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Autophagy is a process of engulfing one’s own cytoplasmic proteins or organelles and coating them into vesicles, fusing with
lysosomes to form autophagic lysosomes, and degrading the contents it encapsulates. Increasing studies have shown that
autophagy disorders are closely related to the occurrence of tumors. However, the prognostic role of autophagy genes in cervical
cancer is still unclear. In this study, we constructed risk signatures of autophagy-related genes (ARGs) to predict the prognosis of
cervical cancer. +e expression profiles and clinical information of autophagy gene sets were downloaded from TCGA and
GSE52903 queues as training and validation sets.+e normal cervical tissue expression profile data from the UCSC XENAwebsite
(obtained from GTEx) were used as a supplement to the TCGA normal cervical tissue. Univariate COX regression analysis of 17
different autophagy genes was performed with the consensus approach. Tumor samples from TCGA were divided into six
subtypes, and the clinical traits of the six subtypes had different distributions. Further absolute shrinkage and selection operator
(LASSO) and multivariable COX regression yielded an autophagy genetic risk model consisting of eight genes. In the training set,
the survival rate of the high-risk group was lower than that of the low-risk group (p< 0.0001). In the validation set, the AUC area
of the receiver operating characteristic (ROC) curve was 0.772 for the training set and 0.889 for the verification set. We found that
high and low risk scores were closely related to TNM stage (p< 0.05). +e nomogram shows that the risk score combined with
other indicators, such as G, T, M, and N, better predicts 1-, 3-, and 5-year survival rates. Decline curve analysis (DCA) shows that
the risk model combined with other indicators produces better clinical efficacy. Immune cells with an enrichment score of 28
showed statistically significant differences related to high and low risk. GSEA enrichment analysis showed the main enrichment
being in KRAS activation, genes defining epithelial and mesenchymal transition (EMT), raised in response to the low oxygen level
(hypoxia) gene and NF-kB in response to TNF. +ese pathways are closely related to the occurrence of tumors. Our constructed
autophagy risk signature may be a prognostic tool for cervical cancer.

1. Introduction

Cervical cancer is the most common malignancy of the
female reproductive tract; it is diagnosed in millions of
women each year and causes 300,000 deaths worldwide [1].
Among women, this disease ranks fourth in mortality and

morbidity [2]. Since early symptoms of cervical cancer are
not obvious, late lymph node metastasis is common, leading
to poor prognosis. +e current treatment method is surgery
or chemical radiation [3]. +erefore, revealing the molecular
mechanism of cervical cancer would provide new targets for
its diagnosis and improve patient prognosis.
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Autophagy is a process of self-phagocytosis. +e hall-
mark of autophagy is the formation of autophagosomes,
where lysosomes wrap cytoplasmic proteins or organelles
and achieve self-renewal [4]. Autophagy is also one of the
most important cytoplasmic recycling mechanisms [5]. +is
process is closely related to the carcinogenesis, with cancer
cells relying on systemic autophagy in their cytoplasm and in
the host to sustain growth [6], providing the necessary
nutrients and raw materials [7].

Many studies have demonstrated the important role of
autophagy in cervical cancer. +erefore, autophagy can be
used as a target for the treatment of cervical cancer. Studies
have shown that Tubeimoside-I (TBM), as a new lethal
autophagy lysosomal inducer, can induce autophagy accu-
mulation and may enhance the therapeutic effect of che-
motherapeutic drugs on cervical cancer [8]. Moreover,
autophagy promotes paclitaxel resistance in cervical cancer
cells [9]. Autophagy also plays an important role in pre-
venting cisplatin-induced apoptosis of cervical cancer cells,
suggesting that inhibition of autophagy may improve cis-
platin chemotherapy [10]. However, while these studies have
revealed the role of autophagy in the occurrence and de-
velopment of cervical cancer and its relationship with
various tumor drugs, few studies have examined the
prognostic role of autophagy in cervical cancer.

In this study, we built eight autophagy gene risk models
and used these to predict the prognosis of cervical cancer
overall survival in the TCGA queue, verified in the
GSE52903 queue. All had very good diagnostic performance
and further revealed the relationship between high- and low-
risk and immune infiltration and high-risk biological
function prognosis.

