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ABSTRACT

Cells are exposed to a variety of mechanical forces in their daily lives, especially endothelial cells that are stretched from vessel distention and
are exposed to hemodynamic shear stress from a blood flow. Exposure to excessive forces can induce a disease, but the molecular details on
how these cells perceive forces, transduce them into biochemical signals and genetic events, i.e., mechanotransduction, and integrate them
into physiological or pathological changes remain unclear. However, seminal studies in endothelial cells over the past several decades have
begun to elucidate some of these signals. These studies have been highlighted in APL Bioengineering and elsewhere, describing a complex
temporal pattern where forces are sensed immediately by ion channels and force-dependent conformational changes in surface proteins, fol-
lowed by biochemical cascades, cytoskeletal contraction, and nuclear remodeling that can affect long-term changes in endothelial morphol-
ogy and fate. Key examples from the endothelial literature that have established these pathways include showing that integrins and Flk-1 or
VE-cadherin act as shear stress transducers, activating downstream proteins such as Cbl and Nckb or Src, respectively. In this Editorial, we
summarize a recent literature highlighting these accomplishments, noting the engineering tools and analysis methods used in these discover-
ies while also highlighting unanswered questions.
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Mechanical cues, including shear stress, activate a variety of sig-
naling cascades and induce downstream gene programs that regulate
endothelial cell (EC) functions and pathophysiological processes,
including atherosclerosis when forces become aberrantly high.1–3

Activation largely occurs in discrete steps from initial force sensing,
conversion to biochemical signals, cell contraction, and concluding
with nuclear remodeling. This general outline has been established
over the last three decades and integrates discrete observations from
several key luminaries in the field. For example, ECs rearrange them-
selves under a flow, and this is caused by cytoskeletal remodeling to
minimize strain during shear stress.4–10 Separately, the EC nuclear
transduction induces microRNA expression11 and differential histone
modifications12 in athero-susceptible regions of branches, a high cur-
vature, and a disturbed flow. In between these portions of the pathway,
plasma membrane,13,14 ion channels,1 and membrane receptors (e.g.,
integrins,15,16 GPCR,17 Cadherin,18,19 PECAM-1,19–21 VCAM-1,22,23

and ICAM-122) perceive mechanical cues and transduce them into
molecular signaling cascades, i.e., mechanotransduction. While many
classic reviews have highlighted specific contributions from noted

luminaries as well as how each type of force impacts an endothelial
cell function,24–29 here we focus our commentary on the contributions
of Dr. Shu Chien on the occasion of his retirement.

In a series of papers published in APL Bioengineering, colleagues
noted contributions from Dr. Chien across the complex temporal
sequence of endothelial mechanotransduction events. Starting with
events at the membrane, Zhu and co-workers30 note early observations
that solid, uniaxial strain can induce a perpendicular alignment of
intracellular actin stress fibers via the Rho signaling. By stretching elas-
tic membranes to mimic vessel hoop strain, Chien et al. found that
actin stress fibers aligned perpendicular to the direction of applied
strain but that realignment could be blocked by interrupting molecular
signaling cascades, e.g., RhoA, ROCK, and mDia.31 These pathways
are critical to modulating cytoskeletal assembly kinetics, and a subse-
quent work has shown that catch-slip bonds within the cytoskeleton32

regulate many of the morphological observations in the original work
from Chien and co-workers. Fluid shear stress may also use
contractility-mediated pathways to achieve the perpendicular align-
ment; shear stress, not receptor ligation, causes Flk-1 phosphorylation
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and association with Cbl in an effort to realign cells,33 although addi-
tional downstream pathways could also be influenced by receptor liga-
tion,34 though again pathways diverge when Flk-1 recruits the adapter
protein Nckb chemically vs ERK and JNK mechanically.35 Also down-
stream is cell–cell transducers, including the non-receptor tyrosine kinase
Src kinase. A seminal work from the Chien lab used a fluorescence reso-
nance energy transfer (FRET)-based biosensor36,37 to visualize mechano-
transduction upon mechanical stimulation. The laser-tweezer induced
traction pulled integrins on the cell surface, resulting in the directional
wave propagation of Src activation at 18nm/s along the plasma mem-
brane, propagating in the direction opposite to the pulling force and
possibly due to cytoskeletal polymerization.38

