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Validation of a liquid biopsy assay with molecular and clinical
profiling of circulating tumor DNA
Justin D. Finkle 1,3, Hala Boulos1,3, Terri M. Driessen1,3, Christine Lo1,3, Richard A. Blidner1, Ashraf Hafez1, Aly A. Khan1,
Ariane Lozac’hmeur1, Kelly E. McKinnon1, Jason Perera1, Wei Zhu1, Afshin Dowlati2, Kevin P. White1, Robert Tell1✉ and
Nike Beaubier 1✉

Liquid biopsy is a valuable precision oncology tool that is increasingly used as a non-invasive approach to identify biomarkers,
detect resistance mutations, monitor disease burden, and identify early recurrence. The Tempus xF liquid biopsy assay is a 105-
gene, hybrid-capture, next-generation sequencing (NGS) assay that detects single-nucleotide variants, insertions/deletions, copy
number variants, and chromosomal rearrangements. Here, we present extensive validation studies of the xF assay using reference
standards, cell lines, and patient samples that establish high sensitivity, specificity, and accuracy in variant detection. The Tempus
xF assay is highly concordant with orthogonal methods, including ddPCR, tumor tissue-based NGS assays, and another
commercial plasma-based NGS assay. Using matched samples, we developed a dynamic filtering method to account for germline
mutations and clonal hematopoiesis, while significantly decreasing the number of false-positive variants reported. Additionally,
we calculated accurate circulating tumor fraction estimates (ctFEs) using the Off-Target Tumor Estimation Routine (OTTER)
algorithm for targeted-panel sequencing. In a cohort of 1,000 randomly selected cancer patients who underwent xF testing, we
found that ctFEs correlated with disease burden and clinical outcomes. These results highlight the potential of serial testing to
monitor treatment efficacy and disease course, providing strong support for incorporating liquid biopsy in the management of
patients with advanced disease.
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INTRODUCTION
Liquid biopsies are increasingly used as a non-invasive method for
the genomic profiling of cancer. When tumor tissue is difficult or
impossible to obtain, next-generation sequencing (NGS) of
circulating tumor DNA (ctDNA) from blood plasma can provide
valuable insights for oncologic decision making. Recently, ctDNA
analysis accurately identified therapeutic biomarkers1–5, tumor
burden6, resistance mechanisms7,8, and disease progression9,10.
While tissue biopsies remain the gold standard for diagnosis

and biomarker identification, tumor heterogeneity can cause
subclonal or emerging mutations to be overlooked, particularly in
metastatic cases. Additionally, many tissue biopsies involve
invasive surgical procedures that are not amenable to repeat
testing or produce samples insufficient for comprehensive testing.
In such cases, liquid biopsies offer several advantages, including
real-time detection of emerging resistance mutations, serial
testing throughout the course of treatment, and biomarker
detection when tumor tissue is unavailable.
However, numerous technical limitations must be overcome to

improve the clinical utility of ctDNA NGS assays. For example,
many patients lack abundant ctDNA in early-stage disease and
ctDNA variants may be below the limit of detection (LOD),
resulting in false negatives. In addition, differentiating between
germline and somatic variants in ctDNA is difficult, as is
differentiating between mutations derived from clonal hemato-
poiesis (CH) and the solid tumor of interest. Several genes
frequently mutated in CH are also important in solid tumors,
including TP53, GNAS, IDH2, and KRAS11,12. In these cases,
mutations in hematopoietic lineage cells may be mistaken for
tumor-derived mutations. The ability to differentiate between
germline variants, CH, and somatic tumor mutations in ctDNA will
vastly improve clinical utility.

The Tempus xF assay is a 105-gene, hybrid-capture, NGS panel
spanning a total of 270 kb that detects actionable oncologic
targets in four variant classes: single-nucleotide variants (SNVs),
insertions/deletions (indels), copy number variants (CNVs), and
gene rearrangements. To establish robust clinical performance, we
completed extensive validation studies that demonstrated high
sensitivity and specificity, and determined a precise LOD to reduce
false negatives. We show that the Tempus xF liquid biopsy detects
actionable variants with high accuracy when compared to
orthogonal methods, including a commercial ctDNA NGS kit, the
Tempus xT NGS tissue assay, and digital droplet PCR (ddPCR).
To further evaluate the genomic landscape, we also developed

a method for measuring circulating tumor fraction from targeted
sequencing data. The method predicts overall tumor burden and
helps distinguish germline from somatic variants in cell-free DNA
(cfDNA). Many of our solid tumor clinical samples have matched
normal blood samples from which buffy coat DNA is obtained.
Analyzing matched samples allowed us to identify mutations
resulting from CH, differentiate germline from somatic variants,
and evaluate levels of tumor shedding, all of which significantly
reduced false positives and false negatives.
Here, we present the analytical validation of the Tempus xF

assay and characterize the potential clinical utility of estimating
circulating tumor fraction to support oncologic treatment
decisions.

