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The human glycobiome is in constant flux as we transition between
states of well-being, acute infection, chronic disease and natural
aging. Microbes contribute to these frequent alterations in glycan
composition during nutrient acquisition (Bell and Juge 2020; Brown
and Koropatkin 2020; Low et al. 2020; Agarwal and Lewis 2021),
host molecular mimicry (Patry et al. 2019), microbial warfare (Jank
et al. 2015; Nothaft and Szymanski 2019) and activation of host
innate and adaptive immune responses (Yang et al. 2018; Garber
et al. 2021). Although in many cases, these microbes, both good and
bad, are exhibiting primordial requirements for nutrient scavenging,
dynamic changes are occurring in all environments that envelop them.
In this collection of articles, the contributors discuss the many unique
adaptations bacteria have evolved that consequently alter the host
glycobiome, particularly at mucosal surfaces.

The motivation for this special issue originated at the Society
for Glycobiology (SfG) Annual meeting in New Orleans, Louisiana,
November 19–22, 2016. That particular meeting was focused on
Glycoscience communities and the impact sugars have on all aspects
of life including the ecological habitat that surrounds us, the foods
that we ingest and the various organisms that populate our universe,
including the microbes within our bodies. It was at that meeting that
there were several presentations describing microbial transformation
of the host glycobiome. This issue is not an exhaustive review of
the excellent work being done in the field, but rather a selection
of studies presented at the SfG meetings over the past 5 years that
illustrate this process. For example, in this issue, Agarwal and Lewis
(2021) describe how vaginal sialoglycan degradation by sialidases
produced by Gardnerella vaginalis leads to bacterial vaginosis. The
authors emphasize the importance of sialic acid on mucosal surfaces,
and the protection provided by the resident anaerobic bacteria and
lactobacilli, in the maintenance of a healthy vaginal microbiome.
In the next article, Low et al. (2020) review the wide array of
glycoside hydrolases (GHs) secreted by Clostridium perfringens.
This opportunistic pathogen not only causes necrotic enteritis in
the intestinal tract of poultry but also is a significant cause of
foodborne diarrheal illness in humans (Wenzel et al. 2020). We learn
that one strain of C. perfringens can possess up to 89 different

carbohydrate-active enzymes (CAZymes), many of which have been
shown to degrade complex host sugars found in the mucosa. These
enzymes include sialidases as mentioned above, galactosidases, hex-
osaminidases, fucosidases, endo- and exoglycosidases, and a new
class of zinc metalloproteases (three Zmps) that cleave peptide link-
ages preceding a sialylated O-glycan residue. A striking feature of
the C. perfringens enzyme organization is the multimodularity of
many of the GHs and peptidases with 13 that have at least one or as
many as six carbohydrate-binding modules (many from CBM family
32 or 51) that tune the specificity and performance of the catalytic
domain. Finally, some of these multimodular enzymes such as the
GH33 sialidases NanJ and NanH, associate into larger complexes
to maximize efficiency of mucin degradation.

Bell and Juge change the focus from microbial pathogens to
commensal bacteria such as Akkermansia, Bacteroidetes and Lach-
nospiraceae that are notorious mucin glycan degraders (Bell and Juge
2020). We learn that microbes that inhabit the gut are ideally suited to
occupy this environment and possess an arsenal of systems for nutri-
ent acquisition and degradation. Mucin-degrading bacteria across the
three major Phyla found in the gut, namely Bacteroidetes, Firmicutes
and Actinobacteria, most commonly possess a range of sulfatases,
sialidases, fucosidases and acetylases that target the terminal mucin
carbohydrates. Many of these “de-capping” enzymes are localized to
the cell surface, facilitating the cross-feeding of both commensal and
pathogenic species, and providing access to the core carbohydrate
structure for further deconstruction. In the final article, Brown and
Koropatkin (2020) describe the model symbiont, Bacteroides thetaio-
taomicron, and detail how this common gut commensal not only
deconstructs host glycans, but also possesses complex systems for gly-
can uptake. Complex carbohydrate utilization by gut Bacteroidetes
generally proceeds via the limited breakdown of the substrate at
the cell surface followed by import of the glycan fragments through
a TonB-dependent transporter and then complete saccarification in
the periplasm. Using this template, B. thetaiotaomicron catabolizes
highly sulfated host glycans such as heparin/heparan sulfate and
chondroitin sulfate/dermatan sulfate/hyaluronic acid, providing the
microbe with a competitive advantage in the gut, but interestingly
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Fig. 1. Remodeling of host glycoproteins intensifies sepsis. Gram negative pathogens such as Salmonella species and Escherichia coli stimulate TLR4 to increase

production of host neuraminidases, which leads to enhanced clearance of alkaline phosphatase isozymes TNAP and IAP by the Ashwell-Morell receptor. Loss of

alkaline phosphatase, which can detoxify LPS, perpetuates inflammation and reduces survival in a murine sepsis model. Reprinted with permission from Yang

et al. (2018).

has also been shown to lead to inflammation in susceptible hosts.
This metabolic strategy of harboring most glycolytic enzymes within
the periplasm can limit the potential for glycan sharing as has been
observed with xylan degradation by Bacteroides ovatus (Rogowski
et al. 2015) and yeast mannan by B. thetaiotaomicron (Cuskin et al.
2015). However, some Bacteroidetes contribute significantly to cross-
feeding via cell surface and outer membrane vesicles (Rakoff-Na-
houm et al. 2016) that harbor GHs that liberate sialic acid or fucose
from mucin for neighboring bacteria (Ndeh and Gilbert 2018) and
invasive pathogens (Garber et al. 2020).

Although microbial digestion of host glycans accounts for the
majority of the remodeling events observed on host mucosal sur-
faces, we learned from Yang et al. (2018) in the Marth group
that Gram-negative bacterial lipopolysaccharides (LPS) induce host
sialidase production through Toll-like receptor 4 (TLR4) activation.
Sepsis-induced signaling subsequently stimulates the removal of host
innate immune defense enzymes such as alkaline phosphatase, among
other glycoproteins, through well-known protein aging and clear-
ance mechanisms including the Ashwell-Morell receptor (Figure 1).
Through these studies and others, we are discovering that the host
glycobiome provides a rich source of targets for manipulation and
nutrients for its resident microbes that in turn stimulate changes

to this landscape, both directly and indirectly, through their diverse
mechanisms of survival.
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