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Abstract. Deep neural networks achieve stellar generalisation even when they
have enough parameters to easily fit all their training data. We study this phe-
nomenon by analysing the dynamics and the performance of over-parameterised
two-layer neural networks in the teacher–student setup, where one network, the
student, is trained on data generated by another network, called the teacher. We
show how the dynamics of stochastic gradient descent (SGD) is captured by a set
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of differential equations and prove that this description is asymptotically exact
in the limit of large inputs. Using this framework, we calculate the final general-
isation error of student networks that have more parameters than their teachers.
We find that the final generalisation error of the student increases with network
size when training only the first layer, but stays constant or even decreases with
size when training both layers. We show that these different behaviours have
their root in the different solutions SGD finds for different activation functions.
Our results indicate that achieving good generalisation in neural networks goes
beyond the properties of SGD alone and depends on the interplay of at least the
algorithm, the model architecture, and the data set.
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Deep neural networks behind state-of-the-art results in image classification and other
domains have one thing in common: their size. In many applications, the free parameters
of these models outnumber the samples in their training set by up to two orders of mag-
nitude [1, 2]. Statistical learning theory suggests that such heavily over-parameterised
networks generalise poorly without further regularisation [3–9], yet empirical studies
consistently find that increasing the size of networks to the point where they can easily
fit their training data and beyond does not impede their ability to generalise well, even
without any explicit regularisation [10–12]. Resolving this paradox is arguably one of
the big challenges in the theory of deep learning.

One tentative explanation for the success of large networks has focussed on the prop-
erties of stochastic gradient descent (SGD), the algorithm routinely used to train these
networks. In particular, it has been proposed that SGD has an implicit regularisation
mechanism that ensures that solutions found by SGD generalise well irrespective of the
number of parameters involved, for models as diverse as (over-parameterised) neural
networks [10, 13], logistic regression [14] and matrix factorisation models [15, 16].

In this paper, we analyse the dynamics of one-pass (or online) SGD in two-layer
neural networks. We focus in particular on the influence of over-parameterisation on
the final generalisation error. We use the teacher–student framework [17, 18], where
a training data set is generated by feeding random inputs through a two-layer neural
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network with M hidden units called the teacher . Another neural network, the student ,
is then trained using SGD on that data set. The generalisation error is defined as the
mean squared error between teacher and student outputs, averaged over all of input
space. We will focus on student networks that have a larger number of hidden units
K � M than their teacher. This means that the student can express much more complex
functions than the teacher function they have to learn; the students are thus over-
parameterised with respect to the generative model of the training data in a way that
is simple to quantify. We find this definition of over-parameterisation cleaner in our
setting than the oft-used comparison of the number of parameters in the model with
the number of samples in the training set, which is not well justified for non-linear
functions. Furthermore, these two numbers surely cannot fully capture the complexity
of the function learned in practical applications.

The teacher–student framework is also interesting in the wake of the need to under-
stand the effectiveness of neural networks and the limitations of the classical approaches
to generalisation [11]. Traditional approaches to learning and generalisation are data
agnostic and seek worst-case type bounds [19]. On the other hand, there has been a
considerable body of theoretical work calculating the generalisation ability of neural
networks for data arising from a probabilistic model, particularly within the framework
of statistical mechanics [17, 18, 20–22]. Revisiting and extending the results that have
emerged from this perspective is currently experiencing a surge of interest [23–28].

In this work we consider two-layer networks with a large input layer and a finite, but
arbitrary, number of hidden neurons. Other limits of two-layer neural networks have
received a lot of attention recently. A series of papers [29–32] studied the mean-field
limit of two-layer networks, where the number of neurons in the hidden layer is very
large, and proved various general properties of SGD based on a description in terms of
a limiting partial differential equation. Another set of works, operating in a different
limit, have shown that infinitely wide over-parameterised neural networks trained with
gradient-based methods effectively solve a kernel regression [33–38], without any feature
learning. Both the mean-field and the kernel regime crucially rely on having an infinite
number of nodes in the hidden layer, and the performance of the networks strongly
depends on the detailed scaling used [38, 39]. Furthermore, a very wide hidden layer
makes it hard to have a student that is larger than the teacher in a quantifiable way.
This leads us to consider the opposite limit of large input dimension and finite number
of hidden units.

