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Object representations in the human brain reflect
the co-occurrence statistics of vision and language

Michael F. Bonner"2™ & Russell A. Epstein® 2

A central regularity of visual perception is the co-occurrence of objects in the natural
environment. Here we use machine learning and fMRI to test the hypothesis that object co-
occurrence statistics are encoded in the human visual system and elicited by the perception
of individual objects. We identified low-dimensional representations that capture the latent
statistical structure of object co-occurrence in real-world scenes, and we mapped these
statistical representations onto voxel-wise fMRI responses during object viewing. We found
that cortical responses to single objects were predicted by the statistical ensembles in which
they typically occur, and that this link between objects and their visual contexts was made
most strongly in parahippocampal cortex, overlapping with the anterior portion of scene-
selective parahippocampal place area. In contrast, a language-based statistical model of the
co-occurrence of object names in written text predicted responses in neighboring regions of
object-selective visual cortex. Together, these findings show that the sensory coding of
objects in the human brain reflects the latent statistics of object context in visual and
linguistic experience.
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any objects have a natural place in the world—a setting

in which they and other co-occurring objects are typi-

cally encountered. For example, fire hydrants are often
found with traffic lights and mailboxes on city sidewalks, while
tea kettles are found with mugs and stoves in kitchens. This type
of contextual knowledge can help people identify their sur-
roundings and generate expectations for the other objects they
might encounter. Previous behavioral work has demonstrated
that the visual system uses contextual knowledge to facilitate
object recognition! =3 and visual search*. Moreover, theoretical
accounts suggest that contextual facilitation might be evidence for
a general cognitive mechanism by which the mind makes pre-
dictions about the world in order to support adaptive
behavior®-10, Thus, identifying the brain mechanisms that sup-
port the representation of contextual knowledge is an important
challenge for cognitive neuroscience.

Previous neuroimaging studies have attempted to meet this
challenge!!~1# One approach has been to operationalize context
as a one-dimensional rating that reflects how strongly an object
brings to mind a particular context!:1> or whether or not an
object is associated with other objects or locations!®. Objects with
strong contextual associations by these definitions were found to
elicit greater responses than objects with weak contextual asso-
ciations in the parahippocampal place area (PPA) and retro-
splenial complex (RSComp), brain regions that are known to
respond strongly during the visual perception of scenes!”-18.
Given that scenes are contexts by definition, typically containing
several co-occurring objects, these results are consistent with the
view that PPA and RSComp have a general role in both the
perception and retrieval of contextual information!®. However,
because these conclusions were based on univariate analysis of
regional responses along a single stimulus dimension, they were
vulnerable to alternative explanations. Indeed, other object
properties, such as real-world size and spatial stability, have been
found to explain similar (or greater) variance in PPA and
RSComp responses?:21, and some of the effects of object context
in scene-selective visual regions have not been consistently
observed?2. More importantly, this approach is limited insofar as
it only examines whether an object has strong contextual asso-
ciations or not; it does not attempt to analyze the nature of these
associations (e.g., which objects are associated with each other).
These limitations have led to uncertainty about whether scene
regions play a central role in mediating contextual knowledge.

Here we attempt to resolve this issue by using an approach that
more directly tests for contextual representations. Specifically, we
use fMRI to search for neural representations that reflect the
multivariate statistical structure of object co-occurrence in the
visual environment. To model this statistical structure, we first
developed an adaptation of the word2vec machine-learning
algorithm from computational linguistics2>24, which we label
object2vec. Word2vec uses unsupervised learning to compress
high-dimensional data about the co-occurrence of words within a
large corpus of text into a relatively small number of highly
informative dimensions. Object2vec performs the exact same
operation for objects within a corpus of over 20,000 real-world
scenes. Thus, object2vec creates a low-dimensional representa-
tional space that reflects the statistical regularities of object co-
occurrence in natural images. We scanned human observers while
they viewed isolated single objects, and we used voxel-wise
encoding models to identify brain regions where the dimensions
of object2vec predicted fMRI responses. Because object2vec is
constructed to reflect the contextual associations of objects, we
posited that if a brain region represents this contextual infor-
mation, it should be well predicted by the object2vec embeddings.
For comparison, we performed the same fMRI analysis on the
dimensions of language-based word2vec.

Previous work has used related techniques from computational
linguistics to examine the natural statistics of object co-
occurrence and their possible neural correlates. Stansbury
et al.2% used a topic learning algorithm to define “categories” of
object clusters that tend to co-occur within scenes, and then
showed that voxel-wise fMRI response to scenes could be pre-
dicted based on their membership in these categories. This
finding indicates that statistically defined scene categories may be
an important factor underlying the organization of scene repre-
sentations in the visual cortex. Our study builds on this approach
to address a different set of questions about how the brain
represents the contextual associations of individual objects, for
which rich contextual information is not physically present in the
visual stimulus. Sadeghi and colleagues2® compared contextual
information learned from object co-occurrence in images with
contextual information learned from word co-occurrence in lin-
guistic corpora. They found that while visual and linguistic
contextual models are partially correlated, they also exhibit
interesting patterns of divergence. Namely, visual context cap-
tures not only categorical similarities between objects (e.g.,
between items in the category of fruit) but also cross-category
similarities that are not well accounted for by linguistic context
(e.g., between fruit and kitchen items). Our study extends this
modeling approach to determine how such visual and linguistic
contextual information for objects is encoded in the brain.

To anticipate, our results show that parahippocampal cortex
and the anterior portion of scene-selective PPA represent the
statistical associations between objects and their visual contexts,
and that these representations are elicited when subjects view
individual objects that do not have any contextual information
physically present in the stimulus. In contrast, language-based
word2vec explained variance in neighboring object-selective
regions (including posterior fusiform; pFs), indicating that these
regions represent object properties that are related to language-
based co-occurrence statistics. Together these findings reveal the
relationship between high-level object representations in the
ventral visual cortex and the latent manifolds of object context in
vision and language. Our results also provide insight into the
statistical properties of cortical representations—specifically, they
suggest that high-level sensory regions utilize an efficient coding
scheme that compresses a large number of behaviorally relevant
stimulus properties into a relatively small number of statistically
informative dimensions.

