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Accurate knowledge of transport properties of Li-insertion
materials in application-relevant temperature ranges is of
crucial importance for the targeted optimization of Li-ion
batteries (LIBs). Galvanostatic intermittent titration technique
(GITT) is a widely applied method to determine Li-ion diffusion
coefficients of electrode materials. The well-known calculation
formulas based on Weppner’s and Huggins’ approach, imply a
square-root time dependence of the potential during a GITT
pulse. Charging the electrochemical double layer capacitance at
the beginning of a GITT pulse usually takes less than one
second. However, at lower temperatures down to � 40 °C, the
double layer charging time strongly increases due to an

increase of the charge transfer resistance. The charging time
can become comparable with the pulse duration, impeding the
conventional GITT diffusion analysis. We propose a model to
describe the potential change during a galvanostatic current
pulse, which includes an initial, relatively long-lasting double
layer charging, and analyze the accuracy of the lithium diffusion
coefficient, derived by using the Weppner-Huggins method
within a suitably chosen time interval of the pulse. Effects
leading to an inaccurate determination of the diffusion
coefficient are discussed and suggestions to improve GITT
analyses at low temperature are derived.

1. Introduction

Lithium-ion batteries (LIBs) are currently considered the most
attractive option to power hybrid- and all-electric vehicle.[1,2]

However, the user acceptance is still quite limited, mainly due
to high costs, safety concerns, unsatisfactory fast charging, and
insufficient range capabilities. Furthermore, the wide-spread
adoption of electric vehicles is restricted by insufficient low
temperature performance. Besides additional energy demands
for heating the driver‘s compartment in cold-climate countries
at the expense of the battery capacity and driving range, the
power capability of current LIBs is dramatically reduced at

subzero temperatures. This is due to increasing kinetic and
mass transport limitations inside the electrodes and the
electrolyte.[3,4] Particularly, the lithium diffusion in the cathode
material is expected to slow down significantly at low temper-
ature. Accordingly, researchers attempt to determine lithium
diffusion coefficients of novel cathode materials in application-
relevant temperature ranges of � 40–50 °C (cf. for example Refs.
[5–13]). Such studies are essentially required for both, knowl-
edge-based material development (e.g. understanding the
impact of the host structure or dopants) and targeted design
optimization based on modeling and simulation. For these
purposes, the accuracy of the parameters determined in kinetic
studies is of crucial importance, as it forms the basis for
subsequent developments.

The most frequently used method to determine the
diffusion coefficient is the galvanostatic intermittent titration
technique (GITT). It is considered to be one of the most reliable
methods. Figure 1 shows a schematic of the idealized potential
change during a GITT pulse. The voltage response is charac-
terized by an initial jump, the so called IR drop (IR ¼ E1 � E0)
and the subsequent increase from E1 to E2 followed by a second
IR drop and a relaxation transient after current interruption. In
the seminal work by Weppner and Huggins,[14] it was shown
how the chemical diffusion coefficient can be estimated from
the measured potential data. The corresponding formulas to
determine the diffusion coefficient assume a square-root time
dependence of the potential during the GITT pulse. The initial
charging of the electrochemical double-layer capacitance is
usually very short and can be disregarded. However, it becomes
significant at low temperature. Because of the increasing
charge-transfer resistance with lowering the temperature, the
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charging time of the double-layer capacitance increases, and
the potential curve noticeably differs from the idealized pulse in
Figure 1.[15]

In the present work, we attempt to analyze the accuracy of
the diffusion coefficient derived from GITT data in the limiting
case of low temperature. We propose a model to describe the
potential progression during a galvanostatic current pulse,
which includes the charging of the double-layer capacitance.
Within the framework of this model, we first simulate potential
pulses for given diffusion coefficient and, subsequently,
determine the diffusion coefficient according to the Weppner-
Huggins approach. To this end, we determine the slope dE=d

ffiffi
t
p

by means of linear regression within a suitably chosen time
domain of the current pulse, excluding the initial charging
period of the double-layer capacitance. We found that the
accuracy of the diffusion coefficient, derived in this way, is
related to the temperature and the state of lithiation (SOL e.g.
as x in LixCO2) and depends strongly on the chosen time
domain of the GITT pulse for the diffusion analysis. The
theoretical considerations are complemented by experimental
investigations on the cathode material LiNi0.5Co0.2Mn0.3O2
(NCM523). Different effects leading to an inaccurate determi-
nation of the diffusion coefficient are discussed and guidelines
for GITT analyses at low temperature are derived.

