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Patient-derived models recapitulate heterogeneity
of molecular signatures and drug response in
pediatric high-grade glioma
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Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In

vitro and in vivo disease models reflecting the intimate connection between developmental

context and pathogenesis of pHGG are essential to advance understanding and identify

therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic

xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These

models recapitulate histopathology, DNA methylation signatures, mutations and gene expres-

sion patterns of the patient tumors from which they were derived, and include rare subgroups

not well-represented by existing models. We deploy 16 new and existing cell lines for high-

throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/

mTOR and MEK pathway inhibitors. These unique new models and an online interactive data

portal for exploration of associated detailed molecular characterization and HTS chemical

sensitivity data provide a rich resource for pediatric brain tumor research.
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Brain tumors are the predominant cause of cancer-related
morbidity and mortality in children1. Pediatric diffuse
high-grade gliomas (pHGG) comprise approximately 20%

of all childhood brain tumors. This heterogeneous group of
tumors carries a devastating prognosis, with 70–90% of patients
dying within 2 years of their diagnosis1. Genome-wide analyses
have transformed our understanding of pHGGs to illuminate
distinct molecular features compared to adult HGG, including a
close association between tumor location, patient age, and
recurrent mutations that indicates an intimate connection
between pHGG pathogenesis and developmental context2,3. For
example, histone H3K27M mutations, which are rare in other
tumor types, occur in approximately 80% of diffuse intrinsic
pontine gliomas (DIPG) and other diffuse HGGs in midline
structures such as the thalamus4–7. This striking association has
redefined the diagnosis of these tumors, with the 2016 World
Health Organization Classification of Tumors of the Central
Nervous System (CNS) now incorporating molecular-based cri-
teria to define diffuse midline glioma—H3K27M mutant (DMG-
K27M) as a distinct diagnostic entity8. H3K27M mutations most
frequently occur in 2 of the 15 genes that encode histone H3, with
H3F3A encoding H3.3 K27M and HIST1H3B encoding H3.1
K27M in approximately 75% and 25% of H3 mutant DIPG,
respectively2. Activating mutations in the gene encoding the BMP
receptor ACVR1 are found almost exclusively in DIPG and
preferentially co-occur with H3.1 K27M mutations, generally in
younger patients, demonstrating an even more restricted asso-
ciation with developmental context5,9–12. In contrast, histone
H3.3 G34R/V mutations are found in approximately 15% of
cerebral cortical HGG, with patient age ranging from older
adolescents through young adulthood5–7.

Variable combinations of additional mutations also contribute
to intertumoral heterogeneity, including mutations activating the
receptor tyrosine kinase–RAS–PI3-kinase pathway, alterations
inactivating tumor suppressors TP53 or CDKN2A, mutations in
epigenetic regulators such as ATRX, and others5,6,9–12. Different
subclasses of pHGG are readily detected through comparisons of
genome-wide DNA methylation profiles, which may reflect both
the developmental origins of the tumors and the consequences of
tumorigenic mutations13. This epigenetic characterization allows
a refined molecular classification of CNS tumors and is increas-
ingly being incorporated into clinical practice.

Despite rapid advances in the characterization of the genomic
and epigenetic landscape of pHGG, effective therapeutic approaches
are still lacking for almost all pHGG patients14. In vitro and in vivo
models that recapitulate the complexity and heterogeneity of pHGG
are essential to advance our understanding and identify therapeutic
vulnerabilities of these deadly childhood brain tumors.

Here, we report the establishment of a unique collection of 21
patient-derived orthotopic xenograft (PDOX) models and 8
new pHGG cell lines recapitulating molecular signatures of the
primary tumors from which they were derived and representing
a broad spectrum of the heterogeneity found in pHGG. We use
a total of 14 pHGG cell lines and two control cell lines for high-
throughput screening (HTS) to identify drug sensitivity and
validate the in vitro heterogeneity of response for two drugs
in vivo. Detailed molecular characterization of these novel
models and the results from HTS chemical sensitivity studies
on the large cell line panel are available through an interactive
online data portal providing a rich resource to the pediatric
brain tumor research community.

Results
Patient-derived orthotopic xenografts and cell lines of pHGG
represent diverse tumor subtypes. We generated a unique

resource of 21 pHGG PDOX by implanting dissociated tumor
cells from surgical or autopsy samples into the brains of
immunodeficient mice. Patient age at diagnosis ranged from 4 to
19 years, with a median age of 12 years and a median survival of
12 months (Supplementary Data 1). Engraftment efficiency was
higher for surgical samples (56%) than for autopsy samples
(33%), likely due to decreased tumor cell viability in post-
mortem material. After initial tumor engraftment, tumors were
collected, dissociated, and passaged by intracranial implantation
into additional immunodeficient mouse hosts to confirm that
the PDOX could be reliably maintained, and for expansion and
banking. Passaged tumors were dissected and cryopreserved as
viable cells, snap-frozen for subsequent molecular analyses, or
processed for histopathology evaluation. The majority of PDOX
models were transduced with lentivirus expressing luciferase-2a-
YFP to enable in vivo imaging. The mouse host survival times
for this collection of PDOX models ranged from 2 to 6 months
after intracranial implantation (Supplementary Data 1). For a
subset of the tumors, dissociated cells were adapted for in vitro
propagation under neural stem cell conditions to facilitate the
use of these as matched cell line models for high-throughput
drug screening (Fig. 1).

We performed DNA methylome profiling to classify all 21
PDOX tumors, 19 matched patient tumors from which PDOXs
were established, and 8 matched cell lines established from
PDOXs (Supplementary Data 1b). Using t-distributed stochastic
neighbor embedding (t-SNE) analysis of methylation profiles
from these samples and a reference set including samples from
diverse brain tumor subgroups13, all PDOX models and cell lines
clearly grouped with glioblastoma or glioma, distinct from
embryonal or ependymal tumors. (Fig. 2a). An expanded view
of the glioblastoma and glioma clusters shows that 17 of 19
PDOXs and all 8 cell lines cluster closely with the tumor from
which they were derived (Fig. 2b). Following the established
classification scheme13, this novel collection of PDOX models
comprises 6 DMG-K27M, 2 pleomorphic xanthoastrocytomas
(PXA), 10 glioblastoma, IDH wild type, including three H3.3 G34
mutant (GBM G34), four subclass midline (GBM Mid), one
subclass RTK II (pedRTKII), and two subclass RTKIII (ped-
RTKIII). Three tumors did not directly match the reference
clusters, but were closest to GBM Mid, pedRTKII, or PXA (Fig. 2
and Supplementary Data 1a, b). For two models, SJ-HGGX51 and
SJ-HGGX78, the diagnostic patient tumor from which the PDOX
was established clustered with reference samples from control
inflammatory cells (CONTR_INFLAM), suggesting the presence
of large areas of necrosis in the tumor surgical specimens with
exuberant inflammatory infiltration, while the PDOX clustered
with, or very close to the pedRTKII glioblastoma subgroup. Three
PDOX models, SJ-HGGX56, SJ-HGGX58, and SJ-HGGX59 that
were established from patient tumors with mismatch repair
deficiency (MMRD), clustered tightly with their matched patient
tumors, and close to one another, along with midline tumors
despite their cortical location in the patients (Fig. 2b). In addition
to the eight cell lines established from these PDOX models, we
also evaluated methylation profiles from six previously reported
DIPG cell lines15 used in our preclinical testing experiments. All
H3K27M mutant tumors, including patient tumors, PDOXs, and
cell lines, clustered with the DMG-K27M subgroup as expected
(Fig. 2a, b).