Our main contributions are as follows:

(a) The dynamics of SGD (online) learning by two-layer neural networks in the
teacher–student setup was studied in a series of classic papers [40–44] from the
statistical physics community, leading to a heuristic derivation of a set of coupled
ordinary differential equations (ODE) that describe the typical time-evolution of
the generalisation error. We provide a rigorous foundation of the ODE approach
to analysing the generalisation dynamics in the limit of large input size by proving
their correctness.

(b) These works focussed on training only the first layer, mainly in the case where the
teacher network has the same number of hidden units and the student network,
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K = M . We generalise their analysis to the case where the student’s expressivity
is considerably larger than that of the teacher in order to investigate the over-
parameterised regime K > M .

(c) We provide a detailed analysis of the dynamics of learning and of the generalisation
when only the first layer is trained. We derive a reduced set of coupled ODE
that describes the generalisation dynamics for any K � M and obtain analytical
expressions for the asymptotic generalisation error of networks with linear and
sigmoidal activation functions. Crucially, we find that with all other parameters
equal, the final generalisation error increases with the size of the student network.
In this case, SGD alone thus does not seem to be enough to regularise larger student
networks.

(d) We finally analyse the dynamics when learning both layers. We give an analytical
expression for the final generalisation error of sigmoidal networks and find evidence
that suggests that SGD finds solutions which amount to performing an effective
model average, thus improving the generalisation error upon over-parameterisation.
In linear and ReLU networks, we experimentally find that the generalisation error
does change as a function of K when training both layers. However, there exist stu-
dent networks with better performance that are fixed points of the SGD dynamics,
but are not reached when starting SGD from initial conditions with small, random
weights.

Crucially, we find this range of different behaviours while keeping the training
algorithm (SGD) the same, changing only the activation functions of the networks and
the parts of the network that are trained. Our results clearly indicate that the implicit
regularisation of neural networks in our setting goes beyond the properties of SGD alone.
Instead, a full understanding of the generalisation properties of even very simple neural
networks requires taking into account the interplay of at least the algorithm, the net-
work architecture, and the data set used for training, setting up a formidable research
programme for the future.

Reproducibility—We have packaged the implementation of our experiments
and our ODE integrator into a user-friendly library with example programs at
https://github.com/sgoldt/nn2pp. All plots were generated with these programs, and
we give the necessary parameter values beneath each plot.

1. Online learning in teacher–student neural networks

We consider a supervised regression problem with training set D = {(xμ, yμ)} with
μ = 1, . . . ,P . The components of the inputs xμ ∈ R

N are i.i.d. draws from the stan-
dard normal distribution N (0, 1). The scalar labels yμ are given by the output of a
network with M hidden units, a non-linear activation function g :R→ R and fixed
weights θ∗ = (v∗ ∈ R

M ,w∗ ∈ R
M×N ) with an additive output noise ζμ ∼ N (0, 1), called

the teacher (see also figure 1(a)):

yμ ≡ φ(xμ, θ∗) + σζμ, where φ(x, θ∗) =

M∑
m=1

v∗mg

(
w∗

mx√
N

)
=

M∑
m

v∗mg(ρm), (1)
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Figure 1. The analytical description of the generalisation dynamics of sigmoidal
networks matches experiments. (a) We consider two-layer neural networks with
a very large input layer. (b) We plot the learning dynamics εg(α) obtained by
integration of the ODEs (9) (solid) and from a single run of SGD (2) (crosses) for
students with different numbers of hidden units K. The insets show the values of
the teacher–student overlaps Rin (5) for a student with K = 4 at the two times
indicated by the arrows. N = 784,M = 4, η = 0.2.

where w∗
m is the mth row of w∗, and the local field of the mth teacher node is

ρm ≡ w∗
mx/

√
N . We will analyse three different network types: sigmoidal with g(x) = erf

(x/
√
2), ReLU with g(x) = max(x, 0), and linear networks where g(x) = x.