RESULTS
Tempus xF validation summary
The Tempus xF liquid biopsy oncology assay detects SNVs and
indels in all 105 genes, CNVs in 6 genes, and chromosomal
rearrangements in 7 genes (Supplementary Table 1). To validate
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the xF liquid biopsy assay, 310 samples were sequenced. Data
from 11 samples were analyzed in multiple experiments for a total
of 321 samples (for a breakdown of samples used in each
experiment, see Supplementary Table 2). The runs generated an
average of 287.7 M ± 65.6 M total reads with 143.7 M ± 32.7 M read
pairs and a unique median read depth of 4579.9 ± 2305.5. The
average percent of mapped reads across all runs was 99.90% ±
0.08. The median sample had a conversion efficiency of 40%
(Supplementary Fig. 1).
Analytical sensitivity for all SNVs, indels, CNVs, and rearrange-

ments targeted in the reference samples are shown in Table 1.
Overall, SNVs were reliably detected at 0.25% VAF with 30 ng of
input DNA (93.75% [45/48] sensitivity), indels at ≥0.5% VAF with
30 ng (95.83% [23/24] sensitivity), CNVs at ≥0.5% VAF with 10 ng
(100.00% [8/8] sensitivity), and rearrangements at ≥1% VAF with
30 ng (90% [9/10] sensitivity). At ≥0.25% VAF with 30 ng of input
DNA, analytical specificity was 100% for SNVs, indels, and
rearrangements, and 96.2% for CNVs (Table 2).
Overall, intra-assay and inter-assay concordance between the

replicates in this study was 100% for SNVs, indicating a high
degree of repeatability and reproducibility. The inter-instrument
concordance was 96.70% for SNVs and 100% for indels, with a
combined concordance of 96.83% across instruments. Addition-
ally, interfering substances such as genomic DNA, ethanol, and
isopropanol did not cause a change in the detection of variants.
Concordance between controls and samples with interfering
substances was 100% among samples that passed filtering and
were above the LOD.

Accuracy of the Tempus xF assay compared to orthogonal
assays
To evaluate analytical accuracy, we compared the Tempus xF
assay to the Roche AVENIO ctDNA Expanded Kit. In 30 ng cfDNA

samples analyzed by Tempus xF assay and AVENIO ctDNA
Expanded Kit (n= 40), sensitivity for SNVs, indels, CNVs, and
rearrangements was 94.8%, 100%, 100%, and 100%, respectively.
Among the six SNVs that were not detected, five were identified
but filtered out due to insufficient evidence. In 10 ng samples (n=
29), sensitivity for SNVs, indels, CNVs, and rearrangements was
91.9%, 100%, 80%, and 100%, respectively. Of the 7 SNVs that
were not detected, 6 were identified but filtered out due to
insufficient evidence (Table 3).
To further validate xF assay results, patients with reported KRAS

G12D (n= 12), TERT c.−124 (n= 7), TERT c.−146 (n= 5), TP53
R273H (n= 7), and TP53 R175H (n= 7) variants were selected for
analysis by ddPCR. Then, xF NGS VAF was compared with ddPCR
VAF to determine concordance. We observed 100% positive
predictive value and a high correlation between ddPCR results and
xF VAF (R2= 0.892). The high correlation was also observed for
individual variants such as KRAS G12D (R2= 0.970) (Fig. 1a, b).
Overall, these results suggest the Tempus xF assay accurately
identifies hotspot mutations.

Concordance between Tempus xF liquid biopsy and Tempus
xT tissue assay
We compared analytical sensitivity and specificity in matched xT
(tumor biopsy) and xF (blood biopsy) tests from 55 patients. Since
xT matched samples contain both tumor tissue and buffy coat
(normal comparator), we used the Tempus xT classification
strategy to determine germline variants and exclude them from
the analysis. After removing intronic, synonymous, benign, and
likely benign variants, as well as variants below the LOD of both
assays, we identified 145 concordant SNVs, 20 concordant indels,

Table 1. xF sensitivity.

Variant Type DNA
quantity

0.1% VAF Sensitivity,
% (detected/total
variants)

0.25% VAF Sensitivity,
% (detected/total
variants)

0.5% VAF Sensitivity, %
(detected/total
variants)

1% VAF Sensitivity, %
(detected/total
variants)

5% VAF Sensitivity, %
(detected/total
variants)

SNVs 10 ng 25.93 (14/54) 65.00 (39/60) 79.63 (43/54) 100.00 (39/39) 100.00 (60/60)

30 ng 66.67 (40/60) 93.75 (45/48) 100.00 (54/54) 100.00 (51/51) 100.00 (48/48)

50 ng 75.00 (36/48) 100 (51/51) 100.00 (60/60) 100.00 (42/42) 100.00 (60/60)

Indels 10 ng 33.33 (8/24) 46.15 (12/26) 86.36 (19/22) 100.00 (18/18) 100.00 (26/26)

30 ng 46.15 (12/26) 75 (15/20) 95.83 (23/24) 100.00 (22/22) 100.00 (20/20)

50 ng 45.00 (9/20) 86.36 (19/22) 96.15 (25/26) 94.44 (17/18) 100.00 (26/26)

CNVs 10 ng 0.00 (0/12) 0.00 (0/12) 100.00 (8/8) 100.00 (10/10) 100.00 (12/12)

30 ng 0.00 (0/12) 25 (2/8) 100.00 (12/12) 100.00 (10/10) 100.00 (8/8)

50 ng 12.50 (1/8) 20 (2/10) 100.00 (12/12) 100.00 (8/8) 100.00 (12/12)

Fusions 10 ng 0.00 (0/12) 8.33 (1/12) 37.50 (3/8) 40.00 (4/10) 100.00 (12/12)

30 ng 16.67 (2/12) 37.50 (3/8) 75.00 (9/12) 90.00 (9/10) 100.00 (8/8)

50 ng 0.00 (0/8) 50.00 (5/10) 66.67 (8/12) 100.00 (8/8) 100.00 (12/12)

Table 2. xF analytical specificity.

Variant Type Percent TN/(TN+FP)

SNVs 100% 264/264

Indels 100% 88/88

CNVs 96.2% 176/183

Rearrangements 100% 1848/1848

TN true negative, FP false positive.

Table 3. xF accuracy compared to the Avenio ctDNA expanded kit.