Histopathology of PDOX models showed typical characteristics
of pediatric HGG, including high cellularity, varying extent of
astrocytic differentiation, readily apparent mitotic activity, infiltra-
tion of the CNS parenchyma, vascular endothelial proliferation and
areas of necrosis. PDOX models recapitulated architectural and
cytologic features seen in the corresponding patient tumors from
which they were derived (Fig. 3).
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PDOX and cell lines recapitulate recurrent mutations and gene
expression signatures characteristic of pHGG. For a more
comprehensive view of the genomic landscape of these models, we
performed whole-genome (WGS) or whole-exome sequencing
(WES) on all PDOX, matched patient tumors and derived cell lines.
Somatic mutations and potentially pathogenic germline mutations
were identified for tumors with matched germline samples for
16/21 lines, and potentially pathogenic non-silent mutations were
annotated for tumors without available matched germline (Fig. 4
and Supplementary Data 2). As expected, there was a dramatically
increased mutation burden in PDOXs with MMRD (SJ-HGGX56,
58 and 59) compared to the rest of the cohort (median non-silent
SNVs in the exome of 19,336 compared to 26). Recurrent mutations
characteristic of pHGG were well-represented in this cohort of
tumors, including hotspot mutations in histone H3, as well as
mutations in genes involved in chromatin and transcription reg-
ulation such as ATRX, BCOR and MYCN, recurrent alterations in
the receptor tyrosine kinase–RAS–PI3-Kinase pathway, including
missense mutation, amplification and gene fusion of PDGFRA,
alterations in the TP53 and RB/cell cycle pathways, and activating
missense mutation in ACVR1 (Fig. 4). The great majority of PDOXs
and cell lines maintained signature mutations and copy-number
abnormalities (CNAs) found in the matched patient tumors
including large-scale gains and losses and focal amplifications in
extra-chromosomal DNA, although there were some examples of
divergence between patient tumor and derivative models (Fig. 4 and
Supplementary Figs. 1 and 2). PDOX models also maintained
mutations of signature glioma genes over multiple passages, as
shown for passages 7 and 10 of SJ-DIPGX7 and passages 3 and 4 of
SJ-DIPGX29 (Fig. 4).

We previously showed that pHGG, including DIPG, showed
heterogeneous expression signatures recapitulating the glioma

subgroups proneural, proliferative, and mesenchymal16,17. Ana-
lysis of these expression signatures in the entire cohort of patient
tumors, PDOXs, and cell lines showed PDOX models represented
in all three expression subgroups. However, proliferative
signatures were much stronger in general in PDOX and cell line
models compared with patient tumors (Fig. 5). Consistent with
this observation, analysis of genes that were differentially
expressed between PDOX and patient samples across the entire
matched cohort (|logFC| > 1, adj. p < 0.05) showed upregulation
of genes associated with cell cycle progression (adj. p < 2.2e−16)
and downregulation of genes associated with inflammatory
response (adj. p < 2.2e−16) in PDOX (Supplementary Data 3).
We removed the shared differences between PDOX and patient
tumors to better compare the similarity in expression signatures
between matched PDOX and patient tumors and found that
expression signatures of PDOX correlated strongly with their
matched patient tumor (Supplementary Fig. 3). Representative
PDOX models retained fidelity of transcriptome signatures over
multiple passages (Pearson correlation 0.98, p < 2.2e−16). Cell
lines, which represent extensive passaging in neural stem cell
growth media, also showed strong fidelity with the matched
PDOX models from which they were derived (Pearson correlation
from 0.87 to 0.95, p < 2.2e−16) (Supplementary Fig. 4).

Online interactive portal of PDOX and cell line characteriza-
tion. To maximize the utility of these well-characterized models
for the cancer research community, we developed an online
Pediatric Brain Tumor Portal (https://pbtp.stjude.cloud) that
supports interactive exploration of all molecular data. Within this
rich open-access portal, detailed information can be viewed or
downloaded for each individual model, summarizing clinical,
molecular, and histopathological features (Supplementary Fig. 5).

PEDIATRIC BRAIN TUMOR PORTALPEDIATRIC HIGH-GRADE GLIOMA

Chemical sensitivity

RNA-seq

DNA methylome profiling

Genome-wide sequencing

Histopathology

Fig. 1 Overview of PDOX and cell line establishment, characterization and preclinical testing, and pHGG data available in Pediatric Brain Tumor Portal.
Patient high-grade glioma samples were directly implanted into recipient mouse brain and passaged as PDOX models. Cell lines were also established from
a subset of PDOX models (left). Each PDOX or cell line, and when available, matched patient tumor, were evaluated for histopathology, DNA methylome
profiles, genome-wide sequencing and RNAseq. Genome sequencing of matched normal reference is also available for most PDOX models. Chemical
sensitivity testing was performed with cell lines (right). All associated data is available through an interactive data portal, the Pediatric Brain Tumor Portal
(pbtp.stjude.cloud).
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Models can be obtained by completing a request form through
the portal. In addition, this portal will house information about
other pediatric brain tumor PDOX models derived at St. Jude
Children’s Research Hospital18 and will be continually updated
with new models in the future.

High-throughput screen for drug response of different pHGG
subtypes. We selected a panel of 16 cell lines to assess drug
sensitivity of different subgroups of pHGG: eight glioma cell lines
were established from PDOXs reported here, six were previously
reported patient-derived DIPG cell lines19,20 (Supplementary
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Table 1). Two different sources of proliferating normal human
astrocytes were used as controls: astrocytes generated from iPS
cells (iAstro) and astrocytes isolated from human embryonic
brainstem (HABS) (Supplementary Table 1). Together, the cohort
comprised 2 cortical HGG with H3.3 G34R mutation, 2 HGG
with wild-type histone H3, and 10 DIPG; 7 with H3.3 K27M and
3 with H3.1 K27M mutation. We optimized all cells to grow in
384-well format plates for HTS and conducted a series of vali-
dation experiments to ensure reproducibility, including cell pro-
liferation curves, culture conditions, and the automation
parameters of HTS. We showed that DIPG cells plated as
adherent cultures on basement membrane matrix compared with
the same cells grown as tumorspheres responded similarly to
a panel of 53 different drugs representing a range of mechanisms
of action (MOA) tested in a dose–response (DR) format (Sup-
plementary Fig. 6, Pearson correlation= 0.994; Supplementary
Data 4a, b). Therefore, we conducted HTS experiments with
adherent cells to avoid variability within and between cultures
introduced by variable tumorsphere sizes.

Top hits from an initial screen of 1134 FDA-approved drugs at
a single concentration in nine pHGG cell lines (Supplementary
Data 4c) were supplemented with recently FDA-approved
oncology drugs, epigenetic modulators, clinical candidates, and
relevant chemical probes to yield a set of 93 drugs that were
screened against the full panel of 16 cell lines in DR format using
an independently prepared compound plate. For all 16 cell lines,
the z′ values21 calculated from 310 384-well assay plates showed
an excellent signal to noise ratio (z′ values: median= 0.82,
minimum= 0.56, maximum= 0.92) (Supplementary Fig. 7). An
additional 246 compounds, sampling a broader range of drug
MOA, were screened in DR format in four exemplar pHGG
models representing different histone subtypes. Results from all
stages of these HTS studies are presented in Supplementary
Data 4 and are available online for exploration in the Pediatric
Brain Tumor Portal (pbtp.stjude.cloud) where interactive features
allow the user to query by drug class, specific compound name,
tumor subgroup, or tumor cell lines, and to visualize results in
multiple formats, including data on the range of responses
to selected compounds, the sensitivity to all tested drugs for
selected cell lines, and customized overlay dose–response curves.
A mouseover feature also allows the user to identify outliers and
view compound information, dose–response values, and the
associated dose–response curve.

Results from the comprehensive screen of 93 compounds in
16 cell lines are summarized in Fig. 6. To highlight the most
selectively effective drug for each cell line, we calculated the area
under the curve (AUC) from the DR of each drug and
subtracted the median AUC for that drug calculated over all
cell lines (Fig. 6a). Notably, the distribution of responses for
SUDIPG-XXI showed that these cells were more sensitive than
other lines to nearly every drug tested. Consequently, we flagged
this model as an outlier and removed it from subsequent
analyses. Several drugs were identified as the most selective for

more than one pHGG model: the NF-κB inhibitor EVP4593 for
SJ-DIPGX7c and SUDIPG-XIII, the HSP90 inhibitor tanespi-
mycin for SJ-DIPGX37c and SJ-HGGX39c, and the MEK
inhibitor trametinib for SJ-DIPGX9c and SUDIPG-XIX. The
GSK3 inhibitor LY2090314 was the most selective drug for both
SUDIPG-IV and HABS control cells, whereas the proteasome
inhibitor marizomib was the most selective for SUDIPG-VI and
iAstro control cells.