While these previous examples are emblematic of physiologically
forces, it is important to understand how these early molecular mecha-
nisms change to effectuate a disease, e.g., atherosclerosis. He and co-
workers39 note the use of oscillatory shear stress (OS) in Dr. Chien’s
work as a tool to mimic the disturbed flow patterns. While they are
typically found at regions of a high vessel curvature or bifurcation, OS
can reproducibly induce hallmarks of atherosclerosis found in more
complex mouse models.40 He et al. further note Dr. Chien’s finding
that OS can exacerbate inflammation by causing endothelial cells to
secrete monotype chemokines,41 by accumulating a lipid, and by acti-
vation of TNF-a and other related pathways.42 Yes-associated protein
(YAP) has also been shown to be mechano-sensitive,43 and it has
recently been associated with YAP-dependent activation of inflamma-
tory genes.44 In addition to the presence of OS noted by He and co-
workers,39 Bulter45—in a final manuscript in this collection from APL
Bioengineering—notes that OS effects are particularly sensitive to a
shear stress magnitude and rate-of-change, and that the net effect is
very different endothelial cell-mediated vasodilations. For example,
step- and ramp-shear stress applications cause vastly different vasodi-
lation: a step application causes a transient peaked whereas a slow
ramp over the same observation window causes much less dilation;46

membranes17 and receptor tyrosine kinases33 appear to be rate limit-
ing mechanotransducers identified in part by Dr. Chien, suggesting
the possible disease connections to endothelial mechanobiology.
Finally, Kaunas47 further describes the use of models, particularly neg-
ative feedback models, to understand endothelial remodeling to OS.
Using the mechanobiological measurements from the work of Dr. Hur
et al.,48 Tondon and Kaunas,49 Trepat et al.,50 and Yeung et al.,51

Kaunas proposes a model resulting in two predictions for endothelial
cells exposed to OS: (1) oscillating strain rates become exceedingly
high such that actomyosin crossbridges cannot dissipate tension
changes fast enough, causing stress fiber disassembly parallel and accu-
mulation perpendicular to the strain field and (2) low strain rates can
be dissipated by crossbridge cycling, causing no change in stress
fibers.47 The model present therein expands upon these conclusions,
but Kaunas is quick to suggest that further understanding of all of the
mechanotransductive pathways discussed (and not) by Chien and
others will require increasingly complex, mathematical-based models
in the future.

From these perspectives, we believe one can get not just an
impression of the state of endothelial cell mechanotransduction and
the impact that Dr. Shu Chien and other luminaries have had on it,
but also appreciate the influence that endothelial mechanobiology has
had on medicine. Most notably, the field has identified novel, mechan-
ically sensitive microRNAs,11,39 histone modifications,12 and signaling

pathways15–23,36,37,43,44 involved in the development of atherosclerotic
plaques1–3 in regions of a high shear stress and vessel dilation. Despite
these observations, there are still many unanswered questions about
endothelial cell mechanobiology regarding how certain forces are
sensed, converted into specific biochemical signals, and integrated into
a cellular response. Moreover, few drugs, if any, target the mechano-
sensitivity of these proteins and RNAs, and this will be a key challenge
as the field matures. However, observations in the literature and in this
collection suggest that endothelial mechanobiology would not be
where it is today without Dr. Chien’s contributions. Perhaps a key to
the field’s future success and impact on human health will be Dr.
Chien’s 7 “C” principles: Compassion, Commitment, Comprehension,
Creation, Communication, Cooperation, and Consummation.
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