Methods Section

GITT Analysis

Considering a thin film geometry of the electrode material,
Weppner and Huggins derived the following equation for the
diffusion coefficient D (Eq. (36) in Ref. [14]) from the square-root
time dependence of the potential for times t!L2/D (L is the film
thickness):

D ¼
4
p

IGS
AS F cmax

� �2 dEeqðxÞ=dx
dEðtÞ=d

ffiffi
t
p

� �2

(1)

where IGS is the galvanostatic current, AS is the area of the
electrolyte-oxide interface (EOI), F is Faraday’s constant, cmax is the
maximum lithium density in the oxide (in molm� 3), and x ¼ c=cmax
is the stoichiometry of lithium in the oxide, referred to as state of
lithiation (SOL) in the following. EeqðxÞ is the equilibrium potential
(open circuit voltage) as a function of the SOL. EðtÞ is the potential
progression between the characteristic potential values E1 and E2 in
Figure 1. For sufficiently small current and short pulses, the
derivative dEeqðxÞ=dx can be approximated by ðE4 � E0Þ=ðx4 � x0Þ,
where x0 is the SOL at the beginning of the pulse and x4 at the end
of the relaxation phase (cf. Figure 1). Then, Equation (1) becomes:

D ¼
4
p

IGS
AS F cmax

1
x4 � x0

� �2 E4 � E0
dEðtÞ=d

ffiffi
t
p

� �2

(2)

In this formula, the change of the SOL due to one GITT pulse can
be expressed asx4 � x0 ¼ � IGS tP=ðFe Vel cmaxÞ (for charging IGS > 0),
where tP is the pulse duration, e is the volume fraction of the active
cathode material, and Vel is the total electrode volume. The porous
cathode in LIBs typically consists of an agglomerate of sphere-like
lithium oxide particles. Approximating the specific surface area aS
of the particles by aS ¼ 3e=rP with rP as particle radius (cf. for
exampleRef. [12]), one obtains the surface area of the EOI as
AS ¼ aSVel ¼ 3eVel=rP. Inserting these relations into Eq. (2) yields the
following equation for the diffusion coefficient:

D ¼
4
9p

rP
tP

E4 � E0
dEðtÞ=d

ffiffi
t
p

� �2

(3)

Note that for spherical particles (in difference to the thin film
geometry considered in Ref. [14]), the square-root time dependence
of the potential is valid for t� r2P=D (within 5% accuracy for
t < 0:0032 r2P=D, see e.g. Ref. [15]).

Modeling

The electrochemical processes during a GITT measurement were
theoretically analyzed within the single particle model (SPM),[16,17]

which is considered to be adequate at low current typical for GITT.
The EOI is modeled in an approximate manner similar to an RC-
circuit with resistor and capacitor in a parallel connection (cf.
Figure 2). The capacitor represents the capacitance of the electric
double layer at the EOI. The charge transfer resistance is given by
Rct ¼ UC � Eeq xSð Þ

� �
=IBV, where the current passing the EOI is

described by the Butler-Volmer (BV) equation:

Figure 1. Schematic of potential change EðtÞ as a function of time during a
galvanostatic current pulse and the subsequent relaxation phase.

Figure 2. Equivalent circuit of the EOI consisting of the charge transfer
resistance Rct and the capacitance Cdl of the double layer. The schematic
shows the current contributions to the galvanostatic current IGS due to
charge transfer (IBV) through the EOI and initial charging of the double layer (
Cdl _UC).
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IBV ¼ I0

exp aF
RT UC � Eeq xSð Þ
� �� �

�

exp � 1� að ÞF
RT UC � Eeq xSð Þ
� �� �

8
><

>:

9
>=

>;
(4)

In this formula, a is the anodic charge transfer coefficient, R is the
gas constant, T is the temperature, UC is the potential drop at the
EOI, and xS is the SOL at the surface of the oxide particles. The
exchange current I0 is expressed by:

I0 ¼ AS F k 1 � xSð Þax1� a
S (5)

where k is the rate constant (dimension molm� 2 s� 1). The lithium
concentration in the electrolyte, which also affects the exchange
current, is assumed constant since the lithium diffusivity is orders of
magnitude larger compared to solid-state diffusion in the oxide
particles.