We compared the distribution of AUC values for trametinib,
an FDA-approved drug, across all 15 models to AUCs for other
drugs in the set that have been evaluated in clinical trials or
implicated as promising agents in preclinical studies for adult or
pediatric glioma (Fig. 6b, c and Supplementary Fig. 8a). THZ1,
which targets CDK7 (ref. 22), was the most active drug (highest
median AUC) in this subset and was more selective for pHGG
models compared to iAstro and HABS. The CDK9 inhibitor
CDK9-IN-2 (ref. 23) had lower AUC values compared to THZ1,
but also showed selectivity for most pHGG models relative to
control cell lines. CDK7 and CDK9 are key regulators of
transcription initiation and elongation, respectively, supporting
the concept of targeting transcriptional dependencies in tumor
cells24. In contrast, the pan-BET inhibitor JQ1 (ref. 25,26), which
also impacts transcription regulation, was much weaker than the
CDK7 and CDK9 inhibitors, and was equally or more cytotoxic to
control cell lines (Fig. 6b). The anti-metabolite GMX-1778,
which disrupts the regeneration of NAD+ via NAMPT, showed
strong efficacy, in agreement with a previous report27. However,
we did not observe enhanced sensitivity in a line with PPM1D
mutation (SJ-DIPGX37c) as predicted by a previous study27.
Consistent with previous reports that evaluated broad-spectrum
HDAC inhibitors15,19,28,29, panobinostat showed strong efficacy
in vitro. However, CUDC-907, a dual-acting inhibitor of class I
PI3K and HDAC30, had higher median AUC and was slightly
more selective for pHGG models. The proteasome inhibitor
marizomib is being evaluated in a phase I combination study
with panobinostat in DIPG (NCT04341311)15. This drug had
the largest interquartile range of AUC values in the subset and
induced significant cytotoxicity in iAstro cells (Fig. 6b and
Supplementary Fig. 8a).

Inhibitors of PI3K/mTOR (omipalisib) and MEK (trametinib)
were selective for the same three DIPG pHGG models over
other cell lines (Fig. 6c). However, trametinib was generally
much less active in the panel as evidenced by its significantly
lower median AUC (Fig. 6b). A transcriptional MAPK Pathway
Activation Score (MPAS) was previously developed based on
expression of a select set of genes that correlate with sensitivity
to MAPK pathway inhibitors in cell lines from some, but not all
tumor types31. We determined the MPAS in the 14 cell lines
evaluated in our drug screen but found no correlation between
MPAS and response to trametinib (Pearson correlation −0.34)
(Supplementary Fig. 8b), showing substantial heterogeneity in
pHGG response without a simple relationship to gene expres-
sion signatures.

Fig. 2 DNA methylation classification of patient tumors is conserved in corresponding PDOXs and cell lines. a t-SNE plot showing tumor subgroups
based on DNA methylation profiling. Nineteen patient tumors (circles), 21 PDOXs (squares), and 14 cell lines (diamonds) are outlined in black. Lines
connect PDOXs and cell lines with the patient tumors from which they were derived. Tumor subgroup classifications are color-coded. Circles without
outlines are reference samples from Capper et al. Dashed square shows region containing all HGG samples. Classifications: Embryonal tumors: atypical
teratoid rhabdoid tumors (ATRT), embryonal tumor with multilayered rosettes (ETMR), high-grade neuroepithelial tumor with BCOR alteration
(HGNET_BCOR), and medulloblastoma (MB). Ependymal tumors: ependymoma (EPN), subependymoma (SUBPEN), myxopapillary ependymoma (MPE),
posterior fossa (PF), supratentorial (ST). Glioblastoma: diffuse midline glioma (DMG) and glioblastoma (GBM). Other glioma: anaplastic pilocytic
astrocytoma (ANA_PA), high-grade neuroepithelial tumor with MN1 alteration (HGNET_MN1), anaplastic pleomorphic xanthoastrocytoma (PXA). Control
tissue, inflammatory tumor microenvironment (CONTR_INFLAM). b Enlarged view of boxed region in a. Dashed oval shows patient tumors with MMRD
and derived PDOX models.
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The WEE1 inhibitor MK-1775 (adavosertib), which is being
evaluated clinically with radiotherapy in pHGG (NCT01922076),
showed low efficacy in our panel. Likewise, the alkylating agent
temozolomide (TMZ), a standard of care in adult gliomas, was
ineffective in our tumor models, consistent with the lack of
clinical response to TMZ in pHGG32. We also tested two other
alkylating agents, streptozocin and nimustine33, and both were
ineffective in our pHGG models (Supplementary Data 4c, e).

Finally, to better explore patterns of drug sensitivity across the
cell lines in our panel, we performed unsupervised clustering of
cell lines (columns) and compounds (rows) with all 93
compounds (Supplementary Fig. 8c) or using the top 25% most
active drugs out of the 93 evaluated (Fig. 6d). Notably, tumor
models did not cluster according to histone subtype based on
their responses to the drugs. We observed two compound clusters
that were enriched for molecules acting by the same MOA
indicating some selective sensitivity in response to inhibition of
particular processes. Cluster 1 contained four proteosome
inhibitors (marizomib, ONX-0914, ixazomib, and bortezomib)
and Cluster 2 contained four compounds targeting transcriptional
dependencies (THZ1, CDK9-IN-2, panobinostat and CUDC-907)
and two dual activity compounds including PI3K inhibition
(CUDC-907 and omipalisib). Cluster 2 was characterized by a
significant lack of efficacy against the iAstro control cell line,
therefore showing some selectivity for HGG.

Inhibition of PI3K/mTOR and MEK signaling show selective
effects alone and in combination in pHGG in vitro and in vivo.
We sought to determine if sensitivity differences between tumor
cell lines detected by HTS translated into in vivo effects in
orthotopic brain tumors. For these studies, we chose PI3K/mTOR
and MEK pathway inhibitors because responses in different
pHGG lines varied and target engagement can be reliably

detected in tumor tissue. HTS results showed that the PI3K/
mTOR inhibitor omipalisib was active in most pHGG models but
varied in potency. In contrast, the MEK inhibitor trametinib
showed weak activity in many tumor cells (Fig. 6 and Supple-
mentary Data 4f). While these pathways are compelling targets
for treatment given known genetic aberrations in both pathways
in pHGG2,5, both compounds are known substrates of ATP-
dependent efflux pumps P-gp and BCRP, limiting their brain
exposure34,35. Therefore, we selected paxalisib (GDC0084) and
mirdametinib (PD0325901), which target PI3K/mTOR and MEK,
respectively, and have superior blood–brain barrier penetration
and exposure34,36,37, to validate the effects of pathway inhibition
for in vitro/in vivo comparisons.

Numerous studies have shown extensive cross-talk between
these pathways and promise for enhanced efficacy of combined
inhibition approaches38,39. We conducted in vitro quantitative
synergy assays in seven cell lines and analyzed results using the
Bivariate Response to Additive Interacting Doses (BRAID)
response surface model40. BRAID κ denotes the type of
interaction (κ < 0 is antagonistic; κ= 0 is additive, and κ > 0 is
synergistic), whereas BRAID IAE50 computes the degree to
which a combination achieves a minimal efficacy within a
defined concentration range (in this study, 50% reduction in cell
viability for concentrations ≤1 μM). Higher IAE50 means that
the combination is more efficacious. The combination of
paxalisib and mirdametinib exerted synergistic growth inhibi-
tion (κ > 0) in three pHGG cell lines (SJ-DIPGX29c, SJ-
DIPGX37c, and SJ-HGGX6c) and iAstro controls, but not in
SJ-DIPGX7c, SJ-HGGX42c, SJ-HGGX6c, or HA-bs controls
(Fig. 7). When considering the efficacy of the combination
(IAE50), synergy made a major contribution in the case of SJ-
DIPGX37c and SJ-DIPGX29c, as indicated by the curvature of
the 50% (black) and 90% (white) cell viability isoboles. In
contrast, the IAE50 value for SJ-DIPGX7c was driven solely by
paxalisib: the 50% and 90% isoboles run parallel to the y-axis
because mirdametinib exerts little cytotoxicity on its own and
fails to potentiate the activity of paxalisib. While the synergy is
highest in iAstro (κ= 8.8), as evidenced by the clear shift in the
50% isobole with increasing mirdametinib concentrations, both
drugs are weakly cytotoxic on their own and their interaction is
insufficient to induce high combined efficacy (IAE50= 1.0).

We selected two H3.3 K27M mutant DIPG PDOX models, SJ-
DIPGX37 and SJ-DIPGX7, to test whether in vitro HTS results
predicted in vivo response. Both harbor mutations targeting PI3K
and TP53-related pathways (Fig. 4), and their corresponding cell
lines (SJ-DIPX7c and SJ-DIPGX37c) demonstrated different
in vitro responses. Both cell lines showed similar sensitivity to
paxalisib (EC50= 0.32 μM for SJ-DIPGX37c vs. 0.22 μM for SJ-
DIPGX7c), whereas mirdametinib induced a stronger response
(EC50= 1 μM) in DIPGX37c, which has PIK3R1 and PPM1D
mutations and did little in SJ-DIPGX7c, which has PIK3CA and
TP53 mutations (Figs. 4 and 7). Similar responses were observed
with trametinib (Supplementary Data 4f).