A second two-layer network with K hidden units and weights θ = (v ∈ R
K ,w ∈

R
K×N), called the student , is then trained using SGD on the quadratic training loss

E(θ) ∝
∑P

μ=1[φ(x
μ, θ)− yμ]

2
. We emphasise that the student network may have a larger

number of hidden units K � M than the teacher and thus be over-parameterised with
respect to the generative model of its training data.

The SGD algorithm defines a Markov process Xμ ≡ [v∗,w∗, vμ,wμ] with update rule
given by the coupled SGD recursion relations

wμ+1
k = wμ

k −
ηw√
N

vμkg
′(λμ

k)Δ
μxμ, (2)

vμ+1
k = vμk −

ηv
N

g(λμ
k)Δ

μ. (3)

We can choose different learning rates ηv and ηw for the two layers and denote
by g′(λμ

k) the derivative of the activation function evaluated at the local field

of the student’s kth hidden unit λμ
k ≡ wkx

μ/
√
N , and we defined the error term

Δμ ≡
∑

kv
μ
k g (λ

μ
k)−

∑
mv

∗
mg(ρ

μ
m)− σζμ. We will use the indices i, j, k, . . . to refer to stu-

dent nodes, and n,m, . . . to denote teacher nodes. We take initial weights at random
from N (0, 1) for sigmoidal networks, while initial weights have variance 1/

√
N for ReLU

and linear networks.
The key quantity in our approach is the generalisation error of the student with

respect to the teacher:

εg(θ, θ
∗) ≡ 1

2

〈
[φ(x, θ)− φ(x, θ∗)]2

〉
, (4)

https://doi.org/10.1088/1742-5468/abc61e 5

https://doi.org/10.1088/1742-5468/abc61e


J.S
tat.

M
ech.

(2020)
124010

Dynamics of stochastic gradient descent for two-layer neural networks in the teacher–student setup∗

where the angled brackets 〈·〉 denote an average over the input distribution. We can make
progress by realising that εg(θ

∗, θ) can be expressed as a function of a set of macroscopic
variables, called order parameters in statistical physics [21, 40, 41],

Qμ
ik ≡

wμ
i w

μ
k

N
, Rμ

in ≡ wμ
i w

∗
n

N
and Tnm ≡ w∗

nw
∗
m

N
, (5)

together with the second-layer weights v∗ and vμ. Intuitively, the teacher–student over-
laps Rμ = [Rμ

in] measure the similarity between the weights of the ith student node and
the nth teacher node. The matrix Qik quantifies the overlap of the weights of different
student nodes with each other, and the corresponding overlap of the teacher nodes are
collected in the matrix Tnm. We will find it convenient to collect all order parameters
in a single vector

mμ ≡ (Rμ,Qμ,T , v∗, vμ), (6)

and we write the full expression for εg(m
μ) in equation (S31) (see the online supplemen-

tary material, available at (https://stacks.iop.org/JSTAT/12/124010/mmedia)).
In a series of classic papers, Biehl, Schwarze, Saad, Solla and Riegler [40–44] derived

a closed set of ODE for the time evolution of the order parameters m (see SM section
B). Together with the expression for the generalisation error εg(m

μ), these equations
give a complete description of the generalisation dynamics of the student, which they
analysed for the special case K = M when only the first layer is trained [42, 44]. Our
first contribution is to provide a rigorous foundation for these results under the following
assumptions:

(A1) Both the sequences xμ and ζμ, μ = 1, 2, . . . , are i.i.d. random variables; xμ is
drawn from a normal distribution with mean 0 and covariance matrix IN , while
ζμ is a Gaussian random variable with mean zero and unity variance;

(A2) The function g(x) is bounded and its derivatives up to and including the second
order exist and are bounded, too;

(A3) The initial macroscopic state m0 is deterministic and bounded by a constant;

(A4) The constants σ, K, M , ηw and ηv are all finite.

