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Abstract

During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to 

translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly 

formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner 

nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with 

the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing 

budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell 

non-lytically to spread infection. This first budding process is mediated by two conserved viral 

proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This 

chapter focuses on what we know about how the NEC mediates capsid transport to the perinuclear 

space, including steps prior to and after this budding event. Additionally, we discuss the 

involvement of other viral proteins in this process and how NEC-mediated budding may be 

regulated during infection.

Introduction: overview of nuclear egress

Herpesviruses replicate their double-stranded-DNA genomes and package them into capsids 

within the host cell nucleus. These progeny capsids must then exit the nucleus to form 

mature virions within the cytoplasm (Figure 1). The nucleus is surrounded by the nuclear 

envelope - a double membrane bilayer consisting of the inner nuclear membrane (INM) and 

the outer nuclear membrane (ONM) - and most transport in and out of the nucleus occurs 

through nuclear pores, which have an inner channel diameter of ~39-nm (Pante and Kann, 

2002). But at ~125 nm in diameter, herpesviral capsids are too large to fit through the 

nuclear pores and must use a more complex route, termed nuclear egress, to exit the nucleus. 

Multiple lines of evidence support the model whereby capsids first become enveloped at the 

INM, pinching off into the perinuclear space (PNS) (primary envelopment) [reviewed in 

(Bigalke and Heldwein, 2016; Crump, 2018; Roller and Baines, 2017a)]. These perinuclear 

enveloped virions (PEVs) then fuse with the ONM, releasing the capsids into the cytoplasm 

(de-envelopment). The capsids then undergo another, final envelopment, gaining tegument 

proteins (layer between capsid and the envelope) and a final lipid envelope. The mature 

virion then hijacks the secretory pathway and leaves the cell by exocytosis.
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This envelopment/de-envelopment model of nuclear egress is the most widely accepted 

model for capsid escape from the nucleus and is backed up by substantial data. First, 

enveloped virions in the PNS have been observed in cells infected with herpesvirus for 

several decades (Fuchs et al., 2002; Granzow et al., 1997; Reynolds et al., 2002; Stackpole, 

1969). The phenotypes of viral gene deletions likewise provide compelling evidence in favor 

of the envelopment/de-envelopment model. Deletion of the US3 kinase gene from either 

HSV-1 or from the closely related pseudorabies virus (PRV) results in the accumulation of 

PEVs (Klupp et al., 2001; Reynolds et al., 2002; Ryckman and Roller, 2004; Sehl et al., 

2020), which points to budding into the PNS being an intermediate stage in nuclear egress. 

Second, PEVs differ from mature virions in their morphology and protein composition. For 

example, UL31 and UL34, two viral proteins critical for nuclear egress, are absent from 

mature HSV-1 and PRV virions (Fuchs et al., 2002; Reynolds et al., 2002). Conversely, most 

tegument proteins found in mature virions are not found in the nucleus or in PEVs (Gershon 

et al., 1994; Granzow et al., 2001; Klupp et al., 2000; Skepper et al., 2001). Furthermore, 

mature virions are studded with glycoprotein spikes and have a thick tegument while PEVs 

have a smooth envelope and thin tegument (Gershon et al., 1994; Granzow et al., 2001), 

consistent with the two types of particles being formed during different budding events. 

Third, deletions of particular tegument proteins, such as HSV-1 UL36 and UL37, or the 

glycoproteins gD and gE from either HSV-1 or PRV result in unenveloped capsids 

accumulating in the cytoplasm (Brack et al., 2000; Desai et al., 2001; Desai, 2000; 

Farnsworth et al., 2003; Leege et al., 2009; Roberts et al., 2009) suggesting that a secondary 

envelopment step in the cytoplasm is necessary for egress. Lastly, the envelopes of mature 

viral particles from both HSV-1 and varicella-zoster virus (VZV), another alphaherpesvirus, 

are derived from cytoplasmic membranes, rather than nuclear membranes, as shown by 

immunogold electron microscopy and transmission electron microscopy radioautography 

experiments, respectively (Gershon et al., 1994; Skepper et al., 2001). Collectively, these 

observations make a strong case for a model of nuclear egress in which nuclear capsids gain 

their initial, temporary envelope at the INM, escape into the cytoplasm as unenveloped 

capsids, and then acquire the final envelope at the trans Golgi network (Henaff et al., 2012) 

or early endosomes (Hollinshead et al., 2012) (see Chapter 9).

The nuclear egress complex

The nuclear egress complex is essential for nuclear egress

Nuclear egress is mediated by two conserved viral proteins, UL31 and UL34, that form the 

nuclear egress complex (NEC) (Fuchs et al., 2002; Reynolds et al., 2001; Roller et al., 2000) 

[reviewed in (Bigalke and Heldwein, 2016; Hellberg et al., 2016; Roller and Baines, 

2017a)]. This complex is conserved across all members of the Herpesviridae family (see 

Chapter 3), and both the UL31 and UL34 proteins are essential for this process (Fuchs et al., 

2002) (Bubeck et al., 2004; Farina et al., 2005; Reynolds et al., 2001). While UL31 and 

UL34 homologs are known under different names in other herpesviruses, throughout this 

chapter, alphaherpesvirus nomenclature will be used in keeping with the subject of this 

book. UL31 is a soluble nuclear phosphoprotein that is 306-aa long in HSV-1 (Chang and 

Roizman, 1993; Reynolds et al., 2001). UL34, which is 275-aa long in HSV-1, has a single-
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spanning C-terminal transmembrane (TM) region that anchors the complex to the INM such 

that the NEC faces the nucleoplasm (Reynolds et al., 2001; Shiba et al., 2000).

UL31 homologs have nuclear localization signals that target the protein from its site of 

synthesis in the cytosol to the nucleus (Funk et al., 2015; Li et al., 2015; Passvogel et al., 

2015). In the absence of HSV-1 UL34, UL31 is diffusely distributed throughout the 

nucleoplasm (Reynolds et al., 2001; Zhu et al., 1999). In the absence of UL31, UL34 

localizes to the ER membranes, probably, because most UL34 homologs do not have a 

nuclear localization signal. UL31 and UL34 localize to the INM only when both proteins are 

present, either during infection or in uninfected cells expressing UL31 and UL34, which 

suggests that proper localization of the two proteins at the INM requires formation of the 

NEC (Fuchs et al., 2002; Funk et al., 2015; Reynolds et al., 2001) [reviewed in (Hellberg et 

al., 2016; Roller and Baines, 2017a)].