We evaluated PI3K and MEK pathway inhibition in
intracranial PDOX models matched to these cell lines by
evaluating levels of p-AKT S473 and p-ERK T202/Y204,
respectively (Fig. 8 and Supplementary Fig. 9). Interestingly,
while the levels of PI3K pathway activity, as assessed by p-AKT,
were similar between both PDOXs, SJ-DIPGX7 showed mark-
edly lower levels of p-ERK, indicating lower MEK pathway
activation (Fig. 8a). Consistent with a reduced reliance on MEK
signaling, mirdametinib did not significantly alter cell survival or
proliferation in SJ-DIPGX7, as assessed by active caspase-3 and
phospho-histone H3, respectively. Paxalisib treatment alone
induced a trend of increased cell death, and when combined
with mirdametinib significantly increased cell death (Fig. 8a).

a b

c d
H&EH&E

ATRXATRX

*

* N

N

Fig. 3 Histopathology of PDOX recapitulates salient features of the
patient tumor from which it was derived. H&E staining of HGG PDOX SJ-
HGGX6 (a), shown as a representative example, recapitulates histologic
features of its corresponding primary human tumor (b), including
infiltration of the CNS parenchyma (arrow), perivascular invasion (black
right pointing triangle), and apparent mitotic activity (asterik). Nuclear
ATRX immunoreactivity, while retained in the entrapped neurons, is lost in
the PDOX tumor cells (c), as in its corresponding primary human tumor
(d). N: entrapped cerebral cortical neurons. Scale bar: 50 µm. H&E staining
was performed for 21 PDOX models, 20 with matching patient tumor.
ATRX IHC was performed in six PDOX/patient tumor pairs, four with ATRX
mutation, and two without ATRX mutation. Loss of ATRX immunoreactivity
was consistent with mutation status in all samples tested.
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SJ-DIPGX37 showed a significant decrease in tumor cell prolifera-
tion in vivo with paxalisib treatment, and a greater magnitude effect
with mirdametinib, while neither induced significant tumor cell
death. Strikingly, the combination of paxalisib and mirdametinib
significantly enhanced tumor cell death in vivo beyond levels
induced by either agent alone (Fig. 8b). Consistent with in vitro
synergy studies, the combination had a much more significant
impact on cell death in SJ-DIPGX37.

We further extended these promising results in SJ-DIPGX37
to evaluate effects on the survival of tumor-bearing mice. We

reduced doses of paxalisib to 8 mg/kg and mirdametinib to 14
mg/kg in monotherapy controls and in the combination for long-
term treatment due to significant weight loss at higher
dosages. These doses still effectively inhibited both pathways in
the brain, with the combination showing slightly enhanced
suppression of p-ERK1/2 relative to mirdametinib alone
(Supplementary Fig. 9c). We randomly distributed 24 mice
bearing SJ-DIPGX37 PDOX into four arms: (1) vehicle, (2)
paxalisib, (3) mirdametinib, or (4) combination and found
that the combination of paxalisib and mirdametinib, but not

Fig. 4 Genomic landscapes of PDOX and cell lines conserve alterations present in the matched patient tumor and represent a variety of pHGG
subtypes. Alterations in genes recurrently mutated in pHGG are indicated on the left. Pathways are indicated on the right. Columns show tumor samples.
PDOX and cell lines are grouped together with patient tumors from which they were derived. Numbers are the PDOX identifier IDs across the top,
sequence file IDs across the bottom. Rows show the location of patient tumors, DNA methylome classification, and tumor sample type. In some cases,
patient tumor samples from recurrence or autopsy are included along with the diagnostic sample. Asterisk in tumor sample type indicates the patient
tumor from which the PDOX was derived. For 7, passages 7 and 10 of SJ-DIPGX7 are shown, and for 29, passages 3 and 4 of SJ-DIPGX29 are shown.
PDOX* (dark gray box) indicates xenograft generated by implanting the associated cell line. Mutations in signature genes shown as rows are indicated by
Mutation Type color code. G in block indicates germline mutation.
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Fig. 5 Gene expression signatures of PDOX models recapitulate glioma expression subgroups. Unsupervised hierarchical clustering of RNA-seq
quantification (log CPM) of genes from three expression signatures recapitulating glioma subgroups proliferative, proneural, and mesenchymal across the
patient tumors, PDOXs, and cell lines.
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either drug alone, significantly extended survival of mice with
intracranial SJ-DIPGX37 tumors (Fig. 9, p= 0.0056, Mantel–Cox
log-rank test). We examined the plasma and brain pharmaco-
kinetics of mirdametinib and paxalisib in normal mice to assess
the possibility that the enhanced combinatorial effects were due
to drug–drug interaction. While both agents had slightly

increased plasma AUCs in combination (Supplementary Fig. 10
and Supplementary Data 5), the differences were within
variability and less than twofold magnitude, the conventionally
accepted threshold to identify drug–drug interactions41. Thus,
the enhanced efficacy with combination treatment was likely due
to combined pathway inhibition.
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Fig. 7 Paxalisib and mirdametinib drive synergistic growth inhibition in a subset of pHGG cell lines. The BRAID model presents synergistic effects of
paxalisib (pax) and mirdametinib (mir) following a 7-day treatment in 7-cell lines: H3.3 K27M DIPGs; SJ-DIPGX37c, SJ-DIPGX29c, SJ-DIPGX7c, H3.3 G34R
pHGGs; SJ-HGGX42c, SJ-HGGX6c, and astrocyte controls HABS and iAstro. The parameter κ measures the type of interaction: κ < 0 implies antagonism,
κ= 0 implies additivity, and κ > 0 implies synergy). The index of achievable efficacy (IAE) quantifies the degree to which the drug combination achieves a
minimal level of efficacy within a defined concentration range. Higher IAE means the combination was more efficacious. In this experiment, it was defined
as a 50% reduction of cell viability (black line) at concentrations ≤ 1 μM (dotted lines). The 90% reduction of viability isobole (white line) is included for
reference.