Sample Size Variant Type Percent Variants Called

30 ng SNVs 94.8% 110/116

Indels 100% 8/8

CNVs 100% 5/5

Rearrangements 100% 3/3

10 ng SNVs 91.9% 79/86

Indels 100% 3/3

CNVs 80% 4/5

Rearrangements 100% 1/1
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Fig. 1 Inter-assay comparison between Tempus xF, ddPCR, and Tempus xT results. Patient samples with selected variants (n= 38) were
analyzed by ddPCR and compared with xF variant allele fraction (VAF), resulting in high correlation overall (R2= 0.892) (a), and in individual
variants such as KRAS G12D (n= 12, R2= 0.970) (b). c Results from the Tempus xF liquid biopsy and xT solid tumor assays were compared in
patients who received both tests (n= 55) for colon, breast, and non-small cell lung cancers. The ctDNA VAFs for each variant are categorized
by assay type in which they were detected and clonal hematopoiesis (CH) or germline status (top). The number of reportable variants for each
individual patient are categorized by the assays in which they were detected (bottom). A total of 36 out of 55 xF samples had at least one
pathogenic variant not detected in xT. d Among the 65 samples included in the microsatellite instability (MSI) validation cohort, 16 were
deemed MSI-high and 49 microsatellite-stable. MSI was detected by xF in 6 out of 16 MSI-high patients, with 100% specificity (blue dots above
dotted line).
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and 11 concordant CNVs. We also identified multiple discordant
results, including 66 SNVs, 11 indels, and 8 CNVs that were
reported in xT but not xF. Conversely, we observed 209 SNVs, 14
indels, and 7 CNVs that were reported in xF but not xT. Using the
Tempus internal Bayesian dynamic filtering methodology, how-
ever, reduced this discordance by 11.45% (Supplementary Table
3). The overall sensitivity of xF relative to xT was 68.18% for SNVs
and indels, and 57.89% for CNVs (Supplementary Table 4).
However, when the analysis was limited to clinically actionable
targets, we identified 107 concordant variants and 37 discordant
variants for a final overall sensitivity of 74.31%. While CNVs are
generally detected with high sensitivity by solid tumor assays,
distinguishing true CNVs from noise in cfDNA is more difficult due
to the relatively lower tumor fraction. Nevertheless, these values
are similar to previously reported comparisons between liquid
biopsy and solid tumor sequencing13.
Using a corresponding xT assay result, which includes germline

sequencing data from buffy coat, the xF assay can also distinguish
between germline and CH-derived variants. We compared the
classification of reportable variants between samples with
matched xF and xT testing. Variants were considered CH-derived
if found in both the plasma and the xT normal sample, but not at
levels consistent with germline variation (Fig. 1c). The percent
ctDNA VAF (top) and number of reportable variants detected
(bottom) for each individual patient were categorized by assay
type and CH or germline status. Overall, we observed high
concordance between the xF and xT assays (Fig. 1c and
Supplementary Table 4). As expected, variants detected at higher
VAFs by xF were generally detected as germline variants by xT or
are likely CH variants. Notably, two samples had a large number of
CH variants only detected in xF, many of which were at low VAFs.
These samples were subsequently found to have very high tumor
mutational burdens (TMBs) in their corresponding xT analyses.
Taken together, the large number of xF variants at low VAFs and
high TMBs suggest that these tumors were highly heterogeneous,
and some variants are more easily detected in blood.
Lastly, the xF assay was used to assess microsatellite instability

(MSI) status in samples previously classified by the xT solid tumor
test or immunohistochemistry. Among the 65 samples included in
the MSI validation cohort, 16 were deemed MSI-high and 49
microsatellite-stable. The xF assay reported MSI-high status in
37.5% (6/16) of orthogonally confirmed MSI-high patients at 100%
(6/6) positive predictive value. Furthermore, the xF assay did not
report MSI-high status for any of the 49 confirmed MSS patients
(Fig. 1d). Overall, our comparison between the xT and xF assays
demonstrate the strengths of the xF assay and the added value of
using multiple assays to detect genomic drivers of cancer.

OTTER, a method for estimating tumor fraction
Accurate measures of tumor fraction improve the understanding
of variants identified through liquid biopsy testing. We developed
a method, Off-Target Tumor Estimation Routine (OTTER), for
determining a more accurate circulating tumor fraction estimate
(ctFE). We compared OTTER ctFEs with VAFs from the xF 1000
cohort and found xF ctFE correlates with max pathogenic VAF
(Fig. 2a, b) and median VAF (Fig. 2c, d) after removing germline
variants and amplified regions. These results show only a modest
relationship between detected VAFs and OTTER ctFEs, which we
believe is primarily because VAF values provide a poor estimate of
the circulating fraction. While the absolute correlation value is low,
the number of samples with consistent VAF values and ctFEs is
quite high (Fig. 2c, d). For the xF ctFEs to be consistent with the
VAF values, we expect them to be greater than or equal to the
maximal/medial somatic VAF that is not on an amplified region in
a sample. Overall, after removing germline variants and variants
on amplified regions, 94.1% of median VAFs were less than or
equal to the corresponding xF ctFEs. The distribution of xF ctFEs

for the xF 1000 cohort is shown in Fig. 2e. Overall, the median ctFE
was 0.07 with a mean ctFE of 0.12.
In addition to VAF, low-pass whole-genome sequencing

(LPWGS) is increasingly utilized to estimate tumor fractions and
is thought to be a more accurate measure than VAF14,15. We
compared LPWGS ichorCNA-predicted circulating tumor fraction
to the OTTER ctFE in matched patient samples (n= 375) and
found a strong correlation between methods (ρ= 0.890, P= 1.45e
−57, Fig. 2f). This correlation indicates that OTTER ctFEs are highly
concordant with estimates using LPWGS. However, OTTER exhibits
a distinct advantage by calculating ctFE directly from the targeted-
panel sequencing without requiring additional LPWGS analysis.
Another advantage of OTTER compared to ichorCNA is its

apparent increased sensitivity for detecting tumor fraction. For
210 samples, ichorCNA estimated a tumor fraction of zero while
the OTTER ctFE was greater than zero (Fig. 2f). In the majority of
these samples (60%) we also detected a variant using the xF assay,
indicating that there was detectable tumor DNA and the ichorCNA
estimate was a false negative. Furthermore, samples with detected
variants showed the same overall trend whereby the VAF was
consistent with the OTTER ctFE (Supplementary Fig. 2). Finally,
when ichorCNA estimates were greater than zero, they were
consistently lower than OTTER ctFEs (Supplementary Fig. 3). Taken
together these results suggest that OTTER is able to detect ctDNA
in more samples than LPWGS.