In the absence of either UL31 or UL34, viral replication is reduced by three to four orders of 

magnitude and capsids accumulate within the nucleus (Fuchs et al., 2002) (Bubeck et al., 

2004; Chang and Roizman, 1993; Klupp et al., 2000; Reynolds et al., 2001; Roller et al., 

2000), which indicates that both proteins are required for efficient nuclear egress. Moreover, 

PRV NEC expressed in uninfected cells results in the formation of capsidless perinuclear 

vesicles, demonstrating that UL31 and UL34 are the only viral proteins necessary for 

nuclear budding (Klupp et al., 2007). Formation of capsidless perinuclear vesicles was also 

observed for NEC homologs from gammaherpesviruses Epstein-Barr virus (EBV) (Farina et 

al., 2005; Gonnella et al., 2005) and Kaposi’s sarcoma-associated herpesvirus (KSHV) 

(Desai et al., 2012; Luitweiler et al., 2013) expressed in insect cells using recombinant 

baculoviruses. Together, these findings implicated the NEC in the trafficking of capsids out 

of the nucleus through a nuclear budding mechanism.

High-resolution structures of the NEC

Within the last few years, five crystal structures of the NEC from subfamilies of 

alphaherpesviruses and betaherpesviruses have been determined: one from HSV-1 (PDB ID: 

4ZXS) (Bigalke and Heldwein, 2015), two from PRV (PDB IDs: 4Z3U and 5E8C) (Bigalke 

and Heldwein, 2015; Zeev-Ben-Mordehai et al., 2015), and two from the human 

cytomegalovirus (HCMV) (PDB IDs: 5DOB and 5D5N) (Lye et al., 2015; Walzer et al., 

2015). The NEC has an elongated cylindrical shape (Figure 2). UL34, located at the base of 

the complex, forms a globular pedestal for UL31. UL31, located at the top of the complex, is 

composed of a globular core that rests on UL34 and an N-terminal hook-like extension that 

projects downwards and wraps around UL34. Both UL31 and UL34 have unique folds 

according to Dali structural similarity algorithms (Holm and Rosenstrom, 2010). In all of the 

structures determined thus far, UL31 and UL34 form an extensive interface that can be 

subdivided into two regions: one that involves the globular core of UL31 (interface 1) and 

the other formed by the hook-like extension of UL31 (interface 2) (Figure 2). Prior to 

structural studies, genetic studies performed using in-frame deletion mutants pinpointed 

regions of UL34 from HSV-1 (Liang and Baines, 2005) and UL31 homolog from HCMV 

(Sam et al., 2009; Schnee et al., 2012) necessary for complex formation. While these 

regions, indeed, participate in UL31/UL34 interactions, they map to different interfaces and 
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do not contact one another within the structure (Bigalke and Heldwein, 2015). Additionally, 

point mutations within HSV-1, PRV, and HCMV UL34 suggested specific residues 

necessary for complex formation (Bjerke et al., 2003; Bubeck et al., 2004; Milbradt et al., 

2012; Passvogel et al., 2014; Passvogel et al., 2015; Passvogel et al., 2013; Roller et al., 

2010).

All five NEC structures lack the N terminus of UL31 and the C terminus of UL34, which are 

predicted to be unstructured and were left out of the crystallized constructs to promote 

crystallization (Bigalke and Heldwein, 2015; Lye et al., 2015; Walzer et al., 2015; Zeev-

Ben-Mordehai et al., 2015). These segments contain sequences necessary for HSV-1 NEC 

interaction with membranes (Bigalke et al., 2014), along with the TM anchor of UL34, and 

are expected to be located near the membrane. These so-called membrane-proximal regions 

(MPRs) map to the base of the NEC complex (Figure 2), which places UL34 at the 

membrane-proximal and UL31 at the membrane-distal end of the NEC cylinder.

The NEC homologs have remarkably similar structures despite low sequence identity. The 

biggest difference among the five structures is the conserved C-terminal alpha helix α4 that 

was unresolved in the HSV-1 UL34 structure (Figure 2) (Bigalke and Heldwein, 2015), 

possibly due to differences in the construct boundaries, because the HSV-1 UL34 used for 

crystallization is five amino acid residues shorter than the PRV UL34. Truncated helix α4 in 

HSV-1 UL34 may be less stable and, as a result, higher flexibility of this region would cause 

it to be unresolved in the structure. No structural information is yet available on the NEC 

homologs from gammaherpesviruses such as EBV and KSHV. However, from secondary 

structure predictions, they are expected to share similar folds with their counterparts from 

alpha and betaherpesviruses.

A recent molecular dynamics simulation using the available NEC crystal structures 

investigated the relative flexibilities of NEC heterodimers from HSV-1 and HCMV (Diewald 

et al., 2018). For these studies, the PRV α4 helix was docked into the HSV-1 structure 

corresponding to the missing HSV-1 α4 helix region, prior to simulations. Molecular 

dynamics suggests that isolated NEC heterodimers have different flexibilities, with HCMV 

NEC being more flexible than HSV-1 NEC. Regions of increased flexibility map to the 

UL31/UL34 interface 1 (Figure 2), with UL31 capable of twisting around UL34. The 

differences in flexibility likely stem from low conservation of the interface regions, and it is 

tempting to speculate that the increased rotational freedom at this UL31/UL34 interface of 

the HCMV heterodimer could play a role in the nuclear budding process of 

betaherpesviruses.

Stages in primary envelopment

During primary envelopment, the first step in nuclear egress, capsids bud at the INM to form 

PEVs in the PNS. This process, at a minimum, requires the following events to take place: 

the nuclear lamina is dissolved, capsid docks at the INM, membrane is deformed around the 

capsid to form a nascent bud, and the bud is pinched off the INM releasing the PEV into the 

perinuclear space. Nuclear budding is a complex process that involves several viral and 

cellular participants, some of which have not yet been identified. It is also subject to 
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regulation to prevent budding in the absence of the capsid and to ensure that the mature, 

DNA-containing C-capsids, rather than the immature procapsids, the empty A-capsids, or 

the scaffold-containing B-capsids, described in more detail below, preferentially undergo 

budding. These undercharacterized regulatory mechanisms ensure quality control and 

conservation of resources.

Nuclear lamina alteration

Nuclear lamina is a dense filamentous protein network underneath the INM that provides 

shape and mechanical stability to the nuclear envelope. Nuclear lamina is primarily 

composed of two types of intermediate filament proteins called lamins A and B that 

oligomerize into filaments [reviewed in (Dechat et al., 2008; Gruenbaum and Foisner, 

2015)]. The A-type lamins, A and C, which are the products of alternative splicing of the 

LMNA gene, are expressed mainly in differentiated cells whereas the B-type lamins, B1 and 

B2, are expressed in all cells (Gruenbaum and Foisner, 2015). The B-type lamins tether the 

lamina to the INM by binding integral membrane proteins such as the lamin B receptor, 

lamina-associated proteins (LAPs) and emerin [reviewed in (Goldberg et al., 2008; Schirmer 

and Foisner, 2007; Wilson and Foisner, 2010)]. The A-type lamins, A and C, add additional 

stiffness to the nuclear envelope [reviewed in (Dechat et al., 2008; Gruenbaum and Foisner, 

2015)].