Results

Object embeddings. We first sought to characterize the co-
occurrence statistics of objects in the visual environment. To
accomplish this, we needed a large data set of natural images in
which all object occurrences were labeled. We took advantage of
the recently created ADE20K data set, which contains 22,210
annotated scenes in which every object has been manually labeled
by an expert human annotator?’. One approach for characteriz-
ing the co-occurrence statistics of this data set would be to simply
construct a matrix of co-occurrence frequencies for all pairwise
comparisons of objects. However, this would produce a sparse
and high-dimensional matrix, with many redundant dimensions.
In the field of computational linguistics, there is a long history of
modeling word co-occurrence data in language corpora with
dense, lower-dimensional representations?®. This modeling fra-
mework, known as distributional semantics, has proved highly
useful because the resulting representations capture information
about the semantic properties of words, such that words with
similar meanings tend to have similar representations. A leading
technique for modeling distributional semantics is word2vec,
which is a class of neural network models that are trained to
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Fig. 1 Statistical model of visual object context. A Object context was modeled using the ADE20K data set?’, which contains 22,210 images in which
every pixel is associated with an object label provided by an expert human annotator. An adaptation of the word2vec machine-learning algorithm for
distributional semantics—which we call object2vec—was applied to this corpus of image annotations to model the statistical regularities of object-label co-
occurrence in a large sample of real-world scenes. Using this approach, we generated a set of 8-dimensional object2vec representations for the object
labels in the ADE20K data set. These representations capture the co-occurrence statistics of objects in the visual environment, such that objects that occur
in similar scene contexts will have similar object2vec representations. B The panel on the left shows a two-dimensional visualization of the object2vec
representations for the 81 object categories in the fMRI experiment. This visualization shows that the object2vec representations contain information about
the scene contexts in which objects are typically encountered (e.g., indoor vs. outdoor, urban vs. natural, kitchen vs. office). The panel on the right shows a
similar plot for the language-based word2vec representations of the same object categories. These plots were created using t-distributed stochastic
neighbor embedding (tSNE). The colors reflect cluster assignments from k-means clustering and are included for illustration purposes only. K-means
clustering was performed on the tSNE embeddings for object2vec, and the same cluster assignments were applied to the word2vec embeddings in the right

panel for comparison. Source data are provided as a Source Data file.

predict target words from their surrounding linguistic contexts
(or vice versa)?324, The learned internal weights of word2vec
models (known as word embeddings) reflect the latent statistical
structure of the linguistic contexts in which words are typically
found. Here we adopt the general approach of the word2vec
algorithm to model the statistical structure of object context in
images. We named this model object2vec.

In the object2vec model, object labels are treated like word
tokens in a corpus and their contexts are defined by the images
they occur in. Using this approach, we trained an object2vec
model on the image annotations from ADE20K and learned a set
of 8-dimensional embeddings that represent statistical informa-
tion about the natural contexts of objects (Fig. 1A). Through a
parameter search and principal component analysis (PCA), we
found that higher-dimensional embeddings did not substantially
alter the representational geometry of object2vec, suggesting that
eight dimensions sufficed for learning representations of object
context from this data set (see “Methods” section for details).
Two-dimensional visualization of the object2vec embeddings (for

the objects in our experiment) shows that these representations
contain meaningful information about the way in which objects
are grouped together in the natural environment, with object
clusters that can be intuitively interpreted as familiar scene
categories (e.g., indoor, outdoor, kitchen, office).

We also examined a language-based word2vec model. This
model was trained on the co-occurrence of words in a natural
language corpus containing ~100 billion words. Two-dimensional
visualization of the word2vec representations suggests that they
reflect a broader set of semantic associations than object2vec
(Fig. 1B). These include information about the contexts in which
objects are found, but also information about what kinds of
taxonomic categories objects belong to, such as modes of
transportation (e.g., airplane, car, bus, bicycle) and furniture for
sitting on (e.g., swivel chair, armchair, sofa, stool).

Cortical representations and object co-occurrence in vision
and language. With our models of vision- and language-based
context in hand, we set out to test the hypothesis that object
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Fig. 2 Experimental stimuli. A In an fMRI experiment, subjects viewed images of isolated objects from 81 different categories. There were 10 unique tokens
for each category (for a total of 810 unique stimuli). This panel shows 10 illustrative stimuli for two categories. B In the fMRI scanner, images were

presented on complex, textured backgrounds to reduce the saliency of low-level features related to object shape and size. This panel shows four illustrative
stimuli on textured backgrounds. All stimuli in this figure are shown for illustration purposes using images that we have the license to publish. They closely
resemble the actual stimuli used in the fMRI experiment. Airplane image THY 9983 Nevit transparent by Nevit Dilmen is licensed under CC BY-SA 3.0.

representations in visual cortex reflect the statistical regularities
captured by these models. We were specifically interested in
determining whether such contextual representations are elicited
whenever an object is viewed—even when subjects are not
explicitly asked to report contextual information. Thus, it was
important that our object stimuli be shown in isolation, without
other co-occurring objects present in the image. We designed a
stimulus set of 810 objects from 81 different categories (10 object
tokens per category). Example stimuli are shown in Fig. 2. All
object categories are listed in Supplementary Table 1, and all
stimuli are available on the Open Science Framework repository
for this project (see “Data availability” section). We measured
fMRI responses while subjects viewed these objects, shown alone
on meaningless textured backgrounds, and performed a simple
perceptual task of responding by button press whenever they saw
a “warped” object. Warped objects were created through diffeo-
morphic warping of object stimuli (Supplementary Fig. 1; see
“Methods” section for details).

Using a voxel-wise modeling procedure, we examined whether
fMRI responses to these object stimuli could be predicted from
the co-occurrence statistics of objects in vision and language. We
first estimated the fMRI responses to each object category. We
then fit voxel-wise encoding models with the goal of predicting
the fMRI responses to all object categories through a weighted
linear sum of the object2vec or word2vec embeddings. Specifi-
cally, a set of linear regression models were estimated using the
statistical embeddings as regressors and the voxel-wise fMRI
responses as predictands (Fig. 3). Through cross-validation, we
assessed how well the estimated encoding models could predict
fMRI responses to out-of-sample stimuli (see “Methods” section
for details). The cross-validation procedure was designed so that
the training and test sets always contained objects from different
categories, which allowed for a strong test of generalization to
new semantic categories, rather than new stimuli from the same
categories.