Fig. 6 Analysis of screening results from 93 compounds across 14 pHGG models and two normal astrocyte lines. a Distribution of normalized drug AUC
(the drug AUC in that cell model minus the median AUC for that drug across all models to control for inherent drug potency). Each dot represents a single
drug with the most selective drug for each model shown in blue. Cell models are color coded by histone mutation status. n= 93 drug AUC values derived
from one or more independent experiments. b Distribution of AUC for select drugs that have been evaluated in clinical trials or implicated as promising
agents in glioma preclinical studies. Each dot represents the drug AUC in one model and is color coded by the histone mutation status of the model. n= 15
drug AUC values derived from one or more independent experiments, except TMZ where n= 4. In a, b, data are represented as boxplots where the middle
line is the median, the lower and upper hinges correspond to the first and third quartiles, the upper whisker extends from the hinge to the largest value no
further than 1.5 × the interquartile range (IQR) from the hinge and the lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the
hinge. All data points are plotted individually. c Select dose–response curves for the drugs highlighted in b. Normal references are depicted in black dashed
lines (iAstro) and black solid lines (HABS). pHGG models are colored gray or by histone mutation status for models indicated. d Unsupervised hierarchical
clustering of drug AUC z-scores for the 25% most active compounds out of 93 tested. Column and column labels are color coded by histone mutation
status. Clusters 1 and 2 (gray boxes) highlight compound clusters showing distinct activity profiles across the models tested. The color code for histone
mutation status is: H3-wt (red), H3.3 G34R (blue), H3.1 K27M (turquoise), and H3.3 K27M (green). Control cell lines (iAstro and HABS) are black. Color
code for mechanism of action is shown on the right and annotated in heatmap row color blocks at left in d.
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Fig. 8 Paxalisib and mirdametinib show selective effects on cell survival and proliferation in vivo. a Left: A single western blot of lysates
from intracranial PDOX SJ-DIPGX37 (untreated, lane 1) and SJ-DIPGX7 (lanes 2–9) treated with vehicle (veh), paxalisib (pax, 12 mg/kg), mirdametinib
(mir, 17 mg/kg), or the combination of paxalisib and mirdametinib (pax+mir) as indicated; antibodies are indicated at right. Quantification of IHC in
sections from SJ-DIPGX7 tumors treated with agents shown along the x-axis for active caspase-3 (middle) and phospho-histone H3 (right), n= 3 tumors
for veh, mir and n= 4 tumors for pax and pax+mir. The p values for comparison of active caspase-3 staining are veh vs. mir 0.9454, veh vs. pax 0.0964,
veh vs. pax+mir 0.0032, mir vs. pax 0.0383, mir vs. pax+mir 0.0014, and pax vs. pax+mir 0.1474. The p values for comparison of p-H3 staining are veh
vs. mir 0.7418, veh vs. pax 0.1733, veh vs. pax+mir 0.0258, mir vs. pax 0.6600, mir vs. pax+mir 0.1435, and pax vs. pax+mir 0.5747. b Left: IHC for
pAKT Ser473 and pERK in SJ-DIPGX37 tumors in representative tumors treated with veh, pax, mir, or pax+mir as indicated. Quantification of IHC staining
in sections from SJ-DIPGX37 tumors treated with agents shown along the x-axis for active caspase-3 (middle) and phospho-histone H3 (right), n= 3
tumors for each treatment. The p values for comparison of active caspase-3 staining are veh vs. mir 0.9628, veh vs. pax 0.9405, veh vs. pax+mir 0.0003,
mir vs. pax 0.9997, mir vs. pax+mir 0.0005, and pax vs. pax+mir 0.0006. The p values for comparison of p-H3 staining are veh vs. mir < 0.0001, veh vs.
pax 0.0110, veh vs. pax+mir < 0.0001, mir vs. pax 0.0043, mir vs. pax+mir 0.3352, and pax vs. pax+mir 0.0006. NS not significant; *p < 0.05; **p <
0.01; ***p < 0.001, ****p < 0.0001 using ordinary one-way ANOVA with post hoc Tukey test. The error bars indicate the mean ± s.d. Scale bar in b, left
panel= 100 µm.
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Discussion
pHGG remains largely incurable despite decades of clinical trials.
Worldwide efforts in studying the molecular basis of this group of
tumors has revolutionized understanding and revealed subgroups
based on spatiotemporal tumor occurrence and striking molecular
heterogeneity that has been further subdivided by DNA methyla-
tion signatures and inter- and intra-tumoral heterogeneity of
mutated genes. Relevant in vitro and in vivo disease models that
are founded in the correct developmental origins, recapitulate
genetic and epigenetic signatures and represent the significant
heterogeneity of pHGG are essential to further our understanding
of mechanisms driving tumorigenesis and to identify therapeutic
vulnerabilities. Although a growing number of DIPG cell lines have
been established and characterized15,19,42–44, relatively few of these
efficiently engraft in the brain as xenografts for in vivo modeling45,
and there are a much smaller number of cell lines from pediatric
gliomas arising outside the brainstem. PDOXs allow researchers to
address critical dimensions of tumor biology, including angiogen-
esis, tumor invasion, and interactions with the tumor micro-
environment, including the contribution of nervous system
activity46, that may strongly influence tumor growth and selective
pressures. A recent study to establish a biobank of pediatric brain
tumors reported the establishment of eight new pHGG PDOX
models47. The 21 new pHGG PDOX models and 8 new cell lines
reported here are a significant advance and include several rare
tumor subtypes with limited available models, including three H3.3
G34R glioblastomas, three pHGG with MMRD, two glioblastomas
in the pedRTKIII subgroup, and two PXAs. This new collection of
models recapitulates the histopathologic and molecular hallmarks
of pHGG and preserves genomic alterations (single-nucleotide
variants, large-scale copy-number changes, and double minute
chromosomes), mRNA expression profiles, and DNA methylome
signatures of the primary tumors from which they were derived.

pHGG is known to display significant intra-tumoral hetero-
geneity due to clonal variation within the tumor48–50. Indeed,
there were a few differences between patient tumor, PDOX, and
cell line, such as NTRK1 mutation detected in the autopsy sample
of SJ-DIPGX37, but not the associated PDOX or cell line, or
MYCN amplification present in SJ-DMGX40 PDOX, but not in
the matched patient tumor (Fig. 4 and Supplementary Fig. 2).
Such differences could be due to regional heterogeneity

between the patient sample analyzed and cells implanted,
expansion of a minor subclone during PDOX establishment, or
acquisition of new mutations during ongoing tumor evolution in
the mouse host.

Across multiple PDOX models, we found consistent upregu-
lation in genes associated with proliferation and decreased
expression of genes associated with inflammatory response
compared to matched patient tumors, as previously described47.
After removing these shared PDOX-specific signatures, however,
there was a strong correlation in expression signatures between
PDOX and matched patient tumors. Expression differences
between the patient tumors and derived PDOX may be due to
greater tumor purity in the PDOX expression profiles after
removing mouse reads from non-tumor cells within the sample.
However, the process of establishing cell lines or PDOXs may
select for more proliferative populations. While such selection
could lead to an overestimate of the effects of cell cycle inhibition
in pHGG models, such bias was not observed in the control cell
lines that proliferated more rapidly than the tumor cells.

Despite decades of clinical trials, no effective chemotherapy
approaches have been identified for pHGG. However, the revo-
lution in knowledge gained through genomic analyses of pHGG
revealed some clear therapeutic targets, and selective inhibitors
have induced striking responses in pHGG with BRAF V600E
mutation or NTRK fusion genes. The high frequency of H3K27M
mutations in DIPG and other midline gliomas sparked an intense
search for selective vulnerabilities conferred by this mutation,
especially in agents connected to epigenetic regulation. Some of
the top hits from our HTS were consistent with previous findings
in DIPG cell line screening, including inhibitors of HDACs,
CDK7, and CDK9, and proteins involved in epigenetic or tran-
scription regulation15,19,24,28,51. The inclusion of additional
pHGG models in our experiments showed the broad efficacy of
these agents independent of H3K27M mutation. The 7-day assay
performed in our study could underestimate the efficacy of some
epigenetic modulatory compounds, which may take longer to
manifest than compounds inducing acute cytostatic or cytotoxic
responses in growth inhibitory assays.

Overall, the two sources of normal astrocyte control cells were
among the least sensitive cell lines to the collection of compounds
tested in DR (Fig. 6a), and many of the top hits showed greater
sensitivity in tumor cell lines than in iAstro control cells (Fig. 6b, c).
However, responses varied between the two sources of astrocytes
(Fig. 6b, c and Supplementary Fig. 8). These results reveal potential
differences in drug sensitivity in normal cells at different develop-
mental stages as well as variation among tumors, and further
highlight the difficulty in determining simple predictors of drug
responsiveness in pHGG which are heterogenous in developmental
expression signatures as well as genetic mutations.

Understanding how disease heterogeneity contributes to ther-
apeutic response is the foundation of precision medicine. The
panel of 14 pHGG cell lines and two astrocyte controls revealed
substantial variation in efficacy and potency across the collection
of compounds representing multiple MOA. We further investi-
gated inhibitors of PI3K/mTOR and MEK pathways in two
PDOX models with differing responses as test cases to determine
how well results of in vitro screening were predictive of in vivo
response. Myriad mutations in pHGG and other cancers converge
on these two signaling pathways, and there are multiple examples
of pathway cross-talk that compromise the efficacy of single-agent
approaches that inhibit only one of these two regulatory
cascades38,39,52,53. Among available inhibitors of PI3K/mTOR
and MEK, we selected paxalisib and mirdametinib, respectively,
for in vivo studies because of their ability to traverse the
blood–brain barrier. In vivo testing with these drugs induced
dramatic inhibition of pathway activity in both PDOXs with
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Fig. 9 Combined treatment with paxalisib and mirdametinib significantly
extends survival of SJ-DIPGX37-bearing mice. Mice were randomized
50 days after implantation into four treatment arms (6 mice per arm) and
treated with vehicle (black), paxalisib (8 mg/kg) (red), mirdametinib (14
mg/kg) (blue), or paxalisib+mirdametinib daily (green), 5 days ON and 2/
3 days OFF. Paxalisib+mirdametinib vs. vehicle, p= 0.0056; mirdametinib
vs. vehicle, p= 0.16; paxalisib vs. vehicle, p= 0.48 (Mantel–Cox log-rank
test). Arrow shows the time point for randomization and initiation of
treatment. Kaplan–Meier survival analysis.
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differential tumor responses consistent with in vitro studies. SJ-
DIPGX7 showed relative resistance to MEK inhibition and a
more moderate impact of combined PI3K/mTOR inhibition
compared with the more responsive SJ-DIPGX37, where the drug
combination drove greater cytotoxic and cytostatic responses and
extended survival of mice carrying intracranial tumors. Addi-
tional in vivo studies would be needed to determine if the in vitro
screening results are predictive of response in all cases. Identi-
fying reliable biomarkers to accurately predict response from
biopsy samples will likely require a significantly larger collection
models. Pharmacokinetic (PK) analyses showed no substantial
drug–drug interaction changing drug exposures, so the enhanced
effects are likely to represent the result of combined pathway
inhibition. However, levels of mirdametinib used to effectively
block signaling in our study were significantly higher than those
observed in humans following exposure at the current clinical
dosing of 4 mg twice daily54. Given the compelling survival
advantage and observed in vivo toxicity, there is a rationale to
consider local delivery of PI3K/mTOR and MEK inhibitors to
these tumors to avoid systemic toxicities and reach the necessary
levels of drug activity.