The dense, overlapping filamentous networks of B-type and A-type lamins create a barrier to 

capsid docking at the INM and would probably impede membrane deformation. Efficient 

capsid budding thus requires that the nuclear lamina be disassembled. Complete lamina 

disassembly in uninfected cells occurs during mitosis [reviewed in (Hetzer, 2010)] and is 

achieved by phosphorylation of lamins and LAPs by cellular mitotic kinases CDK1 (cyclin 

dependent kinase 1), PKA (protein kinase A), PKC and MAPK (mitogen-activated protein 

kinase) (Fields and Thompson, 1995; Goss et al., 1994; Guttinger et al., 2009; Heald and 

McKeon, 1990; Likhacheva and Bogachev, 2001; Margalit et al., 2005; Peter et al., 1992). 

However, during herpesvirus infection, no massive disassembly of the lamina is observed, 

likely, because it is important for the virus to preserve the integrity of the nucleus since this 

is where viral gene transcription and genome replication take place. Instead, the lamina is 

disassembled locally (Granzow et al., 1997) through phosphorylation of lamins and LAPs by 

the viral US3 kinase and likely by cellular kinases that are different from the mitotic ones 

(Hertel, 2011; Lv et al., 2019a, b; Roller and Baines, 2017b) [reviewed in (Roller and 

Baines, 2017a)].

Lamins A/C are phosphorylated by PKC which is recruited to the INM, along with the host 

protein facilitator of nuclear egress p32, by the HSV-1 gamma(1)34.5 protein (Wang et al., 

2014; Wu et al., 2016). PKC is also involved in hyperphosphorylation of emerin, along with 

US3, which also contributes to lamina disassembly (Leach et al., 2007; Morris et al., 2007). 

UL13 is another viral kinase that phosphorylates lamina in HSV-2 (Cano-Monreal et al., 

2009) and HCMV (Marschall et al., 2005; Sharma et al., 2014) but in HSV-1, instead, 

appears to regulate the distribution of UL31 and UL34 by phosphorylating US3 (Kato et al., 

2006). Further mechanistic studies are necessary to delineate the exact contributions of both 

viral and host proteins facilitating lamina disruption during nuclear egress.
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Capsid docking to the INM

Herpesviral capsids are icosahedral, with T = 16, and consist of the major capsid protein, 

VP5 (UL19) in alphaherpesviruses, arranged into 11 pentons and 150 hexons, plus 

additional proteins UL18, UL38, and UL35 (Dai and Zhou, 2018) (see Chapter 3). In each 

capsid, one of the 12 vertices contains a single portal composed of the portal protein UL6 

(McElwee et al., 2018) through which viral DNA is encapsidated during assembly 

(Newcomb et al., 2001) and, presumably, ejected early in infection (Newcomb et al., 2007). 

The capsid vertex specific complex (CVSC)/capsid-associated tegument complex (CATC) 

consists of the capsid proteins UL17 and UL25 and ensures proper DNA retention in the 

mature capsid (Dai and Zhou, 2018; Salmon et al., 1998; Stow, 2001) likely by stabilizing 

the capsid to help it withstand the internal pressure of several atmospheres from the 

encapsidated DNA genome (Bauer et al., 2013).

During assembly, a spherical scaffold-containing procapsid forms initially and matures into 

genome-containing icosahedral C-capsids [reviewed in (Baines, 2011)]. Two additional 

icosahedral capsid types observed in infected cells are the empty A-capsids and the scaffold-

containing B-capsids, which are thought to be the defective by-products of capsid assembly 

[reviewed in (Baines, 2011)].

How the capsids reach the INM is yet unclear, but they likely dock to the lamina-free, 

exposed areas of the INM by binding to the UL31 component of the NEC (Funk et al., 2015; 

Leelawong et al., 2011). UL31 likely interacts with the CVSC/CATC at the capsid vertices 

because CVSC/CATC components UL25 and UL17 bind UL31 (Yang and Baines, 2011). 

Furthermore, UL25 mediates interactions between capsids purified from HSV-1 infected 

cells and NEC expressed in vitro (Takeshima et al., 2019). A putative capsid-binding site of 

UL31 has been mapped to a conserved surface patch at the membrane-distal end composed 

of residues (HSV-1 D275-D282, PRV D238-D245) (Bigalke and Heldwein, 2015). In 

HSV-1, residues R281 and D282 of UL31 have been implicated in NEC/capsid binding 

(Takeshima et al., 2019) whereas in PRV, residue K242 (HSV-1 K279) is important for the 

primary capsid envelopment (Ronfeldt et al., 2020; Ronfeldt et al., 2017) but may not 

interact with the capsid directly (Ronfeldt et al., 2020). Although capsids isolated from 

UL25-null HSV-1 or PRV can interact with UL31 (Leelawong et al., 2011; Yang et al., 

2014), this interaction is insufficient for nuclear egress because in the absence of UL25, 

HSV-1 and PRV capsids can only dock at the INM but cannot exit the nucleus (Klupp et al., 

2006; Kuhn et al., 2008). Taken together, these findings suggest that while UL25/UL31 

interaction is not required for capsid docking at the INM, it is necessary for egress.

Although several capsid types are present in the nucleus, primarily C-capsids undergo 

primary envelopment at the INM whereas A- and B-capsids typically do not (Klupp et al., 

2011; Roizman and Furlong, 1974; Stackpole, 1969). These observations imply the 

existence of a capsid selection mechanism that ensures only mature, DNA-filled capsids exit 

the nucleus, which could, in principle, increase the yield of infectious virions by reducing 

unproductive budding of the A- and B-capsids. The nature of this selection mechanism has 

not yet been identified but likely involve interactions between the CVSC/CATC and the 

NEC. Although CVSC/CATC is present on all three capsid types, A- and B- capsids have 

fewer CVSC/CATC copies on the capsid surface (Newcomb et al., 2006). It is also possible 
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that the CVSC/CATC on C-capsids adopts a conformation distinct from those on A- or B-

capsids (Newcomb et al., 2017). Multiple NEC binding sites on a mature C-capsid could 

produce avidity effects, providing the driving force for creating a PEV.

Membrane deformation and budding by the NEC

The NEC is a self-contained budding machine—While the studies discussed above 

suggested the NEC is necessary for capsid budding at the INM and sufficient for 

vesiculation of the INM, they left unclear the exact function of the NEC during nuclear 

egress. Was the NEC mediating the budding process at the INM directly or recruiting yet 

unknown host proteins? To answer this question, recombinant soluble HSV-1 NEC (lacking 

the C-terminal TM) was purified and incubated in vitro with synthetic lipid membranes in 

the form of giant unilamellar vesicles (Bigalke et al., 2014). The NEC vesiculated the 

membranes, forming intraluminal vesicles within the GUVs, in the absence of any other 

factors or ATP. This observation was subsequently recapitulated with recombinant PRV 

NEC anchored to the membranes through the TM of UL34 (Lorenz et al., 2015). These 

findings demonstrated that the NEC is a self-contained membrane budding machine. The 

fact that soluble HSV-1 NEC mediates budding shows that, at least, in vitro, the TM is 

dispensable for budding. Moreover, this region can be replaced with a heterologous TM 

without any ill effects on egress in vivo (Schuster et al., 2012). This suggested that while the 

TM anchors the NEC to the INM in vivo, other regions of the NEC are responsible for 

membrane interactions required for budding.