We first performed a region of interest (ROI) analysis of
the PPA, which has been proposed to have a central role in the
processing of object context!®2°. We looked separately at the

anterior and posterior PPA, because previous work suggests that
non-spatial contextual associations elicit stronger responses in
anterior parahippocampal cortex than posterior parahippocampal
cortex!¢ and because several lines of evidence suggest functional
and connectivity differences across the anterior-posterior extent
of the PPA3031, Figure 4 shows results for both the image-based
object2vec model and language-based word2vec (see Supplemen-
tary Fig. 2 for single-subject results). As can be seen in the ROI
plot, both the split-half reliability of our data and the prediction
accuracy of our encoding models are quite high for an fMRI
experiment. We believe this is likely attributable to the fact that
we used a mini-block design, with a large number of repeated
presentations for each stimulus (although another factor may be
our use of a reliability mask, which would bias the reliability
scores upward; see “Methods” section). In terms of statistical
significance, both object2vec and word2vec had significant
prediction accuracy in both anterior and posterior segments of
the PPA. Thus, at least some portion of the object-evoked
responses throughout the PPA could be reliably predicted from
representations of the visual and linguistic contexts of objects.
However, in terms of the magnitude of the effects, the highest
prediction accuracy was observed for the image-based statistics of
the object2vec model in anterior PPA. In an interaction test, we
found that the difference in accuracy between object2vec
and word2vec was greater in anterior PPA compared to posterior
PPA (permutation test, p = 0.002).

We next performed ROI analyses for other functionally defined
regions, including the scene-selective RSComp, which has also
been implicated in object context along with the PPAIL29. We
also analyzed scene-selective occipital place area (OPA), PPA
(without segmenting into anterior and posterior regions), object-
selective pFs32, object-selective lateral occipital (LO)33, and early
visual cortex (EVC). Results for these ROIs are shown in Fig. 5
(see Supplementary Fig. 3 for single-subject results). The image-
based object2vec model generated significant prediction accura-
cies in all scene-selective ROIs and in one object-selective ROI
(pFs). The language-based word2vec model generated significant
prediction accuracies in all ROIs, with larger effects in the object-
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Fig. 3 Encoding model of visual object context. VVoxel-wise encoding models were used to assess whether our statistical model of visual object context
(object2vec) could reliably explain variance in the fMRI responses to the experimental object categories. Linear regression was used to map the
representations of object2vec onto fMRI responses. We assessed the out-of-sample prediction accuracy of these regression models through a 9-fold
cross-validation procedure. Each fold of the cross-validation design contains a set of object categories that do not appear in any other fold. These folds
were shown in separate fMRI runs. Parameters for the voxel-wise linear regression models were estimated using the fMRI data for 8 folds of the object
categories and the learned regression weights were then applied to the held-out object categories in the remaining fold to generate a set of predicted fMRI
responses. This procedure was repeated for each fold of the cross-validation design, and the predicted fMRI responses from each fold were concatenated
together. Prediction accuracy was assessed by calculating the voxel-wise correlations of the predicted and actual fMRI responses across all object
categories.
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Fig. 4 Encoding models of visual and linguistic context predict fMRI responses to objects in PPA. This plot shows the average prediction accuracies for
encoding models in voxels from the anterior third and posterior third of the PPA using either image-based object2vec representations as regressors or
language-based word2vec representations. The violin plots show the mean prediction accuracies (central black dots) and bootstrap standard deviations.
The gray lines above each violin plot indicate the average voxel-wise split-half reliability of the fMRI responses in each ROI. Prediction accuracies for both
models were above chance, but the highest accuracy was observed for object2vec in the anterior PPA. The image on the left shows the PPA parcel on a
ventral view of a cortical surface rendering. PPA parahippocampal place area. **p < 0.01, ***p < 0.001, uncorrected, one-sided permutation test. Exact
p-values for object2vec: anterior PPA p-value = 2.0e—04; posterior PPA p-value = 2.4e—03. Exact p-values for word2vec: anterior PPA p-value = 4.0e
—04; posterior PPA p-value = 2.0e—04. Source data are provided as a Source Data file.
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Fig. 5 Encoding models of visual and linguistic context predict fMRI
responses to objects in functionally defined ROIls. This plot shows the
average prediction accuracies for encoding models in voxels from multiple
regions of interest using either image-based object2vec representations as
regressors or language-based word2vec representations. Object-selective
ROls are plotted in orange and scene-selective ROIs are plotted in cyan.
The violin plots show the mean prediction accuracies (central black dots)
and bootstrap standard deviations. The gray lines above each violin plot
indicate the average voxel-wise split-half reliability of the fMRI responses in
each ROI. The highest prediction accuracy for object2vec was in the PPA,
whereas the highest prediction accuracy for word2vec was in LO and pFS.
EVC early visual cortex, LO lateral occipital, pFs posterior fusiform, OPA
occipital place area, PPA parahippocampal place area, RSComp
retrosplenial complex. **p < 0.01, ***p < 0.001, uncorrected, one-sided
permutation test. Exact p-values for object2vec: EVC p-value = 3.8e—07;
LO p-value = 4.0e—01; pFs p-value = 8.0e—04; OPA p-value = 4.0e-04;
PPA p-value = 2.0e—04; RSComp p-value = 2.0e—04. Exact p-values for
word2vec: EVC p-value = 2.4e—03; LO p-value = 2.0e—04; pFs p-value =
2.0e—04; OPA p-value = 2.0e—04; PPA p-value = 4.0e—04; RSComp
p-value =2.0e—04. Source data are provided as a Source Data file.

selective regions. These ROI analyses indicate that object context
is not only represented in the PPA but also in other scene-
selective and object-selective regions of high-level visual cortex.
That said, it is notable that the effects for object2vec were
numerically strongest in the PPA, supporting the idea that this
region is particularly important for linking objects to their visual
contexts.

We performed whole-brain analyses to examine the prediction
accuracy of the object2vec and word2vec models across all voxels
with reliable signal (see “Methods” section for details). The results
of these analyses are shown in Fig. 6 (see Supplementary Fig. 4 for
single-subject results). The findings were generally consistent
with the results of the ROI analyses, with a cluster of relatively
high prediction accuracy for the object2vec model overlapping
with anterior PPA and extending into parahippocampal cortex.
This cluster was strongest in the right hemisphere in a region of
the ventral visual cortex where lateral PPA overlaps with a medial
part of the object-selective pFs. There were also several other
smaller patches of significant prediction accuracy for object2vec,
including the scene-selective OPA and RSComp. For the
word2vec model, a prominent cluster of significant prediction

accuracy was observed in a region of the ventral visual cortex,
immediately adjacent to and overlapping with the largest cluster
for the object2vec model in the right hemisphere. This cluster of
significant prediction accuracy for word2vec appears to overlap
with both pFs and PPA. Other clusters of high prediction
accuracy for word2vec were observed on the lateral surface near
object-selective LO (see also ROI results in Fig. 5). There were
also several other patches of significant prediction accuracy for
word2vec, including the scene-selective OPA and RSComp.