Retrospective clinical profiling of Tempus xF 1000 cohort
To evaluate the clinical utility of the Tempus xF liquid biopsy, de-
identified molecular and clinical data from the xF 1000 cohort
were analyzed. The median ctFE predicted by OTTER was 0.07 for
all cancer types, with the exception of prostate, which was 0.06
(Fig. 3a). A total of 8099 mutations were reported, of which 2732
were pathogenic and 2238 were clinically actionable (Fig. 3b).
Overall, the most frequently mutated gene was TP53 (51.1% of
patients). Within cancer types, commonly mutated genes included
TP53 (41.7%), PIK3CA (38.2%), ESR1 (29.1%), BRCA2 (18.5%), NF1
(17.3%), ATM (14.6%) and APC (11.8%) in breast cancer, TP53
(59.8%), KRAS (21.6%), EGFR (18.3%), and ATM (14.6%) in lung
cancer, and TP53 (69.4%), APC (66.3%), and KRAS (36.7%) in
colorectal cancer (Fig. 3b). These findings are consistent with the
existing literature on mutated genes in each cancer type5,10,16–19,
and indicate that the xF test accurately detects common variants
of interest.

Advanced disease is associated with higher estimated tumor
fraction
A goal of liquid biopsy assays is to efficiently monitor treatment
response and predict disease progression in patients over time.
Accordingly, we investigated the association of ctFE with
advanced disease states and found a significant difference in
ctFEs between stages (P= 2.97e−5, Fig. 4a). However, since the
majority of patients had advanced disease at the time of testing,
additional early-stage samples are necessary to further validate
these findings. We also evaluated ctFEs in patients with metastatic
disease and found ctFE increases when distant sites are affected
(Fig. 4b). Indeed, patients with no metastatic lesions had
significantly lower ctFEs than patients with one or more distant
sites (P= 4.77e−7, Fig. 4c, d), further highlighting the potential of
ctFE for disease monitoring.

Estimated tumor fraction correlates with response to
treatment
To determine how ctFE changes in response to treatment, we
compared ctFE with the most recent clinical response outcome.
We found a significant difference (P= 2.34e−5 by Kruskal–Wallis)
in ctFEs among patients with complete response (0.05), stable
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estimate was a false negative.
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disease (0.06), partial response (0.06), and progressive disease
(0.08, Fig. 5a). In addition, we found that many patients with
multiple xF tests had marked differences in ctFE between test
dates (Fig. 5b). While additional longitudinal studies of serial xF
testing are necessary to further understand how ctFE changes in
response to treatment or disease progression, these findings
highlight how serial testing can benefit precision oncology.

DISCUSSION
Liquid biopsies are increasingly used in clinical care to identify
biomarkers, detect resistance mutations, and monitor response to
treatment or disease progression in real time without invasive
procedures. While tissue biopsies remain the gold standard for
diagnosis and identifying treatment biomarkers, liquid biopsy can
add valuable insights, particularly in heterogeneous metastatic
tumors with subclonal mutations. The possibility for serial testing
via non-invasive liquid biopsies throughout the course of disease
could prove beneficial for many patients. By monitoring emerging
resistance mutations and indicators of progression, like tumor
burden, clinicians are able to adjust treatment plans more nimbly.
Here, we report extensive validation studies of the Tempus xF

assay that established robust technical performance, demonstrat-
ing high sensitivity and specificity for calling SNVs, indels, CNVs,
and gene rearrangements. These results were highly reproducible
between runs and instruments, and in the presence of interfering
substances. To further establish the clinical utility of the Tempus
xF assay, we evaluated the assay performance on a cohort of
1000 samples across different cancer types. We found that

Tempus xF testing is clinically applicable to patients of all ages
with a wide range of cancer types, mutations, disease states, and
treatment histories. While it is commonly assumed that some
cancer types shed little tumor DNA and are therefore less suited
for liquid biopsy monitoring, we found that ctDNA was detectable
at similar levels across all cancer types tested, with the exception
of prostate cancer. While overall there was a correlation between
metastatic lesions and circulating fraction, it is important to note
that other factors such as physiology, vascular accessibility of
metastatic site, and physical tumor size likely play a role in
detection of ctDNA. This may also be confounded by cancer type-
specific propensity for multi-organ metastatic spread.
We also present OTTER, an algorithm capable of estimating the

fraction of tumor-derived circulating DNA from panel sequencing
data. We demonstrated the accuracy of xF ctFEs calculated using
OTTER by comparing them against the maximal and medial
somatic VAFs and to estimates from LPWGS. To demonstrate the
direct clinical utility of xF ctFEs, we evaluated differences in ctFEs
calculated using OTTER in advanced metastatic disease. Because
up to 30% of breast cancer patients and up to 55% of lung cancer
patients relapse after initial treatment20–23, as well as a significant
portion of patients in other cancer cohorts, the ability to detect
metastasis and disease recurrence earlier in these patients could
significantly improve outcomes. Indeed, recent retrospective and
prospective studies show ctDNA measurements after completion
of treatment or surgery can act as a biomarker for disease
recurrence in many cancer types, including breast cancer, lung
cancer, melanoma, bladder cancer, and colon cancer24–28. Our
results are consistent with these findings, as higher ctFEs were
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associated with disease progression at radiographic evaluation
and with an increased metastatic lesion count. Additionally, we
demonstrated that ctFEs correlate with important clinical out-
comes while providing a minimally invasive method to monitor
patients for response to therapy, disease relapse, and disease
progression.
While liquid biopsy is a promising tool for improving outcomes