HSV-1 NEC-mediated budding in vitro requires the presence of acidic lipids (Bigalke et al., 

2014), suggesting the potential involvement of electrostatic interactions. In the case of PRV 

NEC, in-vitro budding required the presence of sphingomyelin or cholesterol (Lorenz et al., 

2015). Thus, lipid composition appears to play an important role in budding.

NEC-mediated membrane budding proceeds rapidly in vitro (Bigalke et al., 2014). In 

addition to generating a scaffold on the inner surface of the nascent bud, the NEC also 

mediates scission of its neck. The ability of the NEC to mediate the entire budding process is 

a unique property of this protein complex. Other enveloped viruses encode proteins that 

mediate budding, yet most must also recruit cellular ESCRT [endosomal sorting complexes 

required for transport (ESCRT)] proteins [reviewed in (Alonso et al., 2016; Hurley, 2015; 

Votteler and Sundquist, 2013)]. For example, the HIV matrix protein Gag forms a scaffold 

on the membranes of buds and recruits ESCRT proteins (Carlson and Hurley, 2012; Flower 

et al., 2020) [reviewed in (Hurley and Cada, 2018)], notably ESCRT-III proteins that mediate 

scission by assembling a spiral-like polymer on the inward face of the membrane neck and 

constricting it (Effantin et al., 2013; Nguyen et al., 2020). Likewise, in Hepatitis C and 

yellow fever viruses from the Flaviviridae family, membrane deformation is driven by the 

formation of an external viral glycoprotein coat, but scission requires ESCRT machinery 

(Barouch-Bentov et al., 2016; Carpp et al., 2011; Corless et al., 2010). Not all enveloped 

viruses, however, recruit ESCRT proteins for membrane budding. Influenza A virus, for 

example, solely uses virally encoded proteins M1 and M2 that mediate scaffolding and neck 

scission, respectively (Rossman et al., 2010) [reviewed in (Rossman and Lamb, 2011, 

2013)]. How NEC accomplishes neck scission is unknown, but according to one proposed 
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scenario (Bigalke et al., 2014), formation of the hexagonal NEC lattice could narrow the 

neck to the point where it could undergo spontaneous scission. Alternatively, the NEC could 

alter local lipid composition to membrane curvature conducive to scission, as has been 

proposed for the Influenza M2 protein (Rossman et al., 2010). Additional experiments are 

needed to elucidate the mechanism behind NEC scission.

HSV-1 nuclear egress is thought to be independent of the ESCRT-III machinery in HEK293 

cells because it is insensitive to a dominant negative mutation of Vps4, an ATPase required 

for ESCRT-III-mediated scission (Crump et al., 2007), considered to be “a gold standard” 

for ESCRT-III involvement (Alonso et al., 2016). However, a more recent report challenged 

that assertion by showing that nuclear egress was reduced in the presence of the Vps4 

dominant-negative mutant in HeLa cells, rather than in HEK293 cells (Arii et al., 2018). 

Moreover, depletion of CHMP4B, an ESCRT-III protein, resulted in accumulation of PEVs, 

apparently, due to impaired scission (Arii et al., 2018). Thus, while HSV-1 NEC is capable 

of mediating scission in vitro, it may recruit ESCRT-III machinery in vivo to increase the 

efficiency of scission. A similar concept is at play in Ebola virus, where the viral matrix 

protein VP40 mediates membrane budding in vitro (Soni and Stahelin, 2014) yet recruits 

ESCRT machinery in vivo (Licata et al., 2003; Silvestri et al., 2007) [reviewed in (Gordon et 

al., 2019)]. Due to the discordant findings regarding the role of ESCRTs in HSV-1 nuclear 

egress, whether the ESCRT-III machinery is universally important for nuclear egress remains 

unclear. Future studies with different viral strains and host cell types are needed to resolve 

this question.

NEC assembly into a hexagonal lattice is important for budding—Cryogenic 

electron microscopy and tomography (cryo-EM/T) demonstrated that during budding in 
vitro, the soluble HSV-1 NEC heterodimer forms hexagonal “honeycomb” coats on the inner 

surface of lipid vesicles (Figure 3B) (Bigalke et al., 2014). Given that the NEC cannot cross 

the membrane bilayer, these budded vesicles appear to be the products of budding and 

scission, because this would be the only way for the protein to get inside the vesicles. NEC 

also forms hexagonal coats on the inner surface of capsidless perinuclear vesicles formed in 

uninfected cells expressing PRV NEC (Figure 3C) (Hagen et al., 2015). Hexagonal 

symmetry evident in the coats formed as the result of budding both in vitro and in vivo 
suggested that the hexagonal arrangement is biologically relevant.

A high-resolution view of interactions involved in NEC oligomerization was afforded by the 

crystal structure of HSV-1 NEC (Bigalke and Heldwein, 2015). In the crystals, NEC 

assembled into a hexagonal lattice built from ~110-Å hexameric rings (Figure 3A). (Bigalke 

and Heldwein, 2015). The symmetry and the dimensions of the hexagonal crystal lattice are 

very similar to those of the hexagonal NEC coats formed in vitro (Bigalke et al., 2014) and 

in vivo (Figures 3B and C) (Hagen et al., 2015). Therefore, NEC interactions within the 

crystal lattice model interactions within the hexagonal coats enabling a systematic 

exploration of the role of oligomerization in the NEC budding mechanism. Additionally, 

HCMV NEC also packed into a hexagonal lattice in one of the crystal forms (Walzer et al., 

2015), which suggests that the NEC from alpha- and betaherpesviruses use similar strategies 

for coat formation and budding. Although no structural information is yet available for NEC 

from any gammaherpesviruses, these principles likely apply to them as well.
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The hexagonal lattice is formed by two types of oligomeric interactions: those within the 

hexameric rings (intra-hexameric) and those between adjacent hexamers (inter-hexameric) 

(Bigalke and Heldwein, 2015). Mutations disrupting oligomeric interfaces reduce budding 

both in vitro (Bigalke and Heldwein, 2015) and in vivo (Arii et al., 2019; Bjerke et al., 2003; 

Roller et al., 2010). For example, the dominant negative (DN) mutation in the UL34 (D35A/

E37A) that blocks capsid budding in vivo (Roller et al., 2010), maps to the hexameric 

interface. Accordingly, this mutant is defective in both budding and coat formation in vitro 
(Bigalke et al., 2014). Therefore, the NEC oligomerization into a hexagonal coat is not only 

necessary for efficient budding, and ultimately nuclear egress, but is also the driving force 

behind the process.