We next directly compared voxel-wise prediction accuracies for
the object2vec and word2vec encoding models. We generated a
preference map showing voxels with significantly higher predic-
tion accuracy for either object2vec or word2vec (Fig. 7A). This
analysis showed that object2vec generated higher prediction
accuracies in a small cluster overlapping with the anterior portion
of the PPA parcel in the right hemisphere, which is consistent
with the findings from our ROI analyses. In contrast, word2vec
generated higher prediction accuracies in more lateral regions of
the ventral visual cortex overlapping with the object-selective pFs
and LO.

Category selectivity and co-occurrence models. The results of
the ROI and whole-brain analyses suggested a general trend for the
image-based object2vec to be associated with scene-selective regions
and the language-based word2vec to be associated with object-
selective regions. To quantify this trend at the single-voxel level, we
performed a follow-up analysis that compared the voxel-wise effects
of the encoding models with measurements of scene-selectivity and
object-selectivity from the functional localizer data. Specifically, we
extracted voxel-wise responses to scenes and objects from a separate
set of localizer data and computed activation difference scores for
scenes minus objects. In the same voxels, we also computed accu-
racy difference scores for the encoding-model effects of object2vec
minus the encoding model-effects of word2vec. We restricted our
analyses to voxels that showed a significant effect in either the
object2vec or word2vec encoding models, and we computed the
correlation of the activation and accuracy difference scores across
these voxels. This analysis showed a positive linear trend in three
out of four subjects between the voxel-wise difference scores of
scene and object selectivity and voxel-wise difference scores of
object2vec and word2vec accuracy (Fig. 7B). This exploratory
analysis suggests that voxels that are better explained by a model
based on the co-occurrence statistics of objects in images tend to
have greater scene selectivity, whereas voxels that are better
explained by a model based on the co-occurrence statistics of object
names in language tend to have greater object selectivity. However,
this was a post hoc, exploratory analysis and the trend was not
detected in all subjects. We have therefore not drawn any strong
conclusions from these findings.

Object spatial properties and co-occurrence statistics. Previous
work has shown that the response of the PPA to objects is
modulated by their spatial properties, such as real-world size343°
and spatial stability?®2!, These findings suggest that the PPA
encodes not only the spatial layout of visual scenes!’, but also
spatial information that is inherent in individual objects or
evoked by their perception. We expected that the natural statistics
of object co-occurrence captured by object2vec would covary with
the spatial properties of objects. Indeed, the covariance of these
co-occurrence statistics with higher-level object properties is
precisely what makes these co-occurrence statistics useful. How-
ever, we expected that object2vec would also incorporate addi-
tional associative information that is not reducible to similarities
in object spatial properties. To examine this issue, we collected
behavioral ratings for real-world size and spatial stability, and we
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Fig. 6 Encoding models of visual and linguistic context predict fMRI responses in distinct but overlapping regions of high-level visual cortex. Voxel-
wise encoding models were estimated and assessed using the 9-fold cross-validation procedure described in Fig. 3. These analyses were performed for all
voxels with split-half reliability scores greater than or equal to r=0.1841, which corresponds to a one-sided, uncorrected p-value of 0.05 (see split-half
reliability mask in Supplementary Fig. 8). Encoding model accuracy scores are plotted for voxels that show significant effects (p < 0.05, FDR-corrected,
one-sided permutation test). The left panel shows prediction accuracy for the image-based object2vec encoding model, and the right panel shows
prediction accuracy for the language-based word2vec encoding model. There is a cluster of high prediction accuracy for the object2vec model overlapping
with the anterior portion of the PPA, mostly in the right hemisphere. There are also several other smaller clusters of significant prediction accuracy
throughout high-level visual cortex, including clusters in the OPA and RSComp. The word2vec model produced a cluster of high prediction accuracy that
partially overlapped with the significant voxels for the object2vec model in the right PPA but extended into a more lateral portion of ventral temporal cortex
as well as the lateral occipital cortex. ROl parcels are shown for scene-selective ROIs. PPA parahippocampal place area, OPA occipital place area, RSComp

retrosplenial complex.

used these ratings as regressors in an encoding model of spatial
properties.

We first performed ROI analyses to confirm that the spatial
properties encoding model predicted responses in the PPA and
other scene-selective ROIs (Fig. 8; see Supplementary Fig. 5 for
single-subject ROI results and see Supplementary Fig. 6 for
whole-brain results). As expected, the spatial-properties model
generated significant prediction accuracies in all scene-selective
ROIs, and it also generated weaker but significant prediction
accuracies in EVC and the object-selective pFs.

We next directly compared voxel-wise prediction accuracies for
object2vec and the spatial properties model. We generated a
preference map showing voxels with significantly higher predic-
tion accuracy for one model vs. the other (Fig. 9). This analysis
showed that the spatial properties model generated higher
prediction accuracies in portions of all three scene-selective
ROIs, including most of the PPA. In contrast, object2vec
generated higher prediction accuracies in a cluster that over-
lapped with the anterior PPA and extended into non-PPA
portions of the parahippocampal cortex.

Principal components of voxel tuning. Finally, we performed an
exploratory analysis to visualize how tuning for the object2vec
and word2vec models varied across voxels. For each model

(object2vec and word2vec), we applied PCA to the regression
weights for all voxels that had significant prediction accuracies.
We visualized the first four principal components (PCs), by
projecting each object category onto these PCs. Figure 10 shows
the object categories color-coded according to their score on each
PC. A common theme across most PCs is the broad distinction
between indoor and outdoor environments. Additionally, each
PC emphasizes different subsets of indoor and outdoor objects.
For example, PC3 differentiates electronics and appliances from
other indoor objects (e.g., microwave and computer vs. soap and
napkin), and it differentiates between man-made and natural
items found in outdoor scenes (e.g., sea and sand vs. sidewalk and
car). However, these PCs also contain complex mixtures of object
clusters that are not easily interpretable as representing any single
semantic dimension. The semantic complexity of these PCs may
reflect the mixed selectivity that arises from encoding a large set
of object contexts in a small number of representational dimen-
sions (i.e., the 8 dimensions of object2vec). A similar visualization
is provided for the word2vec model in Supplementary Fig. 7.
These exploratory visualization analyses can help us to develop
intuitions about cortical tuning for object context, but as with
many data-driven analyses, it is important to keep in mind that
our interpretations of these visualizations are post hoc and have
not been statistically tested.
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Fig. 7 Whole-brain voxel-wise preference map for visual vs. linguistic context and relationship to category selectivity. A This preference map shows
differences in model performance for the object2vec (visual context) encoding model and the word2vec (linguistic context) encoding model. Voxel-wise
difference scores were calculated by subtracting prediction accuracy for the word2vec model from prediction accuracy for the object2vec model. Warm
colors indicate voxels that were better explained by object2vec and cool colors indicate voxels that were better explained by word2vec. Difference scores
are plotted for voxels that show a significant preference for either model (p < 0.05, FDR-corrected, one-sided permutation test). There are clusters of
significantly greater prediction accuracy for object2vec relative to word2vec overlapping with anterior PPA, mostly in the right hemisphere. There are
clusters of significantly greater prediction accuracy for word2vec relative to object2vec in regions lateral to the PPA, extending to the lateral occipital
cortex. ROl parcels are shown for scene-selective ROls. PPA parahippocampal place area, OPA occipital place area, RSComp retrosplenial complex.