in precision oncology, there are challenges that must be overcome
before it can replace large-panel NGS tissue genotyping. For
example, in early-stage disease, when treatments have much
higher success rates, many patients have low ctDNA fractions that
may be below the LOD for liquid biopsies29–32, limiting clinical
utility because of the risk of false negatives. Furthermore, while
validation studies of existing liquid biopsy assays have shown high
sensitivity and specificity33–38, few studies have corroborated
results with orthogonal methods, or between NGS testing
platforms. Kuderer et al. compared commercially available liquid
and tissue NGS platforms and found only 22% concordance in
genetic alterations39. Other reports of liquid biopsy-based studies
are limited by comparison to non-comprehensive tissue testing

algorithms including Sanger sequencing, small NGS hotspot
panels, PCR, and FISH. These metrics may not contain all NCCN
guideline genes in their reportable range, thus suffering in
comparison to a more comprehensive liquid biopsy assay1. Since
the 105-gene Tempus xF liquid biopsy assay is a subset of the 648-
gene xT tissue-based assay40, the concordance data presented
here (74.31% for actionable variants) represents a direct compar-
ison to a comprehensive NGS test containing the entire reportable
range of the liquid biopsy assay. While this concordance is high
relative to previous reports, our results nonetheless show that
actionable variants would have been missed if only one of the tests
were performed. The xF assay covers more genes, detects more
CNVs, and includes more translocations than other commercially
available methods. Overall, these benefits enhance the detection
of resistance mutations. Furthermore, the method for estimating
circulating tumor fraction described in the paper, OTTER, is more
reliable than the median VAF values typically used in other
commercially available assays. Tumor tissue profiling minimizes
analytical biases driven by variable tumor shedding and the tumor
percentage of the sample can be determined pre-analytically to
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prevent false negatives. Thus, we believe that liquid biopsies
provide the greatest value to patients when used in combination
with standard tissue genotyping. Furthermore, combining data
from both tests enabled additional analyses to exclude germline
and CH variants, significantly improving specificity.
The Tempus xF assay displays clinical utility both as a method of

monitoring disease burden and as a method of detecting and
responding to emerging resistance mutations. When used in the
course of care, serial ctDNA monitoring can predict objective
measures of progression in at-risk individuals. Due to cost and
convenience of sampling, these tests can be applied at shorter
time intervals than radiographic methods and allow for more
timely intervention in the case of disease progression.
In summary, we present the analytical and clinical validation of

the Tempus xF liquid biopsy. We show high accuracy compared to
orthogonal methods, including tissue biopsy, Avenio liquid biopsy,
ddPCR, and LPWGS. We also improve upon existing methodology
for estimating circulating tumor fraction. Notably, we use our
improved methodology and real-world clinical data to demon-
strate the value and suitability of xF testing for monitoring disease
progression, predicting objective measures of response, and
assessing treatment outcomes. These results strongly support
the Tempus xF assay’s use in routine monitoring of cancer patients
with advanced disease.

METHODS
Sample collection, storage, nucleic acid isolation, and library
prep
To validate the Tempus xF liquid biopsy, 321 total specimens were
analyzed. These consisted of 10 blood specimens purchased from BioIVT
run in triplicate to assess inter-instrument concordance, 4 clinical samples
run in triplicate to assess intra-assay concordance, 12 samples to assess
inter-assay concordance, 44 residual plasma samples to assess analytical
specificity, 69 clinical samples at 10 ng DNA input and 30 ng DNA input to
assess analytical accuracy, and 12 clinical samples to assess interfering
substances. The validation studies also included 1 cfDNA reference
standard isolate (100% Multiplex I Wild Type Reference Standard HD776),
and 4 cfDNA reference standards set in synthetic plasma (Horizon
Discovery’s Multiplex I cfDNA Reference Standards HD812, HD813,

HD814 and Horizon Discovery’s Structural Multiplex cfDNA reference
standard HD786) loaded at 10 ng, 30 ng, and 50 ng of DNA input and
titrated to achieve 0.1%, 0.25%, 0.5%, 1%, and 5% VAF, totaling 170 samples
for evaluating xF LOD.
An additional 55 blood samples with matched tumor samples were

used to compare the Tempus xF liquid biopsy and xT solid tumor tests,
65 blood samples were used to validate a microsatellite instability (MSI)
classification model, and 375 blood samples were evaluated by low-pass
whole-genome sequencing (LPWGS) for comparative analyses. Finally,
data from an additional 1000 patient samples previously sequenced at
Tempus, referred to as the xF 1000 cohort, were used for retrospective
and clinical analyses. An overview of all samples included in the
validation and retrospective profiling experiments is presented in
Supplementary Table 5.
All blood was received in Cell-free DNA BCT® blood collection tubes

(Streck) within 36 h of collection and stored at RT or 4 °C until plasma
separation. Plasma was prepared immediately after accessioning and
stored at −80 °C until nucleic acid extraction and library prep. At this time,
cfDNA was isolated from plasma using the Qiagen QIAamp MinElute
ccfDNA Midi Kit (QIAGEN) according to manufacturer’s instructions.
Automated library preparation was performed on a SciClone NGSx (Perkin
Elmer). All cfDNA samples were normalized with molecular grade water to
a maximum of 50 μL.