2. Materials and Methods

2.1. Data Set Selection. We downloaded the mRNA ex-
pression profiles and clinical information of cervical cancer
patients from the TCGA and GEO databases, respectively.
Samples with incomplete clinical information and gene
expression values below 0 were deleted. In the TCGA da-
tabase, there are few normal tissue data matched with
cervical cancer, and the total number of cases is only three.
+us, we downloaded the expression values of the normal
cervix from the UCSC Xena database (https://xenabrowser.
net). +e GSE52903 data set includes 17 normal tissues and
55 tumor tissues. +e clinical information of the two data
sets is shown in Supplementary Table 1. +e list of 232
autophagy genes comes from HADb (human Bite database,
https://www.autophagy.lu/).

2.2. Identifying Differentially Expressed ARGs. We used the
Wilcoxon test to analyze the difference between 232 auto-
phagy genes based on the limma package [11]. +e cut-off
value was selected as log2-fold change (FC)> 1 and an
adjusted p value of <0.05.

2.3. Enrichment Analysis Based on Univariate COX Anal-
ysis of Differential ARGs. To study the function of the

differential univariate COX autophagy genes, we used the
“clusterProfiler” package [12] to visualize gene ontology
(molecular function, cellular composition, and biological
function) and KEGG pathways.

2.4. Genotyping of Differential COXAutophagy. We used the
“ConsensusClusterPlus” [13] package to cluster the differ-
ential COX genes, used the “survival” package to see the
survival curve of the typing and used the “heatmap” package
to visualize the relationship between the autophagy gene and
each clinical feature. Finally, the “ggplot2” [14] package was
used to show the relationship between different clinical
features and genotyping.

2.5. Construction and Verification of Prognostic Autophagy
Gene Signatures. We identified the autophagy genes asso-
ciated with the prognosis of cervical cancer by univariate
COX regression, LASSO regression, and multivariate COX
regression. In summary, univariate COX regression iden-
tified the genes associated with prognosis, followed by
further reduction of the genes using LASSO, multivariate
COX regression, and Using R packet “glment” to construct
LASSO regression model. +en we constructed a risk model
with the final prognostic autophagy gene, and the risk score
was calculated as follows:

risk score � 􏽘
n

i�1
Coef i × xi, (1)

where Coef is the coefficient and x is the expression level of
the autophagy gene.

Using this risk score, we were able to divide 259 cervical
cancer patients with complete clinical data from the TCGA
training set and 46 cervical cancer patients with complete
clinical information from the GSE52903 validation set into
high- and low-risk groups. We then looked at whether there
were differences between the high- and low-risk groups in
TCGA and in the clinical subtypes of GEO. A Kaplan–Meier
curve was used to observe the prognosis of the high- and
low-risk groups, and the receiver operating characteristic
(ROC) curve was used to assess the specificity and sensitivity
of the prognostic model. +e R software package “Survi-
valROC” is used to draw the receiver operating characteristic
(ROC) of the subjects and the area under the curve (AUC).
+en we associate the risk assessment with clinical char-
acteristics and use univariate and multivariate COX re-
gression to analyze whether the risk score is an independent
prognostic factor. Finally, the differences in clinical subtypes
between the high- and low-risk groups were demonstrated in
TCGA and GEO.

2.6. Building of theNomogram. A nomogram, also known as
a nomograph, is a graphical method of evaluating complex
functions. In this study, a nomogram was constructed using
risk scores and clinical features to assess patient survival.
+is method visually represents the value range of different
variables and their contribution to the value of risk. A
nomograph was drawn with R packages “rms” and “foreign,”
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which are more intuitive than building a table of coefficients.
+e accuracy of themodel was then evaluated using standard
curves and combined clinical characteristic indicators
(ROC).

2.7. Relationship between Risk Score, Autophagy-Related
Genes, and Immunity. +e immune gene set, consisting of
782 genes, was used to predict the abundance of 28 immune
cells in 305 cervical cancer tumor tissues based on ssGSEA
method and implemented with the GSVA R package, with
an immune genetic set from https://www.cell.com/cms/10.
1016/j.celrep.2016.12.019/attachment/f353dac9-4bf5-4a52-
bb9a-775e74d5e968/mmc3.xlsx [15]. We next looked to see
whether there was a statistical difference between the 28
immune cells in the high- and low-risk groups, calculated
the correlation between prognostic autophagy genes and 28
immune cells, selected the cell types with p< 0.05, and vi-
sualized them with ggplot2 R package.

2.8. Drawing the DCA Decision Curve. +e R function
“stdca” [16] was used to draw the DCA decision curve based
on the COX regression model to evaluate the clinical utility.