B Category selectivity of individual voxels is plotted as a function of their encoding-model preferences. For each subject, all voxels with significant effects
for either the image-based object2vec encoding model or the language-based word2vec encoding model are plotted. The x axis plots the difference in
prediction accuracy between the object2vec encoding model and the word2vec encoding model. The y axis plots the difference in activation between
scenes and objects, based on data from a separate set of functional localizer runs. Positive linear trends suggest that voxels that are better predicted by
object2vec than word2vec tend to be more scene-selective and voxels that are better predicted by word2vec than object2vec tend to be more object-
selective (Pearson r values = 0.51, 0.20, —0.17, 0.29 for subjects 1-4). Source data are provided as a Source Data file.

Discussion representations of their visual contexts and that anterior PPA is a

The goal of this study was to determine if object representations
in visual cortex reflect the statistical regularities of object co-
occurrence in the visual environment. We first developed an
objective model of the latent statistical structure of object co-
occurrence using an unsupervised machine-learning algorithm
applied to a large set of annotated images of real-world scenes.
We then compared the representations of this model with fMRI
activity evoked by single objects shown in isolation. We found
that responses of voxels in scene-selective visual cortex—most
strongly, the anterior PPA and adjoining portions of para-
hippocampal cortex—were predicted by the co-occurrence sta-
tistics of objects in visual scenes. In contrast, the representations
of a language-based co-occurrence model for object names better
predicted the responses of voxels in object-selective cortex. These
findings indicate that scene-selective cortex links objects with

particularly important locus for performing this operation. They
further suggest that the regularities of vision and language map
onto partially distinct components of cortical object processing.

Our results provide insights into how visual context is repre-
sented in the brain, a longstanding issue in visual neuroscience.
Previous behavioral studies have shown that the associations
between objects and their typical contexts can influence perfor-
mance on perceptual tasks, including object recognition, scene
recognition, and visual search!=%. For example, when an object is
shown in an unusual context (e.g., a pig in a cathedral), subjects
are slower and less accurate at recognizing both the foreground
object and the background scene!. One possible mechanism that
could underlie these behavioral effects is a representation of an
object’s statistical associations to other objects and scene ele-
ments. Previous neuroimaging work on contextual associations
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Fig. 8 Encoding model of object spatial properties predicts fMRI
responses in functionally defined ROIs. This plot shows the average
prediction accuracies for encoding models in voxels from multiple regions
of interest using object-wise spatial property ratings as regressors (i.e.,
real-world size and spatial stability). Object-selective ROls are plotted in
orange and scene-selective ROls are plotted in cyan. The violin plots show
the mean prediction accuracies (central black dots) and bootstrap standard
deviations. The gray lines above each violin plot indicate the average voxel-
wise split-half reliability of the fMRI responses in each ROI. As expected
from previous results, object-wise spatial properties were good predictors
of fMRI responses in scene regions. EVC early visual cortex, LO lateral
occipital, pFs posterior fusiform, OPA occipital place area, PPA
parahippocampal place area, RSComp retrosplenial complex. ***p < 0.001,
uncorrected, one-sided permutation test. Exact p-values: EVC p-value =
1.4e—01; LO p-value = 8.7e—01; pFs p-value = 2.0e—04; OPA p-value =
2.0e—04; PPA p-value =2.0e—04; RSComp p-value = 2.0e—04. Source
data are provided as a Source Data file.

has found evidence consistent with this hypothesis. Specifically, it
has been shown that objects with strongly associated scene con-
texts (e.g., stoves are strongly associated with kitchen contexts),
elicit an increased mean fMRI signal in the PPA and RSComp,
two regions of scene-selective visual cortex!1:1929, However, the
implication of these results has been unclear, because other rat-
ings of object properties, such as real-world size and spatial sta-
bility, have been found to covary with contextual-association
ratings and explain similar or more variance in fMRI
responses?®2l. Moreover, almost no previous studies have
investigated the fundamental question of whether object-evoked
responses in visual cortex represent the underlying multi-
dimensional structure of object context (i.e., which objects are
associated with each other). One previous study examined mul-
tivoxel patterns for scenes and objects and found no relationship
between contextually related objects in the PPA3%; however, this
study only tested eight object categories and used simple pattern
classification methods that may have been less sensitive to con-
textual effects.

The current experiment overcomes the limitations of previous
studies by explicitly modeling the statistics of object co-
occurrence in the visual environment and relating these statis-
tics to object-evoked fMRI responses. We addressed the challenge
of objectively quantifying the real-world statistics of object con-
text by leveraging a large data set of densely labeled images that

object2vec minus spatial properties
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Fig. 9 Whole-brain voxel-wise preference map for visual context
(object2vec) vs. object spatial properties. This preference map shows
differences in model performance for the object2vec encoding model and
the spatial-properties encoding model. Voxel-wise difference scores were
calculated by subtracting prediction accuracy for the spatial properties
model from prediction accuracy for the object2vec model. Warm colors
indicate voxels that were better explained by object2vec and cool colors
indicate voxels that were better explained by spatial properties. Difference
scores are plotted for voxels that show a significant preference for either
model (p <0.05, FDR-corrected, one-sided permutation test). There are
clusters of significantly greater prediction accuracy for object2vec relative
to spatial properties in the anterior PPA and in the parahippocampal cortex
beyond the anterior PPA boundary. There are clusters of significantly
greater prediction accuracy for spatial properties relative to object2vec in
posterior PPA and the other scene-selective ROls (OPA and RSComp). ROI
parcels are shown for scene-selective ROls. PPA parahippocampal place
area, OPA occipital place area, RSComp retrosplenial complex.

was originally developed for training semantic segmentation
models in computer vision?’. We analyzed the annotations for
these images using object2vec, which is a modified version of the
word2vec algorithm from computational linguistics?324. An
important aspect of this modeling procedure is the fact that we
explicitly analyzed the co-occurrence of object categories in
scenes. This was possible because we applied a text-based
machine-learning algorithm to image annotations. In compar-
ison, a learning algorithm that took pixel values as inputs, such as
a convolutional neural network, might also learn the natural
statistics of object co-occurrence’’, but this co-occurrence
information would be latent in the model’s internal representa-
tions and would thus be difficult to observe and quantify.