Switching on the galvanostatic current IGS initially leads to charging
of the electric double layer at the EOI. This causes an increase of
the potential drop UC at the EOI which, in turn, causes the charge
transfer through the EOI according to the Butler-Volmer law Eq. (4).
From the total current IGS ¼ IBV þ Cdl _UC, one finds the temporal
change of the potential drop:

_UCðtÞ ¼
1
Cdl

IGS � IBV UCðtÞ; xSðtÞð Þð Þ (6)

Here, we have considered that the lithium concentration xS at the
oxide surface changes with time t, which in turn affects the
potential and the charge transfer resistance. The initial condition
for solving differential equation (6) is UCðt ¼ 0Þ ¼ Eeq xSðt ¼ 0Þð Þ. To
solve Eq. (6), one has to calculate simultaneously the development
of the lithium concentration inside the oxide particles. Actually, the
lithium diffusion coefficient in the oxide depends on the lithium
concentration. However, for simplicity, we neglect this dependence
within the lithiation interval DxS covered during one GITT pulse,
which is typically small. Assuming spherical oxide particles of equal
radius rP and isotropic diffusion coefficient D, the lithium diffusion
problem is given by the spherical diffusion equation:

@c
@t ¼ D

1
r2
@

@r r
2 @c
@r (7)

With initial condition cðt ¼ 0Þ ¼ xSðt ¼ 0Þ cmax and boundary con-
ditions:

@c
@r

�
�
�
�
r¼0
¼ 0; � D

@c
@r

�
�
�
�
r¼rP

¼
IBVðtÞ
F AS (8)

Because of the time dependence of the boundary condition at the
particle surface, the concentration evolution has to be calculated
numerically.

Linear analysis: For a first analysis, we consider the limiting case of
small galvanostatic current IGS. In this case, the overpotential
UC � EeqðxSÞ at the EOI is small and the BV-formula (4) can be
linearized. Correspondingly, Eq. (6) becomes:

_UCðtÞ ¼
1
Cdl

IGS � I0 xSðtÞð Þ
F
RT

UCðtÞ � Eeq xSðtÞð Þ
� �

� �

(9)

The charisitc time is introduced in [Eq. (10)]:

t ¼
Cdl
I0
RT
F ¼

Cdl
AS

1
F k 1 � xSð Þax1� a

S

RT
F (10)

Using the characteristic time, Equation (9) can be rewritten as:

_UC þ
1

t xSð Þ
UC ¼

IGS
Cdl
þ

1
t xSð Þ

Eeq xSð Þ (11)

To roughly estimate the duration of charging the electric double
layer, we neglect the initial change of the lithium concentration xS,
i. e. we replace in (11) xSðtÞ by xSð0Þ ¼ xS0. Then, Eq. (11) can be
solved analytically:

UCðtÞ ¼
IGS t

Cdl
1 � e� t=t
� �

þ Eeq xS0ð Þ (12)

(here t ¼ t xS0ð Þ). The time t in Eq. (12) has the meaning of the
double-layer charging time t

ðlinÞ
dl (in linear approximation). Clearly,

the neglect of the temporal change of xS is a rough approximation,
which is expected to be reasonable for small galvanostatic current
and large lithium diffusion coefficient. Because of
t
ðlinÞ
dl / k 1 � xSð Það Þ� 1 (cf. Eq. (10)), the charging time increases with
decreasing rate constant and for large SOL xS ! 1. With lowering
the temperature, the rate constant and thus the exchange current
strongly decrease. Consequently, the overpotential UC � EeqðxSÞ in
Eq. (4) increases to provide the prescribed galvanostatic current. In
this limit, the above linear analysis will fail. Thus, a numerical
analysis including the lithium diffusion inside the oxide particles
must be performed to properly describe the potential change
during a GITT pulse as base for an accurate determination of the
lithium diffusion coefficient.