The correctness of the ODE description is then established by the following theorem:

Theorem 1 Choose T > 0 and define α ≡ μ/N. Under assumptions (A1)–(A4), and
for any α > 0, the macroscopic state mμ satisfies

max
0�μ�NT

E ||mμ −m(α)|| � C(T )√
N

, (7)

where C(T) is a constant depending on T, but not on N, and m(α) is the unique solution
of the ODE

d

dα
m(α) = f(m(α)) (8)
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with initial condition m∗. In particular, we have

dRin

dα
≡ fR(m(α)) = ηvi〈Δg′(λi)ρn〉, (9a)

dQik

dα
≡ fQ(m(α)) = ηvi〈Δg′(λi)λk〉+ ηvk〈Δg′(λk)λi〉

+ η2vivk〈Δ2g′(λi)g
′(λk)〉+ η2vivkσ

2〈g′(λi)g
′(λk)〉, (9b)

dvi
dα

≡ fv(m(α)) = ηv〈Δg(λi)〉. (9c)

where all f(m(α)) are uniformly Lipschitz continuous in m(α). We are able to close the
equations because we can express averages in equation (9) in terms of only m(α).

We prove theorem 1 using the theory of convergence of stochastic processes and a
coupling trick introduced recently by Wang et al [45] in section A of the SM. The content
of the theorem is illustrated in figure 1(b), where we plot εg(α) obtained by numerically
integrating (9) (solid) and from a single run of SGD (2) (crosses) for sigmoidal students
and varying K, which are in very good agreement.

Given a set of non-linear, coupled ODE such as equation (9), finding the asymp-
totic fixed points analytically to compute the generalisation error would seem to be
impossible. In the following, we will therefore focus on analysing the asymptotic fixed
points found by numerically integrating the equations of motion. The form of these
fixed points will reveal a drastically different dependence of the test error on the over-
parameterisation of neural networks with different activation functions in the different
setups we consider, despite them all being trained by SGD. This highlights the fact that
good generalisation goes beyond the properties of just the algorithm. Second, knowledge
of these fixed points allows us to make analytical and quantitative predictions for the
asymptotic performance of the networks which agree well with experiments. We also
note that several recent theorems [29–31] about the global convergence of SGD do not
apply in our setting because we have a finite number of hidden units.

2. Asymptotic generalisation error of soft committee machines

We will first study networks where the second layer weights are fixed at v∗m = vk = 1.
These networks are called a soft committee machine (SCM) in the statistical physics
literature [18, 27, 40–42, 44]. One notable feature of εg(α) in SCMs is the existence of a
long plateau with sub-optimal generalisation error during training. During this period,
all student nodes have roughly the same overlap with all the teacher nodes, Rin = const.
(left inset in figure 1(b)). As training continues, the student nodes ‘specialise’ and each
of them becomes strongly correlated with a single teacher node (right inset), leading to
a sharp decrease in εg. This effect is well-known for both batch and online learning [18]
and will be key for our analysis.

Let us now use the equations of motion (9) to analyse the asymptotic generalisation
error of neural networks ε∗g after training has converged and in particular its scaling with
L = K−M. Our first contribution is to reduce the remaining K(K+M) equations of

https://doi.org/10.1088/1742-5468/abc61e 7
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Figure 2. The asymptotic generalisation error of SCMs increases with the network
size. N = 784, η = 0.05,σ = 0.01. (a) Our theoretical prediction for ε∗g/σ

2 for sig-
moidal (solid) and linear (dashed), equations (10) and (12), agree perfectly with
the result obtained from a single run of SGD (2) starting from random initial
weights (crosses). (b) The final overlap matrices Q and R (5) at the end of an
experiment with M = 2,K = 5. Networks with sigmoidal activation function (top)
show clear signs of specialisation as described in section 2. ReLU networks (bottom)
instead converge to solutions where all of the student’s nodes have finite overlap
with teacher nodes.

motion to a set of eight coupled differential equations for any combination of K and M
in section C. This enables us to obtain a closed-form expression for ε∗g as follows.