A similar approach of combining methods from computational
linguistics with image annotations was previously used to model
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Fig. 10 Principal components of voxel tuning for visual object context. Principal components analysis was used to examine variance in encoding-model
regression weights across voxels. This plot illustrates the first four principal components (PCs) of the regression weights for the image-based object2vec
encoding model, using all voxels with significant prediction accuracies. The 81 object categories from the fMRI experiment were projected onto each PC (as
indicated by the color coding from blue to red). Thus, the PC score for each object is conveyed by color rather than spatial position. The spatial
arrangement of the object categories is the same as in the tSNE plot of Fig. 1. We used this spatial arrangement to facilitate comparison with the
embeddings before they were projected onto the encoding-model PCs and to facilitate comparisons of different PCs. At a coarse level, most PCs broadly
distinguish between items found in indoor and outdoor environments. At a more fined-grained level, each PC organizes the objects into distinct sets of
clusters, some of which appear to be semantically interpretable. For example, PC2 differentiates electronics and appliances from other indoor objects (e.g.,
microwave and computer vs. soap and napkin), and it also differentiates between man-made and natural items found in outdoor scenes (e.g., sea and sand
vs. sidewalk and car). However, these PCs also contain complex clusters of objects that do not appear to have intuitive semantic interpretations. This
semantic complexity may reflect the mixed selectivity that arises from encoding a large set of object contexts in a small number of representational
dimensions (i.e., the 8 dimensions of object2vec). Source data are provided as a Source Data file.

scene categorization behaviors’® and to show that contextual
information derived from object co-occurrence statistics is at least
partially correlated with semantic information derived from the
co-occurrence statistics of natural language?®. A similar method
was also used in an earlier fMRI study to model the influence of
object co-occurrence statistics on cortical responses to scenes.
Our work is related but addresses a different set of questions. We
set out to understand how visual cortex links objects with
representations of their contexts. For this purpose, it was crucial
that we used isolated single objects as stimuli, rather than full
scenes (for which contextual information would already be

present in the visual display). This approach allowed us to
identify a set of cortical regions that encode the contextual
information associated with visual objects, even in the absence of
a surrounding scene.

It is notable that the strongest evidence for contextual coding
was found in the anterior PPA, extending into adjacent parts of
the parahippocampal cortex. The object2vec model predicted
the greatest amount of variance in this region, and this was also
the only part of the PPA where object2vec explained more var-
iance than a model based on object spatial properties (i.e., real-
world size and spatial stability). Previous fMRI studies of visual
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context typically found results throughout the PPA and other
scene-responsive regions!1>, although one study reported a
more anterior parahippocampal locus (outside of the PPA) for
non-spatial associations between objects!®. Our findings are
consistent with other data implicating anterior PPA in the coding
of abstract information related to scenes and contexts. For
example, a previous study found that multivoxel activation codes
in this region generalized across interior and exterior views of the
same building, indicating some degree of abstraction related to
building identity3®. Functional connectivity data also suggest the
possibility of a division between anterior and posterior PPA, with
posterior PPA more connected to areas implicated in scene per-
ception, such as the OPA and early visual cortex, and anterior
PPA more connected to regions involved in spatial perception
and memory, such as RSComp, caudal inferior parietal lobule,
and medial temporal lobe3%40. Beyond the PPA, we found weaker
though significant object context effects in scene-selective
RSComp and OPA, and in object-selective pFs. Thus, although
anterior PPA may be the most crucial locus, contextual proces-
sing appears to involve a broad network of high-level visual
regions.

In addition to looking at representations of object co-
occurrence statistics in visual scenes, we also examined the co-
occurrence statistics of object names in linguistic corpora. We
found an interesting and unexpected relationship between the
modality of the distributional models (i.e., vision or language)
and the category selectivity of the regions that were best pre-
dicted by these models. Specifically, we found that language-based
word2vec produced stronger prediction accuracies in object-
selective pFs and LO, whereas image-based object2vec produced
stronger prediction accuracies in the anterior portion of scene-
selective PPA. Previous work has shown that language-based
models of distributional statistics can predict object-evoked
responses in both fMRI and magnetoencephalography*!42, but
no previous studies have examined the possibility that responses
in the object-selective cortex might be better predicted by the
distributional statistics of language than the distributional sta-
tistics of vision.

What might account for this pattern of findings? One relevant
consideration is that language-based word2vec likely contains
more taxonomic information (e.g., What class of object is this?),
whereas image-based object2vec emphasizes thematic informa-
tion (e.g, What places and events is this object found in?).
Indeed, previous findings from computational linguistics suggest
that standard models of distributional semantics often perform
better on tests of taxonomic knowledge than tests of thematic
knowledge*3. Thus, one possibility is that the regions predicted by
word2vec and object2vec encode different domains of abstract
semantic associations that are not perceptual in nature. In pre-
vious work that is consistent with this more semantically oriented
interpretation, posterior fusiform gyrus and parahippocampal
cortex have been shown to be involved in the processing of object
semantics, even when the experimental stimuli are words rather
than images (but note that these studies did not specifically
compare taxonomic and thematic associations)*%. However, a
different, but not mutually exclusive, possibility follows from the
fact that objects from similar taxonomic categories tend to have
similar shapes. Insofar as the word2vec embeddings for object
terms in language capture information about object shape, they
may be better predictors of perceptual responses in object-
selective visual cortex. Our findings cannot adjudicate between
these possibilities. Thus, the role of abstract semantic associations
and perceptual features in explaining these contextual repre-
sentations should be explored in future work.