xF sequencing assay
This assay uses New England BioLab’s NEBNext® Ultra™ II DNA Library Prep
Kit for Illumina®, IDT’s xGen CS Adapters, unique molecular indices (UMI),
and 96 pairs of barcodes to prepare cfDNA sequencing libraries with
unique sample IDs. Each sample is ligated to a dual unique index, which
enables multiplexed sequencing of up to 7 patients and 1 positive control
per SP NovaSeq flow cell, 16 patients and 1 positive control per S1
NovaSeq flow cell, 34 patients and 1 positive control per S2 NovaSeq flow
cell, and 84 patients and 1 positive control per S4 NovaSeq flow cell. The
library preparation protocol is optimized for ≥20 ng cfDNA input to
maximize mutation detection sensitivity. The final library is sequenced on
an Illumina NovaSeq sequencer and analysis is performed using Tempus’
bioinformatics pipeline and analysis server.

Bioinformatics pipeline
Adapter-trimmed FASTQ files are aligned to the 19th edition of the human
reference genome build (hg19) using Burrows-Wheeler Aligner (BWA)41.
Following alignment, reads are grouped by alignment position and UMI
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family, and collapsed into consensus sequences using fgbio tools (http://
fulcrumgenomics.github.io/fgbio/). Bases with insufficient quality or
significant disagreement among family members are transformed to N’s.
Phred scores are scaled based on initial base calling estimates combined
across all family members. Following single-strand consensus sequence
generation, duplex consensus sequences are generated by comparing the
forward- and reverse-oriented PCR products with mirrored UMI sequences.
Consensus sequences are re-aligned to the human reference genome
using BWA. BAM files are generated and indexed after the re-alignment.
SNV and indel variants are detected using VarDict42. SNVs are called

down to 0.1% VAF for specified hotspot target regions and 0.25% VAF at all
other base positions across the panel. Indels are called down to 0.5% VAF
for variants within specific regions of interest. Any indels outside of these
regions are called down to 5% VAF. All SNVs and indels are then sorted,
deduplicated, normalized and annotated. Following annotation, variants
are then classified as germline, somatic, or uncertain using a Bayesian
model. The model is based on prior expectations informed by internal and
external databases of germline and somatic variants. Uncertain variants are
treated as somatic for filtering and reporting purposes. Following
classification, variants are then filtered based on a set of quality metrics
including coverage, VAF, strand bias, and genomic complexity. Addition-
ally, variants are filtered with a Bayesian trinucleotide context-based model
with position-level background error rates estimated from process-
matched healthy controls. Known artifactual variants are also removed.
Copy number variants (CNVs) are analyzed using CNVkit43 plus a Tempus

CNV annotation and filtering algorithm. CNVkit is used for genomic region
binning, coverage calculation, bias correction, normalization to a reference
pool, segmentation, and visualization. The log2 ratios between the tumor
sample and a pool of process-matched healthy samples from the CNVkit
output are then annotated and filtered using statistical models whereby
the amplification status (amplified or not-amplified) of each gene is
predicted and non-focal amplifications are removed.
Rearrangements are detected using the SpeedSeq analysis pipeline44.

Briefly, FASTQ files are aligned to hg19 using BWA. Split reads mapped to
multiple positions and read pairs mapped to discordant positions are
identified and separated, then used to detect gene rearrangements by
LUMPY45. Fusions are then filtered by the number of supporting reads.
Predicted functional effect and clinical interpretation for each variant are

curated by automated software using information from both internal and
external databases. The software uses a weighted-heuristic model with
logic-based recommendations from the AMP/ASCO/CAP/ClinGen Somatic
working group46 and ACMG guidelines47.
To detect MSI, the relative frequency and distribution are determined for

any read containing repetitive sequences. To predict the probability of an
unstable locus, a k-nearest neighbors model (with k= 100) is used along
with normalized percent lower, mean lower, and mean log-likelihood
metrics. The percentage of unstable loci is calculated from the probabilities
of each sample, with >50% unstable loci considered MSI-high.

Validation approach
To establish robust technical performance, extensive validation studies
were performed. LOD was determined by assessing analytical sensitivity in
reference standards with 5%, 1%, 0.5%, 0.25%, and 0.1% VAF generated
from the Horizon Discovery reference set. The Horizon Discovery set
includes 160 bp cfDNA fragments from human cell lines in an artificial
plasma matrix to closely resemble cfDNA extracted from human plasma.
VAFs of SNVs and indels, including EGFR (ΔE746 - A750), EGFR (V769 -
D770insASV), EGFR A767_V769dup, EGFR (L858R), EGFR (T790M), KRAS
(G12D), NRAS (A59T), NRAS (Q61K), AKT1 E17K, PIK3CA (E545K), and GNA11
Q209L were measured in reference samples by the xF assay. The reference
samples were also evaluated for CNVs and rearrangements, including
CCDC6/RET, SLC34A2/ROS1, MET, MYC, and MYCN. Each measurement was
run with a minimum of three replicates at 10 ng, 30 ng, and 50 ng of DNA.
Sensitivity was calculated by the number of detected variants divided by
the total number of variants present in the reference samples. Samples
with an on-target rate <30% were excluded from this analysis and MET (4.5
copies) was not included in the CNV sensitivity calculation. Sensitivity
>90% was considered reliable detection.
Analytical specificity was determined using 44 normal samples titrated

at 1%, 2.5%, or 5% from a wild-type cfDNA reference standard (HD776)
with a list of SNVs and indels that are known to be absent and were
considered true-negative variants for the specificity calculation. False-
positive variants were those identified as pathogenic or likely pathogenic
after subtracting the background variants from HD776 from all reported