In the absence of output noise (σ = 0), the generalisation error of a student with
K � M will asymptotically tend to zero as α→∞. On the level of the order parameters,
this corresponds to reaching a stable fixed point of (9) with εg = 0. In the presence of
small output noise σ > 0, this fixed point becomes unstable and the order parameters
instead converge to another, nearby fixed point m∗ with εg(m

∗) > 0. The values of the
order parameters at that fixed point can be obtained by perturbing equation (9) to first
order in σ, and the corresponding generalisation error εg(m

∗) turns out to be in excellent
agreement with the generalisation error obtained when training a neural network using
(2) from random initial conditions, which we show in figure 2(a).

Sigmoidal networks

We have performed this calculation for teacher and student networks with g(x)
= erf(x/

√
2). We relegate the details to section C.2, and content us here to state the

asymptotic value of the generalisation error to first order in σ2,

ε∗g =
σ2η

2π
f(M ,L, η) +O(σ3), (10)

where f(M,L, η) is a lengthy rational function of its variables. We plot our result in
figure 2(a) together with the final generalisation error obtained in a single run of SGD
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(2) for a neural network with initial weights drawn i.i.d. from N (0, 1) and find excellent
agreement, which we confirmed for a range of values for η, σ, and L.

One notable feature of figure 2(a) is that with all else being equal, SGD alone fails to
regularise the student networks of increasing size in our setup, instead yielding students
whose generalisation error increases linearly with L. One might be tempted to mitigate
this effect by simultaneously decreasing the learning rate η for larger students. However,
lowering the learning rate incurs longer training times, which requires more data for
online learning. This trade-off is also found in statistical learning theory, where models
with more parameters (higher L) and thus a higher complexity class (e.g. VC dimension
or Rademacher complexity [4]) generalise just as well as smaller ones when given more
data. In practice, however, more data might not be readily available, and we show in
figure S2 of the SM that even when choosing η = 1/K, the generalisation error still
increases with L before plateauing at a constant value.

We can gain some intuition for the scaling of ε∗g by considering the asymptotic overlap
matrices Q and R shown in the left half of figure 2(b). In the over-parameterised case,
L = K−M student nodes are effectively trying to specialise to teacher nodes which do
not exist, or equivalently, have weights zero. These L student nodes do not carry any
information about the teachers output, but they pick up fluctuations from output noise
and thus increase ε∗g. This intuition is borne out by an expansion of ε∗g in the limit of
small learning rate η, which yields

ε∗g =
σ2η

2π

(
L+

M√
3

)
+O(η2), (11)

which is indeed the sum of the error of M independent hidden units that are specialised
to a single teacher hidden unit, and L = K−M superfluous units contributing each the
error of a hidden unit that is ‘learning’ from a hidden unit with zero weights w∗

m = 0
(see also section D of the SM).

Linear networks

Two possible explanations for the scaling ε∗g ∼ L in sigmoidal networks may be the
specialisation of the hidden units or the fact that teacher and student network can
implement functions of different range if K = M. To test these hypotheses, we calculated
ε∗g for linear neural networks [46, 47] with g(x) = x. Linear networks lack a specialisation
transition [27] and their output range is set by the magnitude of their weights, rather
than their number of hidden units. Following the same steps as before, a perturbative
calculation in the limit of small noise variance σ2 yields

ε∗g =
ησ2(L+M)

4− 2η(L+M)
+O(σ3). (12)

This result is again in perfect agreement with experiments, as we demonstrate in
figure 2(a). In the limit of small learning rates η, equation (10) simplifies to yield the
same scaling as for sigmoidal networks,

ε∗g =
1

4
ησ2(L+M) +O

(
η2
)
. (13)
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This shows that the scaling ε∗g ∼ L is not just a consequence of either specialisation
or the mismatched range of the networks’ output functions. The optimal number of
hidden units for linear networks is K = 1 for all M, because linear networks implement
an effective linear transformation with an effective matrix W =

∑
kwk. Adding hidden

units to a linear network hence does not augment the class of functions it can implement,
but it adds redundant parameters which pick up fluctuations from the teacher’s output
noise, increasing εg.