Nonlinear analysis: For the general case of the nonlinear BV-
relationship (4), the system of differential equations (6) and (7) was
solved numerically. The ordinary differential equation (6) was solved
by the simple Euler method and the partial differential equation (7)
by an explicit finite difference method[18]. The accuracy of the finite
difference method was proven by comparison with the analytic
solution of the concentration evolution for constant lithium current
density at the surface of the oxide particles (cf. page 96 in Ref. [18]).

Model parameters: For the numerical calculation of the potential
change during a GITT pulse, appropriate input parameters for low
temperatures were extracted from Electrochemical impedance
spectroscopy (EIS) measurements on the cathode material NCM523
(cf. Ref. [15] for details on EIS measurements). The double layer
capacitance varies only slightly within the considered temperature
range (Figure 3a) when compared to the strong change of the
charge transfer resistance (Figure 3b). Thus, to simplify the param-
eter study, the specific double layer capacitance was fixed at a
mean value of cdl ¼ Cdl=AS ¼ 3 Fm

� 2. It has to be noted that this is
about 10 times larger than typical values reported in the literature
[19–21]. (A higher value of 80 Fm� 2 was reported in Ref. [22].) The
comparatively high value of 3 Fm� 2 is most likely related to the
fact that we referred the capacitance to the surface AS of the
10 μm-sized secondary oxide particles consisting of small primary
particles with sizes of a few 100 nm. Thus, the real surface area is
considerably larger. The specific charge-transfer surface-resistance
rct ¼ RctAS was referred to the same area. Accordingly, the time
constant RctCdl ¼ rctcdl is independent of the area.

The charge transfer resistance, Rct, (cf. Figures 2 and 3b) is closely
related to the rate constant k. In the limit of small galvanostatic
current, we find from the linearized BV-formula (4)
IBV ¼ I0 F UC � Eeq

� �
=RT . With the relation UC � Eeq ¼ IBV Rct, the
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exchange current results as I0 ¼ RT=ðF RctÞ. Together with Eq. (5),
the relation between rate constant and resistance follows as
k ¼ RT=ðF2 RctASð1 � xSÞ

ax1� a

S Þ. The charge transfer coefficient was
supposed as a ¼ 0:5. For an order-of-magnitude estimate of the
rate constant, we employed the charge transfer resistance derived
from EIS measurements on NCM523.[15] In correspondence to the
estimated values in Table 1, we included k-values ranging from
10� 8 to 10� 5molm� 2 s� 1 in the following parameter study.

The number of titrations of a GITT analysis covering the whole SOL
range of a LIB is typically 20 to 50 pulses with a pulse duration of
about 200 to 3000 s.[8,11,23–25] For example, covering an SOL range
from 0.5 to 0.9 by 40 pulses, the SOL increment per pulse follows as
Dx ¼ 0:01. The corresponding galvanostatic current density
through the oxide surface results from a charge balance as
iGS ¼ IGS=AS ¼ Dx e cmax rP=3 tP (e-elementary charge). Choosing
cmax ¼ 49131 molm

� 3, rP ¼ 5 mm, and tP ¼ 1800 s, we find
iGS ¼ 0:044 A m

� 2. In the following model calculations,
iGS ¼ 0:1 Am

� 2as well as the relatively small value iGS ¼ 0:01 Am
� 2

were used. The smaller value is expected to be more suited at very
low temperatures because of slower lithium diffusion in the
electrolyte. The lower the current, the better the suppositions of
the SPM are fulfilled. The ohmic resistanceROhm, which is in series
with the RC circuit in Figure 2, was fixed. The ohmic voltage drop
results as EOhm ¼ ROhm iGSAS. Our choice of ROhm ¼ 12 W and
AS ¼ 19:1 cm

2 corresponds to the experimental results in Ref. [15].

For the equilibrium potential as a function of the SOL, Eeq xð Þ, we
employed the quasi-equilibrium values shown in Figure 4. They
were obtained during GITT measurements at 273 K after a
relaxation period of 14400 s between the GITT pulses.[15] Actually,
the equilibrium potential slightly depends on temperature. How-

ever, for demonstration purposes, we applied Eeq xð Þ at 273 K also
for the other temperatures.