In addition to advancing our understanding of how visual and
linguistic context are represented in the brain, our results also

have implications for understanding cortical function more
generally. A fundamental theory in visual neuroscience is that
neurons in the visual system are tuned to the natural statistics of
the sensory environment#047. Specifically, it is thought that
neural response preferences are shaped through evolutionary and
developmental processes to optimize “efficiency”—that is, to
convey as much useful information as possible with the limited
computational resources of the brain. One potential way to
improve the efficiency of a neural population code is to match
neural tuning properties to the natural statistics of sensory sti-
muli, such that the proportion of neurons tuned to a particular
stimulus is related to the frequency of that stimulus in sensory
experience. These ideas have been investigated in the context of
low-level vision by calculating sensory statistics from readily
available image properties, such as pixel intensities*3->0. The
natural statistics of higher-level sensory information are also
likely to be relevant for understanding the functions of visual
cortex, but a major challenge in testing this idea is the need for
large-scale annotated stimulus sets and quantitative approaches
for modeling their statistical structure. By combining annotated
image datasets with tools from computational linguistics, as we
do here, vision researchers can benefit from decades of work that
has sought to model the latent structure of language from the
distributional statistics of words in text?s.

The approach of examining the high-level statistical regularities
of objects and scenes may provide insight into longstanding
questions about cortical function. In the case of scene-selective
cortex, previous work has shown that scene regions respond to
several high-level properties of objects, including contextual-
association strength, real-world size, landmark suitability, spatial
definition, and interaction envelopel 121343551 Scene-selective
regions also respond to several mid-level properties of images,
including high spatial frequencies, rectilinearity, and cardinal
orientations>*~>°, Many of the high-level object properties appear
to covary in the visual environment and explain similar variance
in fMRI responses?’, and they may also covary with mid-level
image properties®®>7. One question that is often raised is whether
any of these high-level or mid-level stimulus properties is of
primary importance in explaining the functions of the scene-
selective cortex. Although it is possible that cognitive demands
require scene-selective regions to be specialized for processing a
specific and limited class of scene features, an alternative possi-
bility is that these regions are tuned to the covariance of features
in real-world scenes, and should thus show responses to a variety
of stimulus properties, ranging from high-level to low-level. In
this view, the representations of scene-selective cortex may reflect
a statistically efficient basis set from which a large number of
behaviorally relevant aspects of scenes can be decoded. Our
current data support this idea by showing that a large portion of
the explainable variance in PPA can be accounted for by a low-
dimensional model based on the natural statistics of objects in
scenes. Furthermore, this idea is supported by the overlapping
explained variance that we observed for the object2vec and object
spatial property models, which suggests that the natural statistics
of object co-occurrence are related to physical characteristics of
the objects, such as their real-world size. We expect that a number
of other high- and mid-level object and scene properties would be
linked to these statistics, consistent with the hypothesis that
cortical tuning to the statistical regularities of scenes produces
representations that are informative to a broad range of stimulus
properties. Similar statistical principles may underlie the cortical
representations that support other high-level cognitive functions,
such as object categorization®8, face recognition®®, and reinfor-
cement learning®.

This perspective suggests several questions for future investi-
gations. One open question is whether the visual cortex contains
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representations that reflect the natural statistics of object loca-
tions in images. Here we examined object co-occurrence inde-
pendent of object location, but it is known that the visual system
also takes advantage of associations between objects and spatial
locations®! and that perceptual behaviors and cortical repre-
sentations are sensitive to violations of the typical positions of
objects>02-64, Future investigations could utilize annotated image
databases to explicitly quantify these spatial statistics and to
examine how they relate to the object representations of visual
cortex. A second open question relates to how the statistics of
object co-occurrence are learned and incorporated into the
representations of visual cortex. One possibility is that these
statistics are initially encoded in memory regions of the medial
temporal lobe and then transferred to visual cortex®®. A third
open question is whether object2vec or similar image-based
approaches could be merged with word embeddings from com-
putational linguistics to create richer representational models of
object semantics®. Our findings suggest that object2vec could
complement language-based representations by bringing in per-
ceptual information that is not easily learned from language
corpora. More broadly, we believe that future research on high-
level vision would benefit from a greater emphasis on the sta-
tistical basis of cortical representations and their utility for
behaviorally relevant computational goals.

Methods

Subjects. Four healthy subjects (two female, ages 30, 32, 32, and 34) from the
University of Pennsylvania community participated in the experiment. All had
normal or corrected-to-normal vision and provided written informed consent in
compliance with procedures approved by Institutional Review Boards at the
University of Pennsylvania and Johns Hopkins University.

MRI acquisition. Participants were scanned on a Siemens 3.0T Prisma scanner
using a 64-channel head coil. We acquired T1-weighted structural images using an
MPRAGE protocol (TR = 2200 ms, TE =4.67 ms, flip angle = 8°, matrix size =
192 x 256 x 160, voxel size = 0.9 x 0.9 x1 mm). We acquired T2*-weighted
functional images sensitive to blood oxygenation level-dependent contrasts using a
multiband acquisition sequence (TR = 2000 ms for main experimental scans and
3000 ms for localizer scans, TE = 25 ms, flip angle = 70°, multiband factor = 3,
matrix size = 96 x 96 x 81, voxel size = 2 x 2 x 2 mm).

Stimuli. Subjects viewed images of individual objects presented on textured
backgrounds. The objects were from 81 different categories, with 10 unique images
per category, resulting in a total of 810 experimental images. The stimuli were
guided by the labeled segmentation classes in ADE20K, which included not only
independent objects but also fixed scene elements, like mountains and roads. We
use the term “objects” here to refer to scene elements that one would identify if
asked to name the things in a picture (as in the labeling procedure for ADE20K). A
benefit of this approach is that it is unbiased in the selection of nameable scene
elements. An alternative approach of restricting the study to independent objects
may run the risk of not generalizing to the much richer set of scene elements that
are important to contextual processing in natural visual experience. It is also worth
noting that previous related studies have similarly treated fixed scene elements as
objects. For example, the Bar & Aminoff!! study on contextual associations
included objects such as barn, roulette table, and windmill, and the Stansbury

et al.?% study on object co-occurrence included objects such as sky, sand, and floor.

Images of objects were obtained by searching for the object category terms on
Google Images and downloading high-quality images in which the object was
prominent. We then manually isolated the object from the image background using
Adobe Photoshop. All images were cropped around the isolated object and then
resized to 600 x 600 pixels with the original aspect ratio preserved (thus, the
shorter axis of the image was padded with transparent pixels).

We placed the objects over complex, textured backgrounds (Fig. 2). These
background textures were generated using a procedure that was designed to
systematically reduce the similarity between our models of interest (i.e., object2vec
and word2vec) and a model of low-to-mid-level perceptual features (i.e., AlexNet
trained on ImageNet). We used representational similarity analysis (RSA) to assess
the similarity of these models. First, representations were generated for all stimuli
as the vectorized outputs of each model (i.e., object2vec embeddings, word2vec
embeddings, and unit activations of AlexNet). For AlexNet, representations for the
10 images within each object category were averaged to create a single
representation per category. Next, representational dissimilarity matrices (RDMs)
were created by calculating all pairwise comparisons of the representational vectors
for the 81 object categories. Representational dissimilarities between categories

were measured using Pearson distance (one minus the Pearson correlation
coefficient). We then assessed the similarity between models by calculating the
Spearman correlation of their RDMs, which we refer to as an RSA correlation.