ReLU networks

The analytical calculation of ε∗g, described above, for ReLU networks poses some addi-
tional technical challenges, so we resort to experiments to investigate this case. We
found that the asymptotic generalisation error of a ReLU student learning from a ReLU
teacher has the same scaling as the one we found analytically for networks with sig-
moidal and linear activation functions: ε∗g ∼ ησ2L (see figure S3). Looking at the final
overlap matrices Q and R for ReLU networks in the bottom half of figure 2(b), we see
that instead of the one-to-one specialisation of sigmoidal networks, all student nodes
have a finite overlap with some teacher node. This is a consequence of the fact that it is
much simpler to re-express the sum of M ReLU units with K = M ReLU units. However,
there are still a lot of redundant degrees of freedom in the student, which all pick up
fluctuations from the teacher’s output noise and increase ε∗g.

Discussion

The key result of this section has been that the generalisation error of SCMs scales as

ε∗g ∼ ησ2L. (14)

Before moving on the full two-layer network, we discuss a number of experiments that
we performed to check the robustness of this result (details can be found in section G of
the SM). A standard regularisation method is adding weight decay to the SGD updates
(2). However, we did not find a scenario in our experiments where weight decay improved
the performance of a student with L > 0. We also made sure that our results persist
when performing SGD with mini-batches. We investigated the impact of higher-order
correlations in the inputs by replacing Gaussian inputs with MNIST images, with all
other aspects of our setup the same, and the same εg–L curve as for Gaussian inputs.
Finally, we analysed the impact of having a finite training set. The behaviour of linear
networks and of non-linear networks with large but finite training sets did not change
qualitatively. However, as we reduce the size of the training set, we found that the lowest
asymptotic generalisation error was obtained with networks that have K > M.

3. Training both layers: asymptotic generalisation error of a neural network

We now study the performance of two-layer neural networks when both layers are trained
according to the SGD updates (2) and (3). We set all the teacher weights equal to a
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constant value, v∗m = v∗, to ensure comparability between experiments. However, we
train all K second-layer weights of the student independently and do not rely on the
fact that all second-layer teacher weights have the same value. Note that learning the
second layer is not needed from the point of view of statistical learning: the networks
from the previous section are already expressive enough to capture the students, and
we are thus slightly increasing the over-parameterisation even further. Yet, we will see
that the generalisation properties will be significantly enhanced.

Sigmoidal networks

We plot the generalisation dynamics of students with increasing K trained on a teacher
withM = 2 in figure 3(a). Our first observation is that increasing the student size K � M
decreases the asymptotic generalisation error ε∗g, with all other parameters being equal,
in stark contrast to the SCMs of the previous section.

A look at the order parameters after convergence in the experiments from figure 3(a)
reveals the intriguing pattern of specialisation of the student’s hidden units behind
this behaviour, shown for K = 5 in figure 3(b). First, note that all the hidden units of
the student have non-negligible weights (Qii > 0). Two student nodes (k = 1, 2) have
specialised to the first teacher node, i.e. their weights are very close to the weights
of the first teacher node (R10 ≈ R20 ≈ 0.85). The corresponding second-layer weights
approximately fulfill v1 + v3 ≈ v∗. Summing the output of these two student hidden
units is thus approximately equivalent to an empirical average of two estimates of the
output of the teacher node. The remaining three student nodes all specialised to the
second teacher node, and their outgoing weights approximately sum to v∗. This pattern
suggests that SGD has found a set of weights for both layers where the student’s output
is a weighted average of several estimates of the output of the teacher’s nodes. We call
this the denoising solution and note that it resembles the solutions found in the mean-
field limit of an infinite hidden layer [29, 31] where the neurons become redundant and
follow a distribution dynamics (in our case, a simple one with few peaks, as e.g. figure 1
in [31]).

We confirmed this intuition by using an ansatz for the order parameters that cor-
responds to a denoising solution to solve the equations of motion (9) perturbatively in
the limit of small noise to calculate ε∗g for sigmoidal networks after training both layers,
similarly to the approach in section 2. While this approach can be extended to any K
and M, we focussed on the case where K = ZM to obtain manageable expressions; see
section E of the SM for details on the derivation. While the final expression is again
too long to be given here, we plot it with solid lines in figure 3(c). The crosses in the
same plot are the asymptotic generalisation error obtained by integration of the ODE
(9) starting from random initial conditions, and show very good agreement.