It is promising that the majority of compounds screened in our
study showed substantially greater efficacy across all of the tumor
models tested when compared to temozolomide, which is still
frequently used in treating pHGG. Further studies are needed to
understand the intrinsic differences in sensitivity between tumors
to ultimately achieve the promise of personalized medicine. While
we did not observe a simple predictive relationship between DNA
methylation subgroup and compounds inhibiting a particular
MOA, our results showed efficacy of inhibitors of transcription
and translation across all pHGG subgroups (Fig. 6b, c). Impor-
tantly, we also found that each cell line showed selective responses
to specific compounds (Fig. 6a) that were not predicted by simple
correlation with DNA methylation subgroups or mutations in
signature pHGG genes, indicating that there are clear but het-
erogeneous vulnerabilities for these tumors. Thus, major advances
in the treatment of this heterogeneous group of intractable brain
tumors will require significant new insights into mechanisms
driving disease pathogenesis and even more extensive preclinical
testing to identify more reliable predictors of these selective
vulnerabilities. Models with a detailed molecular characterization
that can be experimentally manipulated and studied in vitro and
in vivo provide powerful tools needed to address this challenge.
To facilitate an in-depth exploration of this collection of 21 new
PDOX and 8 new cell lines, the Pediatric Brain Tumor Portal
provides an interactive interface to access and explore all clinical
and molecular data and drug screening results. It provides sum-
mary overviews for each model (Supplementary Fig. 5) and tools
to generate customized mutation oncoprints, gene expression
heatmaps, and overlays of dose–response curves for selected
drugs and cell lines. The well-characterized models reported here
provide a rich resource for the pediatric brain tumor community.

Methods
Patient material: Genomic analyses of patient material and use of patient tumor
samples to establish xenografts and cell lines were performed with informed
consent and approval from the Institutional Review Board of St. Jude Children’s
Research Hospital. Written informed consent was obtained from patients and/or
legal guardians for use of tissue for research. This study complies with the
Declaration of Helsinki and all other relevant ethical regulations.

All reagants used for this study are listed in Supplementary Table 2.

PDOX establishment. Surgical or autopsy tumor samples were transported in
neurobasal or DMEM/F12 media without additives at 4 °C. Most tissues were
processed directly, although samples stored overnight at 4 °C also successfully
engrafted to form tumors. Tissues were dissociated into a single-cell suspension by
gentle pipetting in warm neurobasal media or by enzymatic dissociation with
papain. Single tumor cells were isolated by a mixture of 1% activated Papain in

Neurobasal™ media with 0.16 mg/ml N-acetyl cysteine and 0.012 mg of DNase
through a 15–30 min digestion at 37 °C. The cells were washed in Neurobasal™
media, counted, and resuspended in Matrigel (Corning, Tewksbury MA, US).
Intracranial implantation of 2 × 105–1 × 106 cells in matrigel into CD-1 nude mice
was completed as described55. In brief, intracranial injections for tumor implan-
tations were performed by designated surgeons, under general anesthesia and with
analgesics for 1 week. The head of the anesthetized mouse (female CD-1® Nude
Mouse, Charles River, Wilmington, MA, US) was held by ear bars on a stereotaxic
equipment (David Kopf Instruments Tujunga, CA, US). A standard 2 × 2mm bore
hole was created with a dental drill and the dura was cut completely from the
surface of the exposed brain. Cells in Matrigel were injected with a sterile glass
Hamilton syringe bearing a 26G unbeveled needle 2.5 mm below the cortex surface.
The wound was sealed with two Relex clips (Kent Scientific Corporation, Tor-
rington, CT, US). Mice were monitored until awake. The drinking water contained
115 μg/ml ibuprofen and Baytril (3.5 ml of 2.27% stock/500 ml water) for a week.
Mice were observed and monitored daily for neurological and health symptoms
and euthanized at a humane endpoint. PDOX tumors were dissected from mor-
ibund mice, dissociated, and passaged into 5–10 recipient mice, or cryopreserved in
either Millipore or Sigma cell freezing medium (Supplementary Table 2). Models
were considered established after successfully engrafting through three passages.
Recovery from cryopreserved cells typically showed delayed in vivo tumor growth
of 1.5–2 times compared to passaging from fresh tumors. Many lines were trans-
duced with a lentivirus to express luciferase and yellow fluorescent protein (CL20-
luc2aYFP) for in vivo imaging. Mice were maintained in an accredited facility of
the Association for Assessment of Laboratory Animal Care in accordance with
NIH guidelines. Housing conditions for mice were temperature range 68–74 °F,
humidity range 30–70%, dark/light cycle cycle 12 h dark/12 h light with lights on at
6 AM, off at 6 PM. The Institutional Animal Care and Use Committee of SJCRH
approved all procedures in this study.

Cell line propagation and maintenance. To establish pHGG cell lines SJ-
HGGX2c, SJ-HGGX6c, SJ-HGGX42c, SJ-HGGX39c, SJ-DIPGX7c, SJ-DIPGX9c,
SJ-DIPGX29c, and SJ-DIPGX37c, fresh PDOX tumors were dissected from
euthanized mice, and sterile tumor tissue was digested to single cells as for PDOX
establishment above. The cells were washed and plated in Corning® Ultra-low
Attachment plates in media used for neural stem cells and glial progenitor cells
consisting of a 1:1 mixture of Neurobasal™ without phenol red (with 2% of B27
without vitamin A and 1% of N2) and ThermoFisher Knock-Out DMEM/F12
(with 2% of Stempro® neural supplement) supplemented with 20 ng/ml of human
recombinant EGF, 20 ng/ml of human recombinant bFGF, 10 ng/ml of human
recombinant PDGF-AA and -BB, 1% of Glutamax, 1% of sodium pyruvate, 1% of
NEAA, 10 mM of HEPES, 2 μg/ml of heparin and 1× Primocin. In the first passage,
the Miltenyi Biotec Mouse Cell Depletion Kit was used, and removal of residual
mouse cells was verified by demonstrating successful PCR amplification with
humans, but not mouse-specific, primer sets for H3F3A/h3f3a (Supplementary
Table 3). Sequences of PCR products were verified. To further verify that cultured
cells were of human origin, immunofluorescent staining with anti-human mito-
chondria and anti-human nuclear antigen antibodies was performed.

The cell lines were either maintained in suspension culture as tumorspheres or
on human ESC-qualified Geltrex artificial extracellular matrix-coated tissue culture
surface56 at 37 °C, 5% CO2, and 5% of O2. Doubling times were computed using
http://www.doubling-time.com/compute.php.

SU-DIPG-IV, SU-DIPG-VI, SU-DIPG-XIII, SU-DIPG-XVII, SUDIPG-XIX,
and SU-DIPG-XXI15,19,20 were generous gifts from Dr. Michelle Monje. Normal
cell type references were human neural stem cells induced from H9 ES cells
(Invitrogen, N7800-100), human iPSC-derived astrocytes (Tempo Bioscience), and
human brainstem astrocytes (ScienCell Research Laboratories, #1840).

Short tandem repeat profiling. Molecular fingerprinting for PDOXs and cell lines
was performed with Promega PowerPlex® 16 HS or PowerPlex Fusion® System
(Promega Corporation, Madison, WI).