2.9. Biological Function of High- and Low-Risk Groups.
+ePi R package (https://pi314.r-forge.r-project.org/), based
on the GSEA method, was used to assess high- and low-risk
groups. +e biological function of enrichment for the
MsigdbH gene was set at https://www.gsea-msigdb.org/gsea/
index.jsp.

2.10. Statistical Analysis. All statistical analyses were per-
formed using R software (version 3.6.3). +e Wilcoxon test
was used for the difference in autophagy genes between
tumor and normal tissue, and both the Wilcoxon and
Kruskal–Wallis tests were used for the correlation between
high- and low-risk score and clinical subtypes of the TCGA
test set and GEO verification set. +e correlation method
used between autophagy gene and immune cells was the
Spearman method. p< 0.05 was considered statistically
significant.

3. Results

3.1. Identification of ARGs. A total of 84 different autophagy
genes were found in tumor tissues and normal tissues
(combined with GTEx), including 44 upregulated and 40
downregulated genes (Figures 1(a) and 1(b)).

3.2. Functional Annotation of Prognostic Autophagy Genes.
+e differential autophagy genes were obtained as 18 genes
using the univariate COX regression method. Gene ontology
enrichment analysis showed that these 18 genes were mainly
enriched in autophagy, macroautophagy, the neuron apo-
ptotic process, and the neuron death process utilizing an
autophagic mechanism (Figure 2(a)). KEGG pathway en-
richment analysis showed that these genes were mainly
enriched (Figure 2(b)).

3.3. Identification of Cervical Cancer Subtypes Based on
Prognostic Autophagy Genes. SigClust analysis results
showed that, among all clusters, the curve was flat when the
consensus cluster was K� 6 (Figure 3(a)). Meanwhile, 261
tumor samples were divided into six molecular subtypes
(Figure 3(b)). Survival analysis showed that subtype C4 had a
better survival rate compared to others (p< 0.001)
(Figure 3(c)). A heat map was constructed, showing the
relationship between the expression of 18 autophagy genes
and six subtypes and various clinical characteristics
(Figure 4(a)). With age as the median, the C2 subtype had
the lowest proportion of ages greater than 46 years old
(Figure 4(b)). Subtype C1 had the highest percentage of
pharmaceutical intervention (Figure 4(c)). Among races,
Caucasian had the highest proportion among all subtypes.
+ere were only Asian and Caucasian cases in subtype C6
(Figure 4(d)). +e highest proportion undergoing radio-
therapy was found in subtype C2 (Figure 4(e)). In subtype
C5, the proportion without distant metastasis was the
highest, and in subtype C6, the proportion with distant
metastasis was higher than that of other subtypes
(Figure 4(f )). In terms of regional lymph node involvement,
similar results were found with or without distant metastasis.
In subtype C5, the proportion of no lymph node involve-
ment was the highest compared with other subtypes, while in
subtype C6, the proportion of involvement of a few lymph
nodes was the highest (Figure 4(g)). In terms of primary
tumors, the proportion of T1 in subtype C6 was the lowest
compared to other subtypes, with the proportion of T2 being
the largest, and only within these two subtypes (Figure 4(h)).
For tumor grade, the proportion of G2 in subtype C6 was the
highest (Figure 4(i)).

3.4. Construction and Validation of a Risk Model Based on
Eight Autophagy Genes. In the training set from TCGA, the
18 autophagy genes obtained by the univariate COX re-
gression method (Figure 5(a)) were further reduced by the
LASSO regression method (Figure 5(b)). +e eight auto-
phagy genes (Table 1) were used for the construction of the
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Figure 1: Identification of differentially expressed autophagy genes. (a) Heatmap of differential autophagy genes in cervical cancer. (b)
Volcano map of differential autophagy genes, absolute log2-fold change (FC)> 1, and adjusted p value< 0.05 were used as screening criteria
for differential genes.
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Figure 2: Functional enrichment of prognostic autophagy genes. (a) Analysis of the top-five most important gene ontologies. (b) Analysis of
the top-five most important KEGG pathways.
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Figure 4: Continued.
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Figure 5: Identification of eight autophagy prognostic genes. (a) Univariate COX regression analysis of differential autophagy genes. (b)
LASSO regression analysis of 17 autophagy genes. (c) Multivariate COX regression analysis of autophagy genes.
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risk signature based on the multivariate COX regression
method (Figure 5(c)):

risk score � 0.5914∗ (expression level of HGS) + 0.238∗ (expression level of GAPDH)

+(−0.556)∗ (expression level of ATG4A) +(−0.518)∗ (expression level of BCL2)

+ 0.8038∗ (expression level of TM9SF1) + 1.459∗ (expression level of ATF6)

+(−0.466)∗ (expression level of CLN3) +(−0.425)∗ (expression level of TP73).