For calculating the lithium diffusion in the oxide particles during
one GITT pulse, we supposed spherical particles with radius
rP ¼ 5 mm and uniform initial lithium concentration. The diffusion
coefficient was chosen in the range D ¼ 10� 16 to10� 14 m2s� 1

according to reported diffusion data for NCM523 at different
temperatures [7, 11, 12, 15, 21]. The rather small value of
D ¼ 10� 16m2s� 1 was included as limiting case, considering that
lithium diffusion could strongly slow down at very low temper-
atures.

Figure 3. Results of EIS measurements on NCM523: specific double-layer capacitance (a) and charge-transfer surface-resistance (b) as a function of the SOL for
different temperatures.

Table 1. Rate constant estimated in linear approximation from experimen-
tally determined charge transfer resistance at different temperatures and
SOL.

Temperature
[°C]

SOL Charge-transfer surface
resistance [Wm2]

Rate
constant
[molm� 2 s� 1]

� 40 0.904 24.2 2.9 · 10� 8

� 10 0.713 0.217 2.4 · 10� 6

+40 0.714 0.0108 5.7 · 10� 5

Figure 4. Equilibrium potential Eeq xð Þ as a function of the SOL, which was
experimentally determined at 273 K.
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2. Results

2.1. Potential Calculations

In the following, we present results of numerical calculations of
the temporal potential change during a GITT pulse. As outlined
above, we employed the single particle model Ref. [16, 17] since
the applied current was low. In view of the intended application
of formula (3) for determining the diffusion coefficient from the
potential change, the potential EðtÞ ¼ ROhmIGS þ UCðtÞ is plotted
as a function of the square root of time

ffiffi
t
p
. In Figure 5,

potential changes calculated for temperatures 25 °C and � 40 °C
are compared. The rate constant and diffusion coefficient were
chosen as limiting cases of our parameter study to clearly
demonstrate the problems which arise in the application of

formula (3) for determining the diffusion coefficient. The curves
in Figure 5 show a significant deviation from a strict linear
behavior, which would otherwise correspond to a square-root
time dependence of the potential as required by formula (3) to
be valid. The double-layer charging causes an initial transition
region of about 1 s at 25 °C and 100 s at � 40 °C. Subsequently,
the curve follows an approximate square-root time depend-
ence, especially in the case of the small diffusion coefficient of
10� 16 m2 s� 1 at the temperature of � 40 °C. The potential change
at 25 °C exhibits a noticeable curvature beyond a time of about
100 s (see dotted line in Figure 5). The reason for this deviation
from the linear behavior is obviously that the lithium diffusion
penetration depth

ffiffiffiffiffiffiffiffi
4Dt
p

of about 2 μm at time t ¼ 100 s and
D ¼ 10� 14 m2s� 1 becomes comparable with the radius of the
oxide particles of 5 μm so that the square-root time depend-
ence is no longer valid.

2.2. Determination of Diffusion Coefficient

In view of the demonstrated deviation of E vs
ffiffi
t
p

from strictly
linear behavior, the question arises whether a suited time
interval t1 < t < t2, exhibiting approximately linear behavior,
can be chosen to derive the slope dEðtÞ=d

ffiffi
t
p
, which is adequate

for an accurate determination of the diffusion coefficient. As
displayed in Figure 6, a straight line is fitted from the data
points within a certain time interval to derive the slope. The
chosen time interval in Figure 6a is clearly not suited and yields
an inaccurate diffusion coefficient. This case is shown here only
for demonstration. Such an improper choice of the lower cut
time t1 could happen for example in an automated analysis
without visual inspection of pulse shapes. The apparently suited
choice of the time interval in Figure 6b yields a diffusion
coefficient which overestimates the exact value by about 50%.

Within a comprehensive parameter study, we have inves-
tigated the impact of choosing different lower (t1) and upper (

Figure 5. Comparison of calculated potential changes during GITT pulses at
25 °C and � 40 °C (red left axis) as a function of

ffiffi
t
p
. Respective rate constant

and diffusion coefficient were chosen to demonstrate expected changes of
the potential with lowering the temperature. For better comparability, the
pulse at 25 °C is also displayed in a scaled version (dash-dotted line, purple
right axis). Further parameters: x0 ¼ 0:9, iGS ¼ 0:01 Am

� 2.

