Table 6.
Method | Classifier | Mean accuracy | SD | Sensitivity | Specificity | FPR | NPV | PPV |
---|---|---|---|---|---|---|---|---|
5-fold cross validation for two-class classification | Logistic regression | 90.344 | 0.00793 | 94.872 | 86.441 | 13.55 | 86.44 | 94.87 |
Linear SVM | 88.809 | 0.00980 | 95.59 | 78.407 | 21.59 | 87.05 | 92.13 | |
Weighted KNN | 85.772 | 0.01041 | 94.231 | 69.492 | 30.50 | 82 | 89.09 | |
Simple tree | 82.772 | 0.02041 | 98.718 | 83.051 | 16.94 | 96.07 | 93.90 | |
10-fold cross validation for two-class classification | Logistic regression | 90.372 | 0.00618 | 94.872 | 86.441 | 13.559 | 86.441 | 94.872 |
Linear SVM | 89.06 | 0.00769 | 95.622 | 78.407 | 21.593 | 87.142 | 92.133 | |
Weighted KNN | 86.181 | 0.00823 | 94.231 | 69.492 | 30.508 | 82 | 89.091 | |
Simple tree | 83.823 | 0.01455 | 98.718 | 83.051 | 16.949 | 96.078 | 93.902 |
SD – Standard deviation; PPV – Positive predictive value; NPV – Negative predictive value; FPR – False predictive rate; SVM – Support vector machine; KNN – K-nearest neighbor