(2)

We then calculated each patient’s risk score and divided
them into high- and low-risk groups according to the
median of the scores in the TCGA cohort of the training set
(Figure 6(a)) and the GSE52902 cohort of the verification set
(Figure 6(b)).+e patient’s survival status, survival time, and
autophagy gene expression are shown in Figures 6(a)
(TCGA) and 6(b) (GSE52903). As demonstrated, the
number of patients dying gradually increased as the risk
score increased. Survival analysis showed that the high-risk
group had a worse prognosis in TCGA (p< 0.0001)
(Figure 7(a)), with a consistent result of p< 0.01 in the
GES52903 validation set (Figure 7(b)). ROC curve analysis
results showed that the AUC value in TCGA was 0.772
(Figure 7(c)) and 0.889 for GES52903 (Figure 7(d)), and the
AUC values for 1, 2, and 3 years were 0.775, 0.795, 0.806 and
0.880, 0.779, 0.759, respectively (Figure 7(e)). +ese findings
suggest that the risk score has a good predictive ability for
overall survival.

3.5. Univariate and Multivariate COX Regression Analysis of
Risk Score. As shown in Figure 8, in the TCGA cohort,
univariate COX regression analysis showed that T staging, M
staging, N staging, and risk score were independent prognostic
factors and could predict overall survival (stage_T: p< 0.001).
In the GEO cohort, univariate COX regression analysis
showed that stage and risk score could predict overall survival
(stage: p< 0.001 and risk score: p< 0.001; Figure 8(c)). In the
TCGA cohort, multivariate COX regression analysis showed
that only risk score could predict the overall survival (risk
score: p< 0.001, Figure 8(b)). In the GEO cohort, both stage
and risk score could predict the overall survival (stage:
p< 0.001 and risk score: p � 0.018; Figure 8(d)). +e above
data indicate that the risk score can predict the overall survival
rate independently of any clinical trait.

3.6. Relationship between Risk Score and Clinical Traits.
As shown in Figure 9, the risk score in the TCGA cohort
showed statistically significant differences in metastasis
(Figure 9(e)), while in the GSE52903 cohort, the risk score
was statistically significant in tumor stage (Figure 9(i)). In
the TCGA cohort, age and whether the patient had received
pharmaceutical or radiotherapy were not significant. +is
suggests that the risk score is closely related to the tumor
stage.

3.7. Construction of Nomogram. Based on the risk score, G,
T, M, and N staging, a nomograph was constructed
(Figure 10(a)). +e total score based on the above indicators
could be predicted for each patient for 1-, 2-, and 5-year
survival rates. A standard curve was used to evaluate the
predictive ability of the nomograph. As shown in
Figure 10(b), the 1-, 3-, and 5-year curve levels overlapped
well with the standard curve. At the same time, the multi-
index ROC curve analysis results of combined clinical traits
showed that the risk score AUC areas of 1-, 3-, and 5-year
survival were all higher than other clinical characteristics,
which were 0.772, 0.810, and 0.823, respectively
(Figure 10(c)). +ese results indicate that the risk scoring
model has good predictive ability.

3.8. DCA Curve Drawing. Considering the clinical utility of
the risk model, we drew a DCA curve. As shown in Fig-
ure 11, the model combined with the risk score was more
beneficial than the model with TNM stage. Figures 11(a)–
11(c) show the 1-, 3-, and 5-year survival DCA curve.

3.9. Relationship between Risk Models Constructed by Eight
Autophagy Genes, Immune Cells, and 'eir Biological
Functions. As shown in Figure 12(a), high- and low-risk

Table 1: Independent autophagy genes with signature.