Figure 6. Determination of the diffusion coefficient using different time intervals for estimating the slope dEðtÞ=d
ffiffi
t
p
by linear fitting. An improper choice of

the lower cut time t1 ¼ 9 s (e.g. by an automated analysis) leads to an inaccurate diffusion coefficient of Dfit ¼ 0:47 � 10
� 16 m2s� 1 compared to the exact value

of Dexa ¼ 10
� 16 m2s� 1 (a). Choosing t1 ¼ 81 s and t2 ¼ 900 s yields the better result of Dfit ¼ 1:47 � 10

� 16 m2s� 1 (b). Further parameters: T ¼ � 20 �C,
k ¼ 10� 7 molm� 2s� 1, x0 ¼ 0:9, iGS ¼ 0:01Am

� 2.
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t2) cut times on the diffusion coefficient derived by using
Equation (3). In the following, we present selected cases that
demonstrate particular difficulties in the determination of the
diffusion coefficient, especially at low temperature. Figure 7a
shows fitted diffusion coefficients for a parameter set which is
expected to correspond to room temperature measurements.
For demonstration purposes, a relatively small diffusion coef-
ficient was chosen in Figure 7b. In the latter case, the potential
change E vs

ffiffi
t
p

exhibits almost strictly linear behavior after a
short initial transition region. The derived diffusion coefficients
for different chosen time intervals ðt1; t2Þ are close to the exact
value, almost independent of the lower cut time t1. The
deviation from the exact value somewhat increases with
increasing the upper cut time t2, which is attributed to a very
slight positive curvature of E vs

ffiffi
t
p
. For the larger diffusion

coefficient, Dexa ¼ 10
� 14m2s� 1 (Figure 7a), the potential change

shows a much larger curvature. As a consequence, the under-
estimation of the diffusion coefficient strongly increases up to
one order of magnitude with increasing upper cut time t2.

Figure 8 shows results of derived diffusion coefficients for a
parameter set which is expected to apply to low temperature.
Because of the wide range of reported diffusion coefficients for
the cathode material NCM523, we considered three values
ranging from Dexa=10

� 14 m2 s� 1 down to Dexa=10
� 16 m2 s� 1. The

double layer charging time of the pulses is about τdl �100 s,
independent of the diffusion coefficient. The choice of a lower
cut time t1<τdl (e.g. by an automated analysis) can lead to
strong underestimations of the diffusion coefficient by orders of
magnitude. The deviation from the exact value reduces by
choosing a large upper cut time t2 to compensate the bad
choice of t1. With cut time t1 well above the charging time (t1=
361 s), the derived diffusion coefficients are rather close to the
exact value in case of the given diffusion coefficients Dexa=
10� 16 m2 s� 1 (Figure 8c, slight overestimation) and Dexa=
10� 15 m2 s� 1 (Figure 8b, slight underestimation). However, for
Dexa=10

� 14 m2 s� 1 (Figure 8a), all derived diffusion coefficients
are considerably below the exact value despite an apparently

adequate choice of the time interval (t1,t2). Obviously, there is
no pronounced time region which allows application of formula
(3). Initially, the potential change is dominated by the double-
layer charging and subsequently the condition for the applic-
ability of formula (3), in this case t! rP

2/D=2500s, already starts
to be violated.

The double layer charging time can be reduced by perform-
ing GITT measurements at higher galvanostatic current. This
time reduction is a consequence of the nonlinear current-
potential relation of the BV-formula (4). The resistance dimin-
ishes with increasing current. An example of derived diffusion
coefficients using parameters as in Figure 8, but with ten-fold
higher current, is shown in Figure 9. The charging time tdl is
reduced from about 100 s in Figure 8 to about 10s in Figure 9.
For given diffusion coefficient of Dexa ¼ 10

� 16m2s� 1 (Figure 9c),
the derived diffusion coefficients are overestimations of up to
one order of magnitude with increasing times t1 andt2. For
Dexa ¼ 10

� 15m2s� 1 (Figure 9b), the derived values are remark-
ably close to the exact ones, whereas for Dexa ¼ 10

� 14m2s� 1

(Figure 9a) the diffusion coefficient is underestimated by more
than a factor of three.

3. Discussion

The presented examples of the determination of the diffusion
coefficient (Figures 6 to 9) demonstrate that considerable
inaccuracies can appear in applying formula (3). To obtain
diffusion coefficients as accurate as possible, the following
issues are valuable.