Formation of spherical NEC coats—The NEC crystal lattice is flat while the coat 

formed on vesicles is curved. While the dimensions of the flat lattice are similar to those 

observed in the coat, the coat must allow a degree of flexibility that would permit the 

formation of a curved and ultimately, spherical array. Cryo-ET in combination with 

cryosectioning (CEMOVIS) and focused ion beam cryomilling (cryo-FIB) were used to 

analyze the structure of the NEC coats in capsidless perinuclear vesicles formed in 

uninfected cells expressing PRV NEC (Hagen et al., 2015). The PRV NEC-coated 

perinuclear vesicles were relatively uniform in size (~100–117 nm in diameter). 

Interestingly, budded intraluminal vesicles formed by soluble HSV-1 NEC in vitro range 

widely in size (Bigalke et al., 2014), suggesting that the C terminus of UL34 containing the 

TM (absent from the HSV- 1 NEC construct used in in vitro studies) may somehow 

determine the curvature of the NEC scaffold and, ultimately, the size of the budded vesicle. 

The PRV NEC-coated perinuclear vesicles formed in uninfected cells (Hagen et al., 2015) 

were smaller than the capsid [~125 nm in diameter (Liu et al., 2017a)] or the PEVs isolated 

from cells infected with HSV-1 US3-null mutant (Newcomb et al., 2017). This suggests that 

while the NEC oligomerization favors formation of a scaffold of relatively uniform 

curvature, the capsid defines the size of the NEC scaffold formed in infected cells.

Aside from flexibility, a purely hexagonal array is flat. Curvature can be achieved by the 

regular inclusion of another shape - typically a pentagon - within the hexagonal array, which 

leads to the formation of a polyhedral structure. Consider, for example, a soccer ball, in 

which a spherical shape is achieved by the inclusion of 12 pentagons within an otherwise 

hexagonal arrangement, a structure referred to as an icosahedron. Many viruses, including 

herpesviruses, employ this strategy to form their capsids, and it is reasonable to expect that 

the NEC coat may form an icosahedral structure. Although icosahedral symmetry was not 

observed in NEC coats formed either in vitro or in NEC-expressing cells (Bigalke et al., 

2014; Hagen et al., 2015), these coats were formed in the absence of capsids, leaving open 

the possibility that formation of an icosahedral NEC coat requires the presence of an 

icosahedral capsid. Ideally, this would require in situ imaging of PEVs in infected cells at a 

sufficiently high resolution, which has not yet been achievable. Instead, NEC coats formed 

in the presence of capsids were visualized in PEVs isolated from cells infected with an 

HSV-1 US3-null virus (Newcomb et al., 2017). Deletion of the US3, a viral kinase, results in 

an accumulation of PEVs within the perinuclear space (Klupp et al., 2001; Reynolds et al., 

2002; Ryckman and Roller, 2004). No icosahedral symmetry was evident in reconstructions 
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of NEC coats in PEVs. However, these PEVs were formed in the absence of US3, which 

could have affected the coat structure. Therefore, further studies with wild-type HSV-1 or 

PRV are required to conclusively rule out the icosahedral symmetry in the NEC coats.

In the absence of icosahedral arrangement, a curved coat can alternatively be formed 

through the inclusion of irregular defects into the hexagonal NEC lattice. Such non-

icosahedral arrangement has been observed for the immature HIV-1 capsid formed by the 

Gag matrix protein (Briggs et al., 2009; Schur et al., 2015) and for the early poxvirus 

envelope (Heuser, 2005) formed by D13 protein (Hyun et al., 2011). Although such irregular 

defects have not yet been reported for the HSV-1 NEC coats, molecular dynamics 

simulations of the hexagonal NEC lattice show it to be very flexible (Diewald et al., 2018). 

Such flexibility may allow for effortless incorporation of irregular defects within the coat. 

Ultimately, determining the presence of irregular defects within the NEC coat awaits high-

resolution cryo-ET reconstructions.

Regulation of NEC budding

HSV-1 and PRV NEC-mediated budding is robust in vitro (Bigalke et al., 2014; Lorenz et 

al., 2015) and in uninfected cells expressing the PRV NEC (Klupp et al., 2007). However, 

during infection, capsidless perinuclear vesicles are rarely observed, which suggests that 

NEC-mediated budding at the INM is negatively regulated to prevent unproductive budding 

in the absence of C-capsids [reviewed in (Hellberg et al., 2016; Roller and Baines, 2017a)]. 

One way to regulate budding could be by maintaining the NEC at the INM in an inactive 

form prior to contact with the capsid. Phosphorylation of UL31 could be one potential 

mechanism of downregulating the NEC budding activity. The N terminus of HSV-1 UL31 

contains six serines phosphorylated by the US3 kinase (Mou et al., 2009). Replacement of 

these UL31 serine residues with glutamates, which mimic phosphorylated serines, prevented 

capsid budding (Mou et al., 2009). By contrast, replacing these serines with alanines, which 

mimics a constitutively dephosphorylated state, resulted in the accumulation of the PEVs in 

the perinuclear space (Mou et al., 2009). Deletion or inactivation of the US3 kinase results in 

a similar phenotype (Bjerke et al., 2003; Klupp et al., 2007; Klupp et al., 2001; Reynolds et 

al., 2002; Ryckman and Roller, 2004), which suggests that PEVs accumulate whenever US3 

cannot phosphorylate UL31. While this could mean that phosphorylation of UL31 is 

important for the de-envelopment process (Mou et al., 2009), the alternative possibility is 

that in the absence of negative regulation of budding leads to overproduction of the PEVs.

If phosphorylation of UL31, indeed, inhibits the NEC activity prior to C-capsid docking, 

dephosphorylation would then be required to relieve inhibition. Herpesviral genomes do not 

encode any phosphatases (Bernard Roizman, 2013) but could, potentially, recruit host 

phosphatases for this purpose. Indeed, PRV US3 activates host phosphatases to rearrange 

cytoplasmic actin (Jacob et al., 2013) (see Chapter 3). Altogether, these findings implicate 

US3 in nuclear egress regulation.

A number of tegument proteins, described later in this Chapter, have been implicated in 

nuclear egress and could, in principle, regulate the NEC activity either positively or 

negatively. Additionally, the nonstructural ICP22 (Maruzuru et al., 2014) protein interacts 

with the NEC but is not critical for egress. Another nonstructural HSV-1 protein, UL24, has 
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also been implicated in contributing to nuclear egress (Lymberopoulos et al., 2011), yet not 

much is known about this phenotype.

De-envelopment

During de-envelopment, the PEVs lose their envelopes and NEC coats at the ONM, and the 

naked capsids are released into the cytoplasm. This poorly understood process must include 

fusion of the envelope with the ONM as well as the disassembly of the NEC scaffold around 

the capsid, which could occur concomitantly or sequentially. To ensure efficient nuclear 

egress, PEVs must preferentially fuse with the ONM rather than the INM, but how this 

selection is achieved or whether backfusion events occur is yet unknown. In uninfected cells 

expressing UL31 and UL34 from HSV-1 or PRV, de-envelopment of the capsidless 

perinuclear vesicles either does not take place or is very inefficient because PEVs 

accumulate in herniations (Klupp et al., 2007). This suggests that de-envelopment requires 

viral proteins besides UL31 and UL34.