Genes Coef HR HR.95L HR.95H p value
HGS 0.591371 1.806463 0.931988 3.501451 0.079883
GAPDH 0.327653 1.387707 0.936265 2.056824 0.10269
ATG4A −0.55565 0.573702 0.317516 1.03659 0.065636
BCL2 −0.51751 0.596004 0.363607 0.976936 0.04012
TM9SF1 0.803078 2.232402 0.965385 5.162313 0.060436
ATF6 1.458752 4.300591 1.706265 10.83951 0.001983
CLN3 −0.4664 0.627255 0.345552 1.138609 0.125217
TP73 −0.42531 0.653565 0.458867 0.930874 0.018427
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scores differed in most immune cells except for the fol-
lowing: CD56bright natural killer cells, CD56dim natural killer
cells, central memory CD4+ T-cells, effector memory CD8+
T-cells, macrophages, mast cells, gamma delta T-cells,
memory B-cells, natural killer cells, and natural killer T-cells.
Figure 12(b) to 12(i) shows the correlations between HGS,
GAPDH, ATG4A, BCL2, TM9SF1, ATF6, TP73, and CLN3
genes and different immune cells. We then performed GSEA
on the high- and low-risk scores. As shown in Figure 13, the
high-risk group was mainly enriched in genes related to
KRAS activation, hypoxia, NF-kB in response to TNF, EMT,
wound healing, fibrosis, and metastasis. +ese biological
functions are closely related to tumorigenesis.

4. Discussion

+e latest 2020 cancer statistics show that the global mortality
rate of cervical cancer patients is relatively high for countries in
transition (12.4 vs 5.2 per 100,000) [17]. Due to the advent of the
internet, sexual knowledge has also become more available,
which also exacerbates the occurrence of cervical cancer and
produces younger occurrences. Of importance to note, tradi-
tional TNM staging cannot identify early cervical cancer, which
leads to worse prognosis. Late-stage cervical cancer is linked to
poor prognosis, putting forth a need for a more effective
method to predict disease earlier. Recently, a prognostic model
constructed based on autophagy-related genes has attracted the
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Figure 6: Construction and validation of risk signatures of eight autophagy prognostic genes.+e relationship between risk score (top), risk
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attention of researchers; for example, in patients with colon
cancer [18], head and neck squamous cell carcinoma [19],
esophageal cancer [20], gastric cancer [21], glioma [22], he-
patocellular carcinoma [23] and others, it has been proven that

a prognosticmodel constructed by autophagy-related genes can
predict the prognosis of tumor survival.

Many studies have shown that autophagy is involved in
multiple signaling pathways and affects the occurrence and
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Figure 9: Differences in risk scores of various clinical traits. (a) In TCGA, the difference in risk scores with age as the median value, p � 0.27.
(b) Differences in risk scores in the pharmaceutical in TCGA, p � 0.55. (c) Difference in risk score between receiving radiation therapy and
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GES52903, p � 0.51. (i) Differences between staging groups in GSE52903, p � 0.0077.
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development of cervical cancer [24–28]. Studies have shown
that inhibitors of the autophagy gene ATG4 can inhibit
autophagy, enhance the cytotoxicity of chemotherapy drugs,
and achieve the purpose of killing tumor cells [29]. Auto-
phagy gene BCL2 can be used as a therapeutic target of some
drugs for cervical cancer [30]. TM9SF1 can bind to the
estrogen receptors, regulate the epithelial-mesenchymal
transformation of cancer cells, and promote tumor metas-
tasis [31]. ATF6 is also closely related to the occurrence of
colorectal cancer [32]. TP73 is a member of the p53

transcription factor family. Owing to its low mutation rate,
p53 has become an ineffective target for most tumors [33].
Recent studies have shown that ferredoxin reductase reg-
ulates the expression of TP73 by binding to iron-binding
proteins, thereby regulating aging and tumor inhibition [34].
Steroid lipofuscosis 3 (CLN3) is abnormally expressed in
hepatocellular carcinoma and can promote tumor pro-
gression and metastasis [35].

In this study, we combined the normal cervical ex-
pression profile data of GTEx with data from TCGA to
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extract the expression data of all autophagy genes. We
obtained 84 differentially expressed autophagy genes de-
termined by single-factor COX regression analysis. For the