variants in the 44 samples. Since there is no existing standard with CNVs
and rearrangements that are known to be absent, the number of
reportable CNVs and rearrangements that were not identified in HD776
was used as a true-negative count for CNV and rearrangement specificity.
Specificity was calculated by the number of known true-negative variants
divided by the number of true-negative variants plus false-positive variants
identified by the xF assay.
To assess inter-instrument concordance between the sequencing

instruments, 10 patient libraries were sequenced on each instrument (3
NovaSeqs). Variants observed below the lower limit of detection (LLOD)
(0.25% for SNVs and 0.50% for indels) were excluded from concordance
analysis.
To evaluate reproducibility, inter-assay variant concordance of 4 clinical

samples with variants near the target sensitivity of the assay were analyzed
in three separate runs. The three separate runs were prepared with
different barcodes and run on separate days by three different
technologists. The four clinical samples used for inter-assay concordance
were previously used in inter-instrument concordance. Variant concor-
dance was evaluated for those variants that were above the LOD.
To evaluate repeatability, the same four clinical samples used in the

inter-assay concordance were analyzed in triplicate within the same run
using different barcodes. These samples contained variants near the assay
target sensitivity. Variant concordance was evaluated for those detected
above the LOD.
To establish analytical accuracy, the xF results from 40 validation

samples with 30 ng DNA input and 29 validation samples with 10 ng DNA
input were compared to the results of an orthogonal reference method
(Roche’s AVENIO ctDNA Expanded Kit, Cat# 8061076001). Analytical
accuracy was calculated by the number of detected variants divided by
the total number of variants present in the sample. Variants that were off-
target or below the LLOD (0.25% for SNVs and 0.5% for indels) were
excluded from the analysis.
The effect of ethanol, isopropanol, and genomic DNA interference on

sequencing was evaluated using three clinical samples from the analytical
accuracy experiment. The clinical samples were normalized to 45 µL with
5 µL of the interfering substance spiked in prior to sequencing.
Concordance between control samples and those containing interfering
substances was evaluated for samples that passed filtering criteria and for
variants above the LOD.

Digital droplet polymerase chain reaction (ddPCR)
Five variants were validated on the ddPCR platform: KRAS G12D (Integrated
DNA Technologies, IDT, published sequences), TERT promoter mutation c.
−124C > T (C228T), TERT promoter mutation c.−146C > T (C250T) (Thermo
Fisher Scientific), TP53 p.R273H, and TP53 p.R175H (Thermo Fisher
Scientific). Each amplification reaction was performed in 25 μL and
contained 1X Genotyping Master Mix (Thermo Fisher Scientific), 1X droplet
stabilizer (RainDance), 1X of primer/probe mix for TERT and TP53 (for KRAS:
800 nM of each primer and 500 nM of each probe) plus template. To
improve the LLOD, 4-cycle amplification was performed prior to droplet
generation. Amplification for KRAS was performed using the following
cycling conditions: 1 cycle of 95 °C (0.6 °C/s ramp) for 10min, 4 cycles of
95 °C (0.6 °C/s ramp) for 15 sec and 60 °C for 2 min, followed by 1 cycle of
98 °C (0.6 °C/s ramp) for 10min. Cycling conditions for the TP53 variants
were the same as those for KRAS, except the annealing and extension
occured at 55 °C for 2 min. Amplification for TERT followed Thermo Fisher’s
recommendation: 1 cycle of 96 °C (1.6 °C/s ramp) for 10min, 4 cycles of
98 °C (1.6 °C/s ramp) for 30 sec and 55 °C for 2 min, followed by 1 cycle of
55 °C (1.6 °C/s ramp) for 2 min. Droplets were then generated on the
RainDance Source, and amplification was performed following the above
cycling conditions with 45 cycles for both KRAS and TP53, and 54 for TERT.
Droplets were placed on the RainDance Sense droplet reader, and data
were acquired and analyzed using RainDrop Analyst II v1.1.0.

Concordance between Tempus xF and xT assays
Matched xF (liquid biopsy) and xT (solid tumor) sample pairs (n= 55) from
colon (n= 28), breast (n= 18), and lung (n= 9) cancers were used to
calculate analytical sensitivity and specificity. Solid tumor and matched
normal samples obtained from peripheral blood buffy coat were analyzed
with the Tempus xT assay, and corresponding blood plasma samples were
analyzed with the Tempus xF liquid biopsy assay. Since the 105-gene
Tempus xF liquid biopsy assay is a subset of the 648-gene xT tissue-based
assay40, only variants in the reportable range of both the xT and xF panels
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were included in these analyses. Germline, intronic, and synonymous
variants identified in xT and xF were excluded from analysis with the
exception of intronic splice variants. To determine analytical sensitivity, the
number of variants identified in both xF and xT (true positives) was divided
by the sum of true positives and those identified only in xT. To determine
analytical specificity, the number of positions reported in neither xF nor xT
(true negatives) was divided by the sum of true negatives and variants only
identified in xF.
To improve xF variant calling, we developed a strategy that dynamically

calculates local sequence errors using Bayes Theorem and the likelihood
ratio test. The dynamic threshold is calculated using a sample-specific error
rate, the error rate from healthy control samples, and from our internal
cohort of solid tumor samples. This method was tested on 55 matched xF/
xT samples, with variants detected in the xT solid tumor assay as the
source of truth. Using sensitivity thresholds defined by the LOD analysis,
fixed post-test odds (equal to the P(post-test) / [1 - P(post-test)]) and pre-
test odds (calculated using the same equation but with historical data from
the xT assay), we developed the following formula:

specificity ¼ 1� pre�test odds � sensitivity=post�test odds (1)

The specificity was input to a beta-binomial function and yielded the
minimum number of alternate alleles to call a variant at a given depth. The
pre-test odds metric was specific to individual cancer cohorts and
individual genes, allowing for cancer-specific pre-test odds to be applied
to individual exons.