Near room temperature, the double layer charging time tdl

is typically small compared to the duration of the GITT pulse.
The upper cut time t2 should be chosen sufficiently close to
t1 > tdl to exclude the later time region from the fit, where the
plot E vs

ffiffi
t
p
exhibits a significant curvature, particularly for large

diffusion coefficient. Accordingly, relatively short GITT pulses
are sufficient (e.g. tP ¼ 200 s Ref. [25]). This would also increase

Figure 7. Overview of derived diffusion coefficients in dependence on the time interval t1; t2ð Þ, used for determining dEðtÞ=d
ffiffi
t
p
by linear fitting. The diagrams

show two cases for the given diffusion coefficients (dashed horizontal lines) of Dexa ¼ 10
� 14m2s� 1 (a) and 10� 16m2s� 1 (b). Besides the potential change (black

line, right y-axis), the calculated diffusion coefficients are displayed as a function of discrete values of
ffiffiffiffi
t2
p

(x-axis) with t1 as parameter. Colored lines are
guides to the eye. Further parameters: T ¼ 25 �C, k ¼ 10� 5 molm� 2s� 1, x0 ¼ 0:8, iGS ¼ 0:01Am

� 2.

ChemPhysChem
Articles
doi.org/10.1002/cphc.202001025

890ChemPhysChem 2021, 22, 885–893 www.chemphyschem.org © 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH

Wiley VCH Montag, 03.05.2021

2109 / 197489 [S. 890/893] 1

http://orcid.org/0000-0003-4276-2110


the SOL-resolution in the determination of the dependence
DðxÞ on the SOL since the SOL-change Dx per pulse is small.
With lowering the temperature, the double layer charging time
strongly increases, especially at low galvanostatic current. Thus,
sufficiently long pulses are necessary, e.g. tP � tdl � 100 s for
the examples in Figure 8. As a tendency, those examples reveal
that a lower cut time t1 well above tdl (e. g. t1 ¼ 3 tdl) yields
more accurate results. With increasing upper cut time t2, the
diffusion coefficient is stronger overestimated (D small) or
underestimated (D large) depending on the diffusion coeffi-
cient.

The calculations in Figure 8 were performed for an inten-
tionally low galvanostatic current (to best guarantee the
suppositions of the SPM at low temperature). Hence, the total
time of a GITT analysis becomes inconveniently large. More
typical is a current as chosen in Figure 9. For higher current, the
double-layer charging time considerably reduces at low temper-
ature. The reduction of the charging time with lowering the
rate constant k (due to lower temperatures) is shown in
Figure 10 for different galvanostatic currents. The charging time
t63 in Figure 10 is defined as the time when the current IBV
through the EOI (cf. Eq. (4)) has reached 63% of the galvano-
static current (i. e. IBV=IGS ¼ 1 � e

� 1 � 0:63%). Also, the charging

time derived by the linear analysis above (cf. Eq. (10)) is
displayed in Figure 10 for comparison. The plots show that, at
low rate constant, the linear approximation is valid only for very
small galvanostatic current.

According to the results in Figure 10, the use of a higher
galvanostatic current seems advantageous since the charging
time is considerably reduced and a smaller lower cut time t1
can be chosen. However, this does not necessarily improve the
accuracy of the derived diffusion coefficient, as demonstrated in
Figure 9. Depending on the value of the given diffusion
coefficient, a strong over- or underestimation of up to one
order of magnitude can occur, particularly for t1 well above τdl.
The over- or underestimation is presumably related to the
different sign of the curvature of the plot E vs

ffiffi
t
p

with varying
diffusion coefficient, current density and the SOL dependent
curvature of the equilibrium curve. Due to this different
behavior, there is no clear recommendation how to obtain best
results for the diffusion coefficient.