Defects in de-envelopment typically manifest as the accumulation of PEVs in the PNS, with 

a concomitant reduction in viral titer. Several proteins, as described below, have been 

implicated in de-envelopment. Yet, proteins that mediate membrane fusion during de-

envelopment have not yet been conclusively identified. The conserved viral glycoproteins 

gB and gH, both of which are essential for membrane fusion during herpesviral entry, have 

been reported as important for efficient de-envelopment in HSV-1 because deletion of both 

gB and gH impedes nuclear egress in HSV-1 (Farnsworth et al., 2007). Intact fusion loops of 

gB are important for the de-envelopment (Wright et al., 2009). However, single deletions of 

gB or gH have minimal effects on de-envelopment (Farnsworth et al., 2007) implying 

functional redundancy, which is inconsistent with both glycoproteins being essential for 

fusion during HSV-1 entry (see Chapter 2). This raises the possibility that instead of 

mediating fusion, gB and gH instead contribute to de-envelopment through a different 

mechanism. In any case, gB and gH are simultaneously dispensable for de-envelopment in 

the closely related PRV (Granzow et al., 2001; Klupp et al., 2008). Overexpression of 

another viral glycoprotein gK from HSV-1, which localizes to the ER during infection, 

results in the accumulation of PEVs (Hutchinson and Johnson, 1995), but its precise role in 

the de-envelopment remains unclear.

An outer tegument protein, UL51, has also been implicated in de-envelopment in HSV-1 

(Nozawa et al., 2005). However, UL51 localizes to the Golgi and probably contributes to de-

envelopment indirectly. Treatment of PRV-infected cells with the inhibitor of Golgi-to-ER 

transport, brefeldin A, causes the accumulation of PEVs (Whealy et al., 1991), indicating 

that UL51 could potentially facilitate de-envelopment indirectly by helping traffic yet 

unidentified membrane fusogen(s) to ER and the ONM. Nonetheless, UL51 is dispensable 

for de-envelopment in HCMV, PRV and Bovine Herpesvirus 1 (Klupp et al., 2005c; Raza et 

al., 2016; Schauflinger et al., 2011; Womack and Shenk, 2010). The identification of viral or 

cellular fusogens mediating de-envelopment and the elucidation of their mechanisms is an 

important area for future investigation.
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During de-envelopment, the hexagonal NEC coats within the PEVs need to be disassembled 

to expose the surface of the capsid for subsequent interactions with the tegument proteins in 

the cytoplasm. The fate of the NEC following nuclear egress remains unclear. What triggers 

disassembly is also unknown, but phosphorylation of UL31 by US3 may play a role in the 

disassembly of the NEC coat. HSV-1 US3 is present in the PEVs (Reynolds et al., 2002), 

and it is tempting to speculate that phosphorylation of UL31 within the PEVs could lead to 

structural rearrangements that would disrupt the NEC interactions within the hexagonal 

lattice and promote the disassembly of the NEC coat. However, the N terminal region of 

UL31, targeted by US3, is thought to be located near the membrane due to its apparent 

requirement for NEC/membrane interactions, and it is unclear how US3 would access this 

region sandwiched between the NEC coat and the membrane. Therefore, disassembly of the 

NEC coat could, instead, be facilitated by perturbations to the envelope during fusion with 

the ONM.

Phosphorylation of UL31 by US3 could alternatively serve as a selection mechanism for 

mature C-capsids. According to this scenario, in the absence of phosphorylation, A- and B-

capsids could undergo primary envelopment, along with C-capsids, yet be incapable of 

undergoing de-envelopment and, therefore, accumulate in the PNS as PEVs.

gB, another target of US3, contains only one US3 phosphorylation site located within the gB 

cytoplasmic domain (Wisner et al., 2009). Mutation of this phosphorylation site results in 

the accumulation of PEVs when gH is absent (Wisner et al., 2009). The phosphorylation of 

the cytoplasmic domain could potentially regulate the function of gB by controlling its 

oligomerization state or by triggering a fusogenic conformational change, with the caveat 

that gB may not be mediating fusion during de-envelopment (described above).

Collectively, these findings point to the involvement of US3 kinase activity in the de-

envelopment process. Nevertheless, the modest defect in viral growth, only 10-fold, 

observed in viruses lacking US3 kinase (Mou et al., 2009) argues that while US3 kinase 

activity is important for efficient de-envelopment, it is not essential, at least under the 

conditions of cell culture.

Tegument and nuclear egress

The tegument is a multiprotein layer sandwiched between the capsid and the envelope, 

which is a unique feature of herpesvirus particles. Although tegument proteins are thought to 

be recruited to cytoplasmic capsids, some tegument proteins localize to the nucleus and a 

few of these, UL36, UL47, UL16, UL11 and UL21, are implicated in nuclear egress.

At ~300-kDa, UL36 is the largest protein conserved across the Herpesviridae family. The 

best studied role of UL36 is its interaction with cellular motor proteins dynein and kinesin 

that is essential for directed trafficking of HSV-1 and PRV capsids post-entry and during 

egress (Shanda and Wilson, 2008; Zaichick et al., 2013) (see Chapters 3 and 9). In both 

HSV-1 and PRV, UL36 is dispensable for nuclear egress (Desai, 2000; Luxton et al., 2006; 

Roberts et al., 2009), but in PRV, the absence, capsids egress from the nucleus is less 

efficient in the absence of UL36 (Luxton et al., 2006). Infections with PRV UL36 dually 
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labeled with fluorescent proteins at both N and C termini showed that nuclear UL36 is 

proteolytically cleaved (Leelawong et al., 2012), and only the C-terminal fragment of PRV 

UL36 localizes to the nucleus and co-purifies with nuclear C-capsids (Leelawong et al., 

2012). The C-terminal fragment of PRV UL36 is also sufficient for increased levels of 

nuclear egress compared to a UL36-null virus (Leelawong et al., 2012). Association of the 

C-terminal fragment of UL36 with nuclear capsids has also been reported for HSV-1 

(Radtke et al., 2010). Indeed, UL36 is a component of the aforementioned CVSC/CATC 

located at the capsid vertices. In addition to two copies of UL25 and one copy of UL17, each 

CVSC/CATC also contains two copies of the C-terminal helix of UL36 (Dai and Zhou, 

2018; Liu et al., 2017b). Large numbers of B-capsids were observed in the cytoplasm of 

cells infected with UL36-null HSV-1 (Kharkwal et al., 2016), which suggests that UL36 

contributes to the selection of mature C-capsids for nuclear egress.