DNA methylation profiling and copy-number analysis. DNA methylation pro-
files were evaluated using Illumina Infinium Methylation EPIC BeadChip arrays
according to the manufacturer’s instructions. Raw IDAT files from pHGG patient
tumors, PDOXs, and cell lines as well as a published reference cohort from ref. 12

were assessed for quality control and pre-processed using the minfi package in R57.
Low-quality samples were excluded from the downstream analysis based on mean
probe detection with p value > 0.01. Relevant tumor subgroups were selected from
the reference cohort. Subgroups with more than 30 cases were randomly down-
sampled to 30 cases. Methylation probes were filtered based on the following
criteria: detection p > 0.01 in >50% of the cohort, non-specificity based on a
published list from ref. 58, and probes residing on sex chromosomes. The data then
underwent single-sample Noob normalization to derive beta values, with the top
35,060 most variable probes (probe s.d. > 0.25) selected for downstream analysis.
Distances between samples were calculated based on Pearson’s distance and then
visualized with the t-SNE algorithm (Rtsne package v.0.11).

Copy-number alteration (CNA) analysis was done using the conumee package
(v 1.18.0) with default parameters. Probe intensities were normalized against a
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reference set of normal brain tissues profiled by Methylation EPIC array (n= 34).
CNAs were then detected as significant positive or negative deviations, which
encompassed more than 50% of the chromosomal arm, from the genomic baseline.

Neuropathology assessment. Standard hematoxylin and eosin histopathologic
preparations of 5-μm formalin-fixed and paraffin-embedded tissue sections from
patient tumors and derived PDOXs were centrally reviewed by a board-certified
neuropathologist specialized in pediatric CNS tumors (J.C.) and blinded to the
origin and genetic alterations of the PDOXs.

Immunohistochemistry and FISH. Immunohistochemistry (IHC) was performed
as previously described59. In brief, tissues were fixed in 4% paraformaldehyde at pH
7.4, embedded in paraffin, and cut into 5 μm sections. For DAB staining, antigen
retrieval was performed by boiling in 0.01 M citrate buffer (pH 6.0) for 10 min.
Endogenous hydrogen peroxidase activity was blocked by 0.6% hydrogen peroxide
in TBS (pH 7.6) for 30 min, and IHC followed instructions from the VECTAS-
TAIN Elite ABC kit. Antibodies and dilution factors are listed below and in
Supplementary Table 2. Amplification of PDGFRA (4q12) and MYCN (2p24) was
detected by interphase fluorescence in situ hybridization in a Clinical Laboratory
Improvement Amendments (CLIA)-certified laboratory in St. Jude Children’s
Research Hospital with probes developed in-house using the following BAC clones:
PDGFRA (RP11-231C18+ RP11-601I15) with 4p12 control (CTD-2057N12+
CTD-2588A19) and MYCN (RP11-355H10+ RP11-348M12) with 2q35 control
(RP11-296A19+ RP11-384O8).

Antibodies. Primary antibodies used were Akt rabbit pAb, dilution ratio 1:1000 for
Western (Cell Signaling, 9272); Phospho-Akt (Ser473) rabbit pAb, dilution ratio
1:1000 for Western, 1:50 for IHC (Cell Signaling, 9271); p44/42 MAPK (Erk1/2)
rabbit pAb, dilution ratio 1:1000 for Western (Cell Signaling, 9102); Phospho-p44/
42 MAPK (Erk1/2) (Thr202/Tyr204) rabbit pAb, dilution ratio 1:1000 for IHC and
Western (Cell Signaling, 9101); Phospho-Histone H3 (Ser10) rabbit pAb, dilution
ratio 1:200 for IHC (Cell Signaling, 9701); Cleaved Caspase-3 Antibody rabbit
mAb, dilution ratio 1:500 for IHC (BD Pharmingen™, #559565); and Anti-ATRX
rabbit pAb, dilution ratio 1:600 for IHC (Millipore Sigma, HPA001906). The
secondary antibodies were anti-rabbit biotinylated secondary antibody, dilution
ratio 1:200 for IHC (Vector Laboratories, BA-1000); Rabbit IgG HRP linked whole
Ab, dilution ratio 1:10,000 for Western (MilliporeSigma GENA934-100UL); and
Mouse IgG HRP-linked whole Ab Cytiva, NXA931, dilution ratio 1:10,000 for
Western (MilliporeSigma GENXA931-1ML).

WGS and WES analysis. Both WGS and WES were performed on the majority of
the samples with a few samples having only WGS or WES. Paired-end sequencing
was conducted on Illumina HiSeq platform with a 100- or 125-bp read length or
NovaSeq with 150-bp read length. Paired-end reads from WGS and WES were
mapped to GRCh37-lite using BWA-aln followed by QC60–62. For PDOX samples,
mapped reads were cleansed of mouse read contamination by XenoCP63. For
patient tumors and PDOX samples with matched germline samples, somatic
mutations including SNVs and Indels were called and classified61,62. Briefly, the
putative somatic calls were called with Bambino in the paired tumor/normal mode
and normal only modes, then further filtered to ensure the high sequence level
supports including (1) strong enrichment in tumor sample compared with normal
samples, using Fisher exact test; (2) supporting reads in tumors in both orientations
of mated pairs (≥3 unique reads); (3) low read allele frequency in normal samples
(≤0.05). Additional filters are included to remove the somatic mutations due to the
paralogous mapping, sequence misalignment, or sequencing artifacts due to
homopolymers, or low-quality base pairs. Non-silent mutations including mis-
sense, nonsense, in-frame insertion, in-frame deletion, frameshift, and splice
mutations were reported. Potentially pathogenic germline variants were reported
based on these filters: (1) non-synonymous mutations with variant allele frequency
(VAF) > 0.2 and coverage > 10×; (2) minor allele frequency (MAF) in general
populations <1e−3 in ExAC;64 and (3) REVEL score > 0.5 (ref. 65), if available, for
missense mutations. For patient tumors and PDOX samples without matched
germline samples, variants were called and annotated by Bambino and Medal
Ceremony66,67; variants meeting these criteria were reported as potentially
pathogenic variants: (1) any “Gold” variants annotated by Medal Ceremony with
alternative allele count > 4; (2) non-Gold but non-silent variants with VAF > 0.3,
alternative allele count > 4, and MAF in general populations < 1e−3 in ExAC64,
1000 Genomes, and NHLBI. Mutations in pHGG signature gene list (Supple-
mentary Data 2b) were manually reviewed. Oncoprints were created using the
online tool ProteinPaint68. CNAs were called and annotated by CONSERTING69,
and focal CNA covering signature genes were manually reviewed.

RNA-sequencing analysis. Paired-end RNA sequencing (RNA-seq) was con-
ducted on Illumina HiSeq platform with 100-bp read length or 125-bp read length.
Paired-end reads from RNA-seq were mapped by BWA and STAR to multiple
reference files such that the best alignments are selected to be included in the bam
file70. For PDOX samples, mapped reads were cleansed of mouse read con-
tamination by XenoCP. Read counts per gene per sample were quantified by
HTSeq-Count v 0.11.2 using level 1 and level 2 transcripts of GENCODE v19

annotation70. Expression heatmap was plotted based on log CPM of genes from
three expression signatures across the entire cohort, excluding four samples due to
different RNA-seq protocol (patient diagnostic and recurrent samples from SJ-
HGGX2, patient and PDOX samples from SJ-HGGX6) and four PDOX samples
from earlier passages (one PDOX from SJ-DIPGX29, one PDOX from SJ-
HGGX39, and two PDOXs from SJ-DIPGX7). Differential expression analyses
were carried out on 16 one-to-one matched pairs of PDOXs from the most recent
passages and the patient samples from which they were derived using edgeR (v
3.28.0) and limma (v 3.42.0) following the RNAseq123 workflow71. Subsequent
gene set enrichment analyses were conducted using a hypergeometric test against
hallmark gene sets downloaded from MSigDB v 5.2 (ref. 72). Fusion genes were
detected using CICERO73.

High-throughput screening. Growth curves for each cell line were established in
384-well plates (Corning 3707 or 3765) coated with 40 µl of 1% Geltrex matrix
with varying cell numbers to determine optimal seeding density for 7-day
treatments (Supplementary Table 1). For HTS, all assays were performed with
the negative control (DMSO, 0.35%) and the positive control (staurosporine,
19–35 μM) in parallel. The FDA single-point assays were performed at a final
concentration of 33 μM [95% CI 16–46 μM]. Dose–response experiments were
performed with 10-point, threefold serial dilution (19683-fold concentration
range), and the mean top concentration tested was 35 μM [95% CI 16–50 μM]
(Supplementary Data 4).