Estimation of circulating tumor fraction
Existing methods for calculating tumor purity either require a separate
sequencing experiment14 or a large number of targets48 for accurate
estimation. Therefore, circulating tumor fraction estimates (ctFEs) were
determined using an Off-Target Tumor Estimation Routine (OTTER) from
both on- and off-target reads distributed across the human reference
genome. OTTER is distinct from other methods in its generation of a ctFE
from a single targeted-panel sequencing experiment.
As described above, CNVkit was run on each sample and segments were

assigned via circular binary segmentation (CBS)49. Segments were then fit
to integer copy states via an expectation-maximization algorithm using the
sum of squared errors of the segment log2 ratios (normalized to genomic
interval size) to expected ratios given a putative copy state and tumor
purity. Following these methods, ctFEs were generated for the xF 1000
cohort.
OTTER begins with the output of CNVkit that defines a set of copy ratio

segments, S

S ¼ CR1;CR2; ¼ ;CRnf g (2)

where each segment, CRi is defined as

CRi ¼ log2
normalized sample coverage
normalized pool coverage

� �
(3)

and can vary in length depending on the number of bins in the segment
assigned by the CBS algorithm in CNVkit. The set of segments are filtered
based on two criteria. A segment is removed if it is on a contig that is
historically difficult to sequence, such as the sex chromosomes X and Y. A
segment may also be removed if it is too short. In this case we removed
segments with fewer than 100 bins.
Next, based on the user parameters for possible tumor fractions (T) and

copy states (C) to check, OTTER calculates a t x c matrix of expected log2
copy ratios, E. In this implementation we used tumor fractions ranging
from 1 to 99% in increments of 1%

T ¼ f0:01; 0:02; ¼ ; 0:99g (4)

And copy states

C ¼ f0; 1; 2; 3; 4g (5)

however, different sets of T and C can be specified if desired. Each
expected log2 copy ratio Et,c for tumor fraction t and copy state c can
therefore be calculated as

Et;c ¼ log2
2ð1� tÞ þ t ´ c

2

� �
(6)

For example, the expected log2 copy ratio for a segment with 4 copies of
the genome at a tumor fraction of 50% would be

E0:5;4 ¼ log2
2ð1� 0:5Þ þ 0:5 ´ 4

2

� �
¼ log2

3
2

� �
¼ 0:58 (7)

Using this expectation matrix the distance of a calculated copy ratio
segment i to each copy state in C, for a given tumor fraction t can be
calculated as

di;t ¼ CRi � Et;c
� �28c 2 C (8)

Therefore, the closest copy state, ci,t, for the segment at the given tumor
fraction, t, is determined as

ci;t ¼ argmincðdi;tÞ (9)

the weighted error associated with that segment is

εi;t ¼ minðdi;tÞ ´ li (10)

where li is number of bins on the segment. Finally, the loss at a tumor
purity t is calculated as

losst ¼
X

i
εi;t (11)

and the final tumor purity estimated by OTTER is

t̂ ¼ argmint losstð Þ8t 2 T (12)

Low-pass whole-genome sequencing and analysis
To confirm the accuracy of OTTER, blood samples from 375 patients with
xF testing were also sequenced using LPWGS across four flowcells.
Sequencing coverage metrics for these samples were calculated using
Picard CollectWgsMetrics. The tumor fraction and ploidy values for each
sample were estimated using ichorCNA14 with a Tempus-specific panel of
47 normal samples. This approach provides tumor fraction estimates from
WGS to compare against ctFEs generated from xF targeted-panel
sequencing data. Reported variants from the corresponding xF analysis
of each sample were used to assess the accuracy of the ctFE.

Clinical profiling of the xF 1000 cohort
A cohort of 1000 de-identified patient health records was randomly
selected from the Tempus clinicogenomic database for analysis. The
cohort included non-hematologic malignancies of known cancer type and
stage previously sequenced with the xF assay. All data were de-identified
in accordance with the Health Insurance Portability and Accountability Act
(HIPAA) using Safe Harbor guidelines. Dates used for analyses were relative
to the first xF sequencing date of each patient, and year of the first
sequencing date was randomly off-set. The cohort comprised 55.7%
female and 44.3% male patients, with a median age of 66 years and
interquartile range of 15. The cohort also spanned 24 cancer categories
(Supplementary Table 2), with breast (n= 254), colorectal (n= 98), lung (n
= 241), pancreatic (n= 83), and prostate (n= 96) being the most common.
Only variants classified as pathogenic or likely pathogenic were included in
the analyses. These variants were further classified as actionable if
matched to diagnostic, prognostic and/or therapeutic evidence, or if
considered biologically relevant. Outcomes were determined according to
the most recent clinical response noted in patient records. The study
protocol was submitted to the Advarra Institutional Review Board (IRB),
which determined the research was exempt from IRB oversight and
approved a waiver of HIPAA authorization for this study.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.1467267350. The de-identified clin-
ical data that support findings from the retrospective profiling study have been
deposited in the Vivli repository (https://vivli.org/) in the file ‘xf_1000_De-
identified_Phenotypic_Data_and_ctFE.tsv’ under the following accession: T20.0151.
Access is restricted and interested parties must make an authorized request to the
Vivli repository. Supplementary Tables 1–4 are openly available in accessible format
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as part of the data record50. Raw data from the validation experiments were
generated and analyzed as part of a CAP/CLIA validation. As such, they are not
publicly available but have been thoroughly reviewed by those governing
authorities.

CODE AVAILABILITY
Requests for source code are subject to review by Tempus and can be directed to the
lead author.
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