Several outer tegument proteins have also been implicated in nuclear egress. UL11, UL16, 

and UL21 are important for efficient cytoplasmic budding of capsids that leads to the 

formation of infectious virions but during infection also localize to the nucleus. UL16 is a 

conserved, ~40-kDa tegument protein that colocalizes with HSV-1 capsids within the 

nucleus of infected cells but is not found on HSV-1 nor HSV-2 capsids after purification 

(Meckes and Wills, 2007; Nalwanga et al., 1996; Oshima et al., 1998), potentially due to a 

weak association between UL16 and the capsid. Infections with HSV-1 or HSV-2 lacking 

UL16 increases the proportion of A- and B-capsids relative to C-capsids within the nucleus, 

suggesting a defect in viral DNA packaging (Gao et al., 2018; Oshima et al., 1998). While 

both HSV-1 and HSV-2 lacking UL16 have reduced ability to generate C-capsids, they differ 

in their replicative capacity. In HSV-1 strains F and KOS, viral titers were reduced 10-fold 

when most of the UL16 gene was deleted (Gao et al., 2018) whereas in several HSV-2 

strains, viral titers were reduced 100-fold (Gao et al., 2017; Gao et al., 2018), and in PRV, 

UL16 is dispensable for replication (Klupp et al., 2005b). These findings suggest a species-

specific role for UL16 during infection such that the differences in replication defects could 

reflect varying roles of UL16 in the viral replication life cycle. In the absence of UL16, 

HSV-1 C-capsids relocate into the cytoplasm whereas HSV-2 C-capsids are retained in the 

nucleus (Gao et al., 2017; Gao et al., 2018). Perhaps, UL16 deletion has a lesser effect on 

the HSV-1 titers because more C-capsids can enter the maturation pathway.

UL11 is the smallest among conserved tegument proteins. During infection, HSV-1 UL11 

localizes to both nuclear and cytoplasmic membranes but does not interact with intranuclear 

capsids, as assessed by immunogold electron microscopy (Baines et al., 1995). Nonetheless, 

a C-terminal deletion of ~2/3 of HSV-1 UL11 results in lower viral titers and a ~10% 

increase in capsid retention at the INM (Baines and Roizman, 1992). The deletion does not 

affect UL11/16 interactions indicating that this phenotype is due to a loss of some other 

function of UL11 (Loomis et al., 2003b). To date, this phenotype appears specific to HSV-1 

because UL11-null PRV has no obvious defects in nuclear egress (Klupp et al., 2005b) 

(Klupp et al., 2005a; Kopp et al., 2003).

UL21 is a ~61-kDa capsid-associated tegument protein that interacts with UL11 and UL16 

(de Wind et al., 1992; Harper et al., 2010; Klupp et al., 2005b; Loomis et al., 2003a). In 

HSV-2 strain 186, deletion of UL21 results in capsid retention within the nucleus and a 

Draganova et al. Page 13

Curr Issues Mol Biol. Author manuscript; available in PMC 2021 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



defect in cell-to-cell spread (Finnen and Banfield, 2018; Le Sage et al., 2013). Some studies 

examining HSV-1 UL21 found it to be dispensable for replication (Baines et al., 1994; 

Mbong et al., 2012) while another reported a 100-fold decrease in replication, albeit due to 

the presence of A- and B-capsids in the cytoplasm rather than a defect in nuclear egress 

(Sarfo et al., 2017). While all PRV strains exhibit a 10-fold decrease in replication, PRV 

strain NIA-3 lacking UL21 results in A- and B-capsids representing 50% of cytoplasmic 

capsids whereas the Kaplan strain exhibits no defects in viral maturation (de Wind et al., 

1992; Klopfleisch et al., 2006; Klupp et al., 2005b; Klupp et al., 1995; Wagenaar et al., 

2001). Strain-specific differences could be the result of differences among the strains, the 

presence of additional unknown mutations in the virus, or due to differences in the cell lines 

used.

While mainly studied in HSV-1, UL47 may play an important role during nuclear egress. 

UL47-null HSV-1 results in a 50-fold reduction in PEVs and accumulation of capsids in the 

nucleus (Liu et al., 2014). The block in nuclear egress may be the result of disrupting a 

capsid-NEC interaction, as UL47 associates with both UL31/UL34 as well as UL17, which 

is found on capsids (Liu et al., 2014; Scholtes et al., 2010). UL47 homologs are not required 

for nuclear egress in PRV (Kopp et al., 2002) or bovine herpes virus 1 (Lobanov et al., 

2010).

The gamma(1)34.5 protein interacts with the NEC (Jing et al., 2004; Wu et al., 2016), and its 

deletion results in drastically reduced viral replication due to a defect in nuclear lamina 

dissolution (described above) that ultimately prevents capsid egress (Wu et al., 2016).

Nuclear membrane alterations

When properly assembled, the NEC functions as a complete membrane budding 

nanomachine, forming perfectly sized vesicles encapsulating herpesvirus capsids in infected 

cells. However, when the proper assembly of the NEC is disrupted by mutations or when the 

capsid is absent, the perturbation of the membrane budding activity of the NEC results in 

oddly shaped membrane structures.

For example, tightly packed multilayered membranous structures at the nuclear envelope 

were observed in insect cells heterologously expressing EBV BFRF1, a homolog of HSV-1 

UL34 (Gonnella et al., 2005). These structures were also observed in insect cells co-

expressing BFRF1 and BFLF2, a homolog of HSV-1 UL31. However, some of the structures 

are less tightly packed and “were in concentric whorls” (Gonnella et al., 2005). The 

increased spacing between the INM and ONM was also seen in Vero cells infected with a 

baculovirus encoding only HSV-1 UL34 (Ye et al., 2000). The mechanism of UL34-

mediated membrane alterations could be due to alternations of the nuclear lamina, which 

provides structural support to the nuclear envelope (Reynolds et al., 2004). While expression 

of UL34 alone resulted in nuclear membrane alterations, aberrant membrane vesiculation 

has been observed during infections where interaction between UL31 and UL34 were 

perturbed by mutagenesis (Roller et al., 2011). Disruption of the UL31/UL34 interaction 

also resulted in poor co-localization to the nuclear rim (Roller et al., 2011). These findings 

suggest that while UL34 alone is capable of altering the structure of the nuclear envelope, 
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only the NEC can mediate productive budding. Tightly packed multilayered membranes 

have also been observed upon infection with PRV lacking UL11, UL16, and UL21 (Klupp et 

al., 2005b), although the mechanism behind this phenotype is yet unknown.

Nuclear budding in uninfected cells

Although the process of nuclear egress was once thought to be unique to herpesviruses, we 

now know that a topologically similar process is also utilized during the nuclear export of 

large cellular synaptic ribonucleoproteins (RNPs) in Drosophila (Speese et al., 2012) 

[reviewed in (Fradkin and Budnik, 2016)]. These RNPs cannot exit the nucleus through the 

nuclear pores and, instead, bud at the INM to form RNP cargo containing vesicles in the 

perinuclear space that subsequently fuse at the ONM like herpesviruses. Torsin ATPases are 

essential for nuclear budding in uninfected cells, and in their absence, vesicles formed in the 

perinuclear space remain attached to the INM (Goodchild et al., 2005; Jokhi et al., 2013; 

Kim et al., 2010). Abundant PEVs containing granules that resemble RNPs, some in the 

process of fusion with the ONM have also been observed in sea urchin gastrula, suggesting 

that nuclear egress may be involved in nucleocytoplasmic transfer during sea urchin 

development (LaMassa et al., 2018). Thus, the nuclear egress may be more common in host 

cells than previously thought.