The assay plates were loaded into an automated cell culture compatible
LiCONiC incubator (37 °C, 5% CO2 and humidified) (LiCONiC US, Woburn,
MA) that was integrated into an automated HTS system (HighRes Biosolutions,
Beverly, MA). All compounds were transferred with a pin tool (V&P Scientific,
San Diego, CA) and tested in triplicate, and drug exposure time was 7 days
except for the fast-growing iAstro cells (shortened to 3 days). Media and drug
was not changed during the 7-day incubation to avoid logistical difficulties
including cell loss with media change. At the end of the experiment, the assay
plates were equilibrated to room temperature for 20 min. Cell viability was
measured using CellTiter-Glo® (Promega, Madison, WI). Luminescent signal
was read with an EnVision® multimode plate reader (PerkinElmer, Waltham,
MA). Screening experiments were processed, and the results visualized using two
in-house developed programs: RISE (Robust Investigation of Screening
Experiments) and AssayExplorer.

Data analysis of drug responses. Raw data processing—log2 RLU
dose–response fits

Raw luminescence relative light unit (RLU) values for each compound at each
concentration were log2 transformed, normalized to obtain % activity using the
following equation: 100 × [(mean(negctrl) – compound)/(mean (negctrl) –mean
(posctrl))], and then pooled from replicate experiments prior to fitting. Here,
negctrl and posctrl refer to the negative (DMSO) and positive controls
(staurosporine) on each plate.

Dose–response curves were fit using the drc74 package in R [R Core Team
(2012). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-
project.org/]. Both a three-parameter (with y0, the response without drug, set to
zero) and a four-parameter model (y0 allowed to vary) were fit using the sigmoidal
function LL2.4. The hill slope was constrained to be between −10 and 0, and EC50

was constrained to be between 10−11 and 10−4 (which roughly equated to the drug
concentration range tested in these experiments). For the three-parameter model,
yFin, the maximum response of the dose–response curve, was constrained to be
between zero and the maximum of the median activities calculated at each
concentration overall pooled measurements. For the four-parameter model, y0 and
yFin were both constrained to be between the minimum and the maximum of the
median activities calculated at each concentration overall pooled measurements.
The model with the lowest corrected Akaike information criterion (AICc) was
selected as the best fit model.

Area under the curve (AUC) was calculated from the fitted curve using the
trapezoid rule in the concentration range 10−11 and 10−4 M. In the event of a
failure to fit a sigmoidal dose–response curve, the smooth.spline option in R was
used to fit a curve that could be used to determine AUC.

QC metrics for HTS. The z′ statistic was calculated using the following formula: 1−
((3 × s.d. (negctrl))+ (3 × s.d. (posctrl)))/abs (mean (negctrl) –mean (posctrl)).

BRAID model for quantitative synergy analysis. Drug combination experiments
were analyzed using the BRAID response surface model40. Raw RLU values were
processed as described above for the single-agent experiments, except no log2
transformation was applied.

In vivo testing of paxalisib and mirdametinib. Paxalisib (GDC0084) and mir-
dametinib (PD0325901) were formulated at 1.8 or 2.5 mg/ml, respectively, in 1%
methylcellulose and 1% Tween 80 with sonication. The combination was co-
formulated and administered as a single gavage.
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Pharmacodynamic assays. SJ-DIPGX37 or SJ-DIPGX7 tumors were implanted
in the brain and treated when mice showed decreased activity consistent with
large tumors and confirmed visualization of brain tumors by MRI. Mice were
dosed by oral gavage, QD, for 5 days with mirdametinib (17 mg/kg), paxalisib
(12 mg/kg), mirdametinib and paxalisib (17 mg/kg and 12 mg/kg, respectively),
or vehicle. Two hours after the last dose, mice were perfused with phosphate-
buffered saline (PBS) to remove blood, a small piece of tumor was grossly dis-
sected and snap-frozen for western blot analysis, and the remainder of the tumor
and brain was processed for FFPE histology and IHC. Long-term treatment at
these doses caused toxicity manifested as loss of >20% of body weight. To
identify doses tolerated for longer treatment needed for survival studies, we
treated CD-1 nude mice without tumors in one of seven arms: (1) vehicle; (2)
paxalisib at 8 mg/kg; (3) paxalisib at 12 mg/kg; (4) mirdametinib at 14 mg/kg; (5)
mirdametinib at 17 mg/kg; (6) paxalisib at 8 mg/kg+mirdametinib at 14 mg/kg,
or (7) paxalisib at 12 mg/kg and mirdametinib at 17 mg/kg. Three mice per arm
were treated for five consecutive days, and then the brains were collected 2 h
after the final dose for pharmacodynamic analysis of pathway inhibition (pAKT
and pERK) by western blotting. An additional three mice per arm were treated
on cycles of 5 days on, 2 days off for three cycles. Body weight and behavioral
changes were monitored daily. Paxalisib (8 mg/kg) and mirdametinib (14 mg/kg)
alone and in combination were tolerated without loss of >20% body weight, so
these doses were selected for a survival study. Western blots for pharmacody-
namic studies were performed as previously described59. In brief, the tumor
tissue was homogenized in cold RIPA buffer with protease and phosphatase
inhibitor cocktails on ice. The protein concentrations were determined with the
BCA method. The samples were denatured with the NuPAGE sample-reducing
agent and LDS sample buffer at 70 °C for 15 min. The proteins were separated by
NuPAGE precast gels and blotted on the nitrocellulose membrane. Antibodies
including the dilution ratios and reagents are listed in the key resource Sup-
plementary Table 3. The western blot was imaged with Li-Cor Odyssey® Fc.
Uncropped and unprocessed scans of western blots are available in the Source
Data Supplementary File.

Survival study. Cryopreserved SJ-DIPGX37 PDOX cells were thawed, and 2.4 ×
105 cells in 7.5 µl of Matrigel/mouse were implanted into brains of 24 mice. The
details of implantation were previously described in this Methods section and in a
previous publication55. Bioluminescence imaging (BLI) was monitored weekly, and
50 days after implantation when all mice reached a threshold BLI total flux >2 ×
105, they were randomized into four treatment groups (6 mice per group) and
treated with vehicle, paxalisib (8 mg/kg), mirdametinib (14 mg/kg) or paxalisib+
mirdametinib QD, 5 days on and 2/3 days off. Mice were euthanized when they
reached moribund status.

PK study and analysis. The plasma and brain PK of mirdametinib and paxalisib
was studied in non-tumor-bearing mice to determine potential for a PK drug–drug
interaction (DDI). Mice were dosed mirdametinib and paxalisib daily, either alone
or in combination, for up to 5 days. Blood samples were obtained from the retro-
orbital plexus under anesthesia or by cardiac puncture upon termination. Brains
were harvested after cardiac puncture and aortic perfusion with PBS. Samples were
stored at −80 °C until analysis with qualified LC-MS/MS methods. Plasma
concentration-time (Ct) data were analyzed using nonlinear mixed effects mod-
eling implemented in Monolix 2019R2 (Lixoft, Antony, France). To enhance
modeling precision and power, additional paxalisib plasma Ct data from a separate
DDI study with another targeted compound was added to the analysis. Combi-
nation status was tested as a covariate upon the apparent clearance (CL/F) of each
compound using the likelihood ratio test. Brain concentrations were log trans-
formed and analyzed using two-way ANOVA with sample time and combination
status as factors. Practically impactful interactions were defined as a ≥twofold
change in the parameters of interest, consistent with the conventionally accepted
threshold for preclinical and DDI studies41,75. Additional details are presented in
Supplementary Note 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
DNA methylation profiling data generated in this study are available in the Gene
Expression Omnibus (GEO) database, accession GSE152035. Next-gen sequencing data
generated in this study have been deposited at the European Genome-Phenome Archive
(EGA), which is hosted by the European Bioinformatics Institute (EBI), and are available
under the indicated accession numbers for whole-genome (EGAS00001005159), whole
exome (EGAS00001005160) and RNA sequencing (EGAS00001005161). Gene set
enrichment analyses used hallmark gene sets from MSIGDB v 5.2 [http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp]. Interactive visualizations of data can be explored in
the Pediatric Brain Tumor Portal (pbtp.stjude.cloud). A reporting summary for this
article is available as a Supplementary Information file. The main data supporting the
findings of this study are available within the article and the Supplementary Figures,
Tables and Data. The source data underlying Figs. 8 and 9 and Supplementary Figs. 8b,

9a–c, 10a–d are provided in a Supplementary Source Data file. Source data are provided
with this paper.

Materials availability
Xenografts and cell lines generated for this study can be requested through the Pediatric
Brain Tumor Portal (pbtp.stjude.cloud), and with completion of a material transfer
agreement. Limited additional patient information is available from the authors upon
request. Source data are provided with this paper.
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