18 autophagy genes related to prognosis, the functional
enrichment of these genes mainly enriched terms such as
autophagy, apoptosis, and the HIF-1 signaling pathway,
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Figure 12: Based on the relationship between eight autophagy gene models and immune cells. (a) Analysis of the difference between the
high- and low-risk groups in 28 immune cells, calculate the p value withWilcoxon test and add it as an asterisk at the top of the picture. (b–i)
Correlation between autophagy genes and immune cells. Spearman’s correlation method was used to calculate the correlation between eight
autophagy genes and immune cells, and the immune cells with p< 0.05 were selected.
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which are closely related to the occurrence of tumors
[36, 37]. At the same time, 18 genotypes were classified into
six subtypes, and the distribution of each clinical trait in each
subtype was not the same. Next, we used LASSO regression
and multifactor COX regression methods to obtain the final
eight autophagy genes for use in constructing a prognosis
model for cervical cancer patients. Meanwhile, 18 genotypes
were classified into six subtypes, and the distribution of each
clinical trait in each subtype was not the same. Next, we used
LASSO regression and multifactor COX regression methods
to obtain the final seven autophagy genes for constructing a
prognostic risk model. We found that in the high-risk group,
prognosis was poor, tumors were relatively large, there were
more organs involved, and there were more distant me-
tastases and lymph node involvement. +e advantage of
using a nomogram is the transformation of complex re-
gression equations into a simple visualization graphs,
making the results of prognostic models readable and widely

used in clinical applications [38–41]. In this study, the risk
score, age, grade, and stage were constructed to predict the 1-
, 2-, and 3-year survival probability of cervical cancer pa-
tients.+e 1-, 3-, and 5-year AUC values were all higher than
age, classification, and staging. Since the nomogram was a
predictive model, the decision curve analysis (DCA) method
was used to solve the clinical utility problem and solve the
clinical practicality of the nomogram. DCA is also widely
used in various fields, such as predicting the prognosis of
lung cancer [42], sentinel lymph node metastasis of skin
melanoma [43], and the prognosis of left atrial enlargement
in degenerative mitral regurgitation [44]. In this study, after
adding the risk score signature, patients benefitedmore from
1-, 3-, and 5-year survival. Immune infiltration is also a hot
topic of research. Studies have found that the combination of
immune checkpoint inhibitors and cisplatin anticancer
drugs can enhance the therapeutic effect of cervical cancer
[45, 46]. In this study, the immune enrichment score of most
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Figure 13: GSEA analysis for high- and low-risk groups. (a) Mainly enriched in KRAS activation. +e genes marked in black are the
dominant genes. (b) Mainly enriched in genes upregulated in response to low oxygen levels (hypoxia). +e genes marked in black are the
dominant genes. (c) Mainly enriched in the genes regulated by NF-kB in response to TNF. +e genes marked in black are the dominant
genes. (d) Mainly enriched in the genes defining epithelial–mesenchymal transition, as in wound healing, fibrosis, and metastasis. +e genes
marked in black are the dominant genes.
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immune cells in the high-risk group was lower than that in
the low-risk group, and the immune activity of the high-risk
group was found to be suppressed, which is more conducive
to the proliferation of tumor cells. GSEA results showed that
the high-risk group was mainly enriched for genes involved
in KRAS activation, hypoxia, NF-kB in response to TNF,
EMT, wound healing, fibrosis, and metastasis. Studies have
shown that hypoxia is related to the poor prognosis of tumor
patients [47]. EMTis themain driver of tumor cell metastasis
[48]. +ese biological functions can lead to poor prognosis
and more deaths in high-risk groups.

Shi et al. [49] also recently established a cervical cancer
prognosis model with three ARGs. +e AUC area of this
model was 0.678 in the training set and 0.756 in the veri-
fication set. In our model, the AUC in the TCGA training set
was 0.772, and what was evenmore surprising was that in the
GEO verification set, the AUC was 0.889.+e previous study
did not explore the causes of poor survival and prognosis in
the high-risk group. In our study, the relationship with
immune infiltration was found in the high-risk group to be
mainly enriched in genes upregulated in response to hypoxia
[50–52], TNF [53, 54], EMT [55, 56], wound healing, fi-
brosis, metastasis, and KRAS activation [57, 58]. +ese
pathways are closely related to tumorigenesis, invasion, and
metastasis. In terms of immune infiltration, the low-risk
group had the highest level of immune cells, indicating that
the immune system was activated in the low-risk group.+is
also confirmed that the low-risk group had a better prog-
nosis than the high-risk group.

+is study has limitations and does not include more
verification sets to verify the accuracy of the model. In the
future, our team will further verify the expression of these
eight autophagy genes in clinical samples and include more
clinical information to validate or model. We will also
further study the mechanism of these autophagy genes and
the occurrence of cervical cancer.

5. Conclusions

+e seven autophagy prognostic signatures that we have
constructed may become prognostic tools for cervical
cancer, whether in predictive or clinical applications, and
can be used as personalized treatment strategies for cervical
cancer patients.
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