While our result holds for anyM, we note from figure 3(c) that the curves for different
M are qualitatively similar. We find a particular simple result for M = 1 in the limit of
small learning rates, where:

ε∗g =
η(σv∗)2

2
√
3Kπ

+O(ησ2). (15)
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Figure 3. The performance of sigmoidal networks improves with network size
when training both layers with SGD. (a) Generalisation dynamics observed exper-
imentally for students with increasing K, with all other parameters being equal.
(N = 500,M = 2, η = 0.05,σ = 0.01, v∗ = 4). (b) Overlap matrices Q, R, and sec-
ond layer weights vk of the student at the end of the run with K = 5 shown in (a).
(c) Theoretical prediction for ε∗g (solid) against ε∗g observed after integration of the
ODE until convergence (crosses) (9) (σ = 0.01, η = 0.2, v∗ = 2).

This result should be contrasted with the εg ∼ K behaviour found for SCM.
Experimentally, we robustly observed that training both layers of the network yields

better performance than training only the first layer with the second layer weights fixed
to v∗. However, convergence to the denoising solution can be difficult for large students
which might get stuck on a long plateau where their nodes are not evenly distributed
among the teacher nodes. While it is easy to check that such a network has a higher
value of εg than the denoising solution, the difference is small, and hence the driving
force that pushes the student out of the corresponding plateaus is small, too. These
observations demonstrate that in our setup, SGD does not always find the solution with
the lowest generalisation error in finite time.

ReLU and linear networks

We found experimentally that ε∗g remains constant with increasing K in ReLU and in
linear networks when training both layers. We plot a typical learning curve in green for
linear networks in figure 4, but note that the figure shows qualitatively similar features
for ReLU networks (figure S4). This behaviour was also observed in linear networks
trained by batch gradient descent, starting from small initial weights [48]. While this
scaling of ε∗g with K is an improvement over its increase with K for the SCM, (blue
curve), this is not the 1/K decay that we observed for sigmoidal networks. A possible
explanation is the lack of specialisation in linear and ReLU networks (see section 2),
without which the denoising solution found in sigmoidal networks is not possible. We
also considered normalised SCM, where we train only the first layer and fix the second-
layer weights at v∗m = 1/M and vk = 1/K. The asymptotic error of normalised SCM
decreases with K (orange curve in figure 4), because the second-layer weights vk = 1/K
effectively reduce the learning rate, as can be easily seen from the SGD updates (2),
and we know from our analysis of linear SCM in section 2 that εg ∼ η. In SM section F
we show analytically how imbalance in the norms of the first and second layer weights
can lead to a larger effective learning rate. Normalised SCM also beat the performance
students where we trained both layers, starting from small initial weights in both cases.
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Figure 4. Asymptotic performance of linear two layer network. Error bars indi-
cate one standard deviation over five runs. Parameters: N = 100,M = 4, v∗ = 1, η =
0.01,σ = 0.01.

This is surprising because we checked experimentally that the weights of a normalised
SCM after training are a fixed point of the SGD dynamics when training both layers.
However, we confirmed experimentally that SGD does not find this fixed point when
starting with random initial weights.

Discussion

The qualitative difference between training both or only the first layer of neural networks
is particularly striking for linear networks, where fixing one layer does not change the
class of functions the model can implement, but makes a dramatic difference for their
asymptotic performance. This observation highlights two important points: first, the
performance of a network is not just determined by the number of additional parameters,
but also by how the additional parameters are arranged in the model. Second, the non-
linear dynamics of SGD means that changing which weights are trainable can alter the
training dynamics in unexpected ways. We saw this for two-layer linear networks, where
SGD did not find the optimal fixed point, and in the non-linear sigmoidal networks,
where training the second layer allowed the student to decrease its final error with every
additional hidden unit instead of increasing it like in the SCM.
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