissue.

Conclusion
In summary, the presented protocol resulted in miRNA 
of high quality for transcriptome wide analysis and 
detection of important miRNAs for several pulmonary 
pathophysiological condition. Therefore, this method 
will be well suited to analyze miRNA targets and bio-
markers in the human PCLS model.

Limitations
It would be desirable to compare our PCLS datasets 
with more datasets of healthy human lungs from the lit-
erature to confirm our results. However, as of today in 
the GEO data base only older Affymetrix array versions 
are additionally available and the TAC 4.0 software 
does not allow matching of these miRNA probe IDs 
with the current Affymetrix GeneChip® miRNA arrays 
version 4.0. Furthermore, the number of donors for 
PCLS datasets was limited. However, we feel confident 
that the presented protocol is suitable for downstream 
applications because it overcomes the limitations of 
miRNA isolation from PCLS based on agarose and that 
it resulted in the detection of the most characteristic 
pulmonary miRNAs.
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Fig. 3  Examples of lung-disease related miRNAs obtained in human PCLS and their level of expression as compared to normal lung samples 
(GSE81293). Heatmap was based on average signal intensities (log2 values) after microarray analysis and generated using GraphPad Prism 8.3.1
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