The existence of the nuclear egress pathway in uninfected cells may imply that 

herpesviruses have hijacked it. However, the absence of both isoforms of torsin has only a 

modest effect on the efficiency of nuclear egress in HSV-1 (Turner et al., 2015). While this 

does not rule out the involvement of other host proteins in herpesvirus nuclear egress, it 

suggests that herpesviruses utilize a distinct nuclear egress pathway. Further studies are 

clearly necessary to delineate the contributions of host factors to nuclear egress of 

herpesviruses vs. large RNPs and mechanistic similarities and differences between these two 

processes.

Alternative routes of nuclear egress: nuclear envelope breakdown and 

nuclear pore enlargement

The NEC is essential for nuclear egress, and deletions of either UL31 or UL34 reduce titers 

at least 1000-fold (Fuchs et al., 2002; Reynolds et al., 2001; Roller et al., 2000). 

Nevertheless, some infectious virus can be recovered even in the absence of UL31 or UL34. 

This suggests that while the envelopment/de-envelopment route is preferred, other, far less 

efficient nuclear escape routes also exist. Two such routes have been proposed: the nuclear 

envelope breakdown (NEBD) whereby the nuclear envelope is ruptured (Grimm et al., 2012; 

Klupp et al., 2011; Maric et al., 2014; Stackpole, 1969) and the dilation of nuclear pores 

(Leuzinger et al., 2005; Wild et al., 2009), either of which would allow the capsid to access 

the cytoplasm directly.

The NEBD phenomenon was discovered when upon passaging in culture, PRV lacking 

UL31 or UL34 acquired the ability to induce NEBD (Grimm et al., 2012; Klupp et al., 2011) 

by manipulating mitosis-related processes (Grimm et al., 2012). NEBD, along with reduced 
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viral titers, was also observed during HSV-1 infections in cells lacking the cellular ATPase 

torsinA (Maric et al., 2014).

Studies using a combination of scanning and transmission electron microscopy of HSV-1 

infected Vero and Hela cells showed instances of enlarged nuclear pores (~100 nm) (Wild et 

al., 2009), yet biochemical studies by other groups using fluorescent microscopy (Nagel et 

al., 2008) and live-cell imaging (Hofemeister and O’Hare, 2008) were unable to corroborate 

these findings. This suggests that while there may be instances of nuclear pore enlargement 

under certain experimental conditions, this route of capsid egress from the nucleus appears 

atypical.

It is unlikely that either of these alternative nuclear exit routes contribute significantly to 

nuclear egress under normal circumstances because they would eliminate an important 

checkpoint in the capsid quality control. NEC-mediated budding as an important quality 

control mechanism ensuring that primarily DNA-filled C-capsids undergo maturation and 

are released from the cells.

Many viruses that replicate in the nucleus, e.g., adenoviruses, parvoviruses, and 

polyomaviruses, escape the nucleus by rupturing the nuclear envelope (Cohen et al., 2011; 

Raghava et al., 2013; Tollefson et al., 1996) [reviewed in (Kobiler et al., 2012; Mettenleiter, 

2015)]. By contrast, herpesviruses clearly favor the envelopment/de-envelopment pathway 

and exit by an alternative route only when this preferred route of nuclear egress is disrupted.

Discussion and future trends

The unusual nuclear escape route used by all herpesviruses, which involves capsids budding 

at the INM (primary envelopment) followed by fusion of the resulting perinuclear enveloped 

virions with the ONM (de-envelopment), is supported by substantial evidence. Yet, our 

mechanistic understanding of this process remains in infancy. The significant advances made 

in the field over the last decade have clarified some aspects of the nuclear egress mechanism. 

For example, we now know that the key player in nuclear egress, the NEC, is a membrane 

budding machine that scaffolds the membrane by forming the striking hexagonal coats on its 

surface and interacts with the capsid. At the same time, the number of proteins involved in 

nuclear egress has increased, and with it, the complexity of this process. In contrast, we 

know very little about the mechanism by which perinuclear enveloped virions fuse with the 

ONM or the proteins involved in this process. Therefore, we envision clarification of the 

mechanisms that control capsid budding and NEC activity as one major direction of inquiry 

for the next decade while another is the elucidation of the mechanism of the subsequent 

membrane fusion step. Technological advances in in situ imaging of infected cells by cryo-

EM and cryo-ET will be essential for visualizing the process of nuclear egress and the 

interactions that shape it at high resolution.
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Figure 1. Overview of herpesvirus egress.
Capsids undergo primary envelopment (nuclear budding) at the inner nuclear membrane 

where they pinch off into the perinuclear space in a process mediated by the nuclear egress 

complex. The resulting perinuclear enveloped vesicles fuse with the outer nuclear membrane 

and release the capsid into the cytoplasm (de-envelopment). The resulting virion gains 

necessary tegument proteins before undergoing secondary envelopment during which it 

acquires a glycoprotein envelope derived from the trans Golgi network or early endosomes. 

The mature virion then hijacks the host secretory pathway and is released into the 

extracellular space via exocytosis to spread infection.
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Figure 2. Structures of the HSV-1 (PDB: 4ZXS), PRV (PDB: 4Z3U), and HCMV (PDB: 5D5N) 
nuclear egress complexes.
UL31 (purple and green) and UL34 (pink and light blue) form an elongated cylindrical 

molecule with the hook-like extension of UL31 wrapping around UL34 at the base of the 

molecules. The unresolved membrane proximal regions (MPRs) and transmembrane regions 

are drawn in schematically, with the MPRs located closest to the membrane. The 

approximate location of the unresolved α4 helix is schematically drawn for HSV-1. 

Interfaces are indicated by arrows. The space above the membrane is the nucleoplasm.
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Figure 3. Comparison of NEC hexagonal lattice formed by HSV-1 (crystal lattice), PRV (model 
of cryo-ET coat) and HCMV (crystal lattice).
A) Three hexameric rings shown in top and side views with UL31 (purple/green) sitting on 

top of UL34 (pink/blue). One NEC heterodimer is highlighted in each lattice. The HSV-1 

NEC crystal lattice is 78 Å thick. The PRV lattice in the side view is curved since it was 

determined from a membrane coat and not a planar crystal lattice. Both the HSV-1 NEC (B) 

and the PRV NEC (C) cryo-ET coats are shown for comparison. The dimensions of the PRV 

coat are slightly smaller due to curvature. The missing ~30 Å from the crystal lattice is 

present in the cryo-ET coat. The HSV-1 NEC cryo-ET coat is reprinted from (Bigalke and 

Heldwein, 2015). The PRV NEC cryo-ET coat is reprinted from (Hagen et al., 2015).
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