The above discussion revealed two main reasons which
complicate the determination of the diffusion coefficient at low
temperature via formula (3): a comparatively long double-layer
charging time and an increasing violation of the supposition
t� r2P=D with increasing upper cut time t2. A further supposi-

Figure 8. Derived diffusion coefficients in dependence on the time interval t1; t2ð Þ for a parameter set corresponding to low temperature. See Figure 7 for
detailed explanations. The diagrams show three cases for given diffusion coefficient (dashed horizontal lines) of Dexa=10

� 14 (a), 10� 15 (b), and 10� 16 m2s� 1 (c).
Further parameters: T ¼ � 40 �C, k ¼ 10� 8 molm� 2s� 1, x0 ¼ 0:9, iGS ¼ 0:01Am

� 2.
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tion in deriving formula (3) is that the slope dEeqðxÞ=dx of the
equilibrium potential curve (Figure 4) is nearly constant within
the SOL change DxS at the oxide surface during one GITT pulse.
As a tendency, high current and low diffusion coefficient lead
to large DxS-changes. For example, at the end of one GITT pulse
DxS ¼ 0:0025 for iGS ¼ 0:01 Am

� 2 and D ¼ 10� 14 m2s� 1, whereas
DxS ¼ 0:11 for higher current iGS ¼ 0:1 Am

� 2 and slower
diffusion D ¼ 10� 16 m2s� 1 (initial SOL xS ¼ 0:9, T ¼ 273 K,
k ¼ 10� 7 molm� 2s� 1, tP ¼ 1800 s). The equilibrium potential
curve in Figure 4 shows strong changes of the slope dEeqðxÞ=dx
in the SOL-range x ¼ 0:9 to x ¼ 0:79, which causes deviations
from the supposed E /

ffiffi
t
p

behavior. Thus, to improve the
diffusion analysis in this SOL region, it is important to choose
short GITT pulses and small current. The former is however
limited by the requirementtP > tdl. For preferably small current,
the potential change during one pulse is comparatively small.
However, at low temperature, the charge transfer resistance is
high so that also small currents lead to well measurable
potential changes.

Figure 9. Derived diffusion coefficients in dependence on the time interval t1; t2ð Þ for parameters as in Figure 8, but with higher galvanostatic current
iGS=0.1Am

� 2. See Figure 7 for explanations. The given diffusion coefficients (dashed horizontal lines) are Dexa=10
� 14 (a), 10� 15 (b), and 10� 16 m2s� 1 (c). Further

parameters: T= � 40 °C, k=10� 8 molm� 2s� 1, x0=0.9.

Figure 10. Calculated double-layer charging time τ63 as function of the rate
constant for different galvanostatic currents together with the result of the
linear analysis Eq. (10). The lines are guides for the eye. The temperatures
corresponding to the different rate constants are indicated in the diagram.
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4. Conclusions

The knowledge of the lithium diffusion coefficient at low
temperature is important for the understanding and optimiza-
tion of LIBs. Its determination by GITT turns out to be much
more complicated than at room temperature. We proposed a
model for predicting the potential change during GITT meas-
urements, which is appropriate also at low temperature where
the charge transfer resistance at the EOI is comparatively high.
At low temperature, the charging time of the double-layer
capacitance of the EOI can become comparable with the
duration of the galvanostatic current pulse. This impedes the
determination of the diffusion coefficient from the measured
data according to the well-known method proposed by
Weppner and Huggins.[14] Best results are obtained by choosing
an appropriate time interval of the plot E vs

ffiffi
t
p
for determining

the slope dE=d
ffiffi
t
p
, which excludes the initial double layer

charging and the late diffusion stage where E vs
ffiffi
t
p
can show a

significant curvature if the time approaches r2p=D. At low
temperature and high galvanostatic current, the curvature of
the plot E vs

ffiffi
t
p

can additionally be caused by the curvature of
the equilibrium potential EeqðxÞ, which is typically pronounced
for SOL values near x ¼ 0:9. In limiting cases (cf. Figure 9c),
there is no clear straight-line segment of the plot E vs

ffiffi
t
p

for
determining the proper slope dE=d

ffiffi
t
p
. We hope that the

simulation of potential pulses on the base of the proposed
model, including double-layer capacitance and charge transfer
resistance data derived by EIS, will enable to determine the
diffusion coefficient also in those complex limiting cases. This
way, the accuracy of parameters determined by GITT over a
wide temperature range might be improved to support knowl-
edge-based material development and targeted design optimi-
zation based on modeling and simulation of LIBs.

Conclusively we expect to find the behavior described here
not only in Lithium intercalation materials but in intercalation
materials in general.
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