Background textures were created from composites of DeepDream
visualizations for all units in convolutional layer 5 of AlexNet using the MATLAB
function deepDreamImage. DeepDream visualizations were initiated with random
pixel values and optimized through gradient ascent using a multi-resolution image
pyramid and Laplacian Pyramid Gradient Normalization (3 pyramid levels, scaling
of 1.4 between pyramid levels, 10 iterations per level). We created composite
textures by averaging the visualizations from three channels sampled randomly
with replacement and then adjusting the overall luminance to 90 in Lab color
space. We used a stochastic optimization procedure to synthesize composite
background textures for each object image that minimized the RSA correlations of
the CNN layers with both the object2vec and word2vec models. Our optimization
criterion, which we sought to minimize, was the maximum correlation coefficient
(rmax) across all RSA comparisons between the models of interest (i.e., object2vec
and word2vec) and the convolutional layers of AlexNet (layers 1-5). We began by
randomly synthesizing 3,000 composite background textures and generating 1000
random assignments of these backgrounds to the 810 object images. From these, we
selected the set of object-background pairings with the lowest 7,,,,,. We then
implemented an iterative optimization procedure in which the image backgrounds
were individually altered to gradually reduce r,.. On each iteration, a new
randomly synthesized background texture was generated for a single randomly
selected object, and 7., was re-calculated. If 7,,,, was lower than the current best
value, the new object-background pairing from that iteration was retained;
otherwise, it was discarded. This procedure was stopped shortly after ,,,x dropped
below 0.05.

We also created a set of warped object stimuli by applying a diffeomorphic
transformation to the 810 isolated object images®’. The diffeomorphic warping was
implemented over 5 iterations with a maximum distortion of 30. These warped
objects served as target stimuli for a category-detection task in the fMRI scanner
(see Supplementary Fig. 1 for examples).

Procedure. We collected fMRI data while subjects viewed images of objects on
textured backgrounds and performed a category-detection task (implemented in
PsychoPy 1.84). Subjects were asked to fixate on a central cross that remained on
the screen throughout the scan and press a button whenever the stimulus was a
warped object. Successful performance on this task required subjects to attend to
each stimulus but did not require them to think about the mnemonic associations
of the objects. Stimuli were presented in a mini-block design. In each block, 5
images from the same object category were presented in rapid succession. Each
image was shown for 500 ms, and consecutive images were separated by a 500 ms
inter-stimulus interval, during which a random background texture was shown,
which differed from the backgrounds that the objects were shown on. After the fifth
image in each block, a gray screen with a central cross appeared for 1.5 s before the
start of the next block. Each block was thus 4.5 s in length, with a minimum inter-
block interval of 1.5 s. Every run also included 6 randomly placed null events of 4 s
each, which always occurred between blocks.

Consistent with previous studies using encoding model analysis methods, we
sought to obtain a large amount of fMRI data from each participant, rather than
data from a large number of participants. The experiment was designed to be
completed in 4 sessions, each taking place on different days; however, two subjects
chose to split up the scanning sessions over more than 4 days. For each planned
session, we randomly divided the 81 object categories into 9 folds of 9 categories
each. These folds were presented in separate runs, randomly ordered. Runs
contained 6 mini-blocks for each of the 9 categories; images were assigned to mini-
blocks by creating 3 different 2-fold splits for the 10 images in each category. Each
run also contained 1-3 warped-object mini-blocks, in which a single warped object
image was shown among 4 normal images from the same object category. The
categories for the warped-object mini-blocks were randomly chosen from the 9
categories in the run. The order of the mini-blocks within the run was randomized,
as was the order of the images within each mini-block, subject to the restriction
that mini-blocks from the same category were never shown more than twice in a
row. Runs were ~6.3 min in length, with the exact length depending on the variable
number of warped-object mini-blocks (i.e., 1-3).

In two of the scanning sessions, additional fMRI data were collected for defining
functional ROIs (described in the section Functional localizer and regions of
interest). In another two scanning sessions, we also collected 11 min of fMRI data
while subjects viewed a continuous natural movie (from the show Planet Earth).
These movie data were collected for use in hyperalignment®8, and they were not
analyzed for the current project.

fMRI preprocessing. fMRI data were processed and modeled using SPM12
(Wellcome Trust Centre for Neuroimaging, London, UK) and MATLAB (R2019b
Mathworks). Functional images for each participant were realigned to the first
image, co-registered to the structural image, warped to Montreal Neurological
Institute (MNI) standard space, and spatially smoothed with a 6-mm full-width-
half-maximum isotropic Gaussian kernel. Voxel-wise responses to each object
category were estimated using a general linear model, which included regressors for
each of the object categories and the target (warped-object) mini-blocks in each
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run, and a regressor for each run. Each regressor consisted of a boxcar function
convolved with a standard hemodynamic response function. Low-frequency drifts
were removed using a high-pass filter with a cutoff period of 128s, and temporal
autocorrelations were modeled with a first-order autoregressive model. Voxel-wise
beta values were z-scored across the 9 object categories within each run. These beta
values were used as object category responses for all additional analyses.

Voxel-wise reliability estimates. We calculated noise-ceiling estimates based on
the split-half reliability of voxel-wise responses to the 81 object categories. For each
voxel, split-half reliability was calculated as the Pearson correlation between the
mean responses to the 81 object categories in odd and even runs. The resulting
reliability estimates were used to select voxels for further analyses®®. Only voxels
whose average split-half reliability across subjects was greater than or equal to r =
0.1841, corresponding to an uncorrected p-value of 0.05, were included in ROIs
(see next section), or plotted in whole-brain maps (Supplementary Fig. 8).

Functional localizer and regions of interest. BOLD responses in two additional
scan runs were used to define functional ROIs. The localizer protocol included 4.5-
s blocks of scenes, faces, objects, and scrambled objects. Images were presented for
225ms with a 75-ms inter-stimulus interval, and subjects performed a one-back
repetition-detection task on the images. We identified the three scene-selective
ROIs (PPA, OPA, and RSComp) based on a contrast of scenes > objects imple-
mented in a general linear model with a group-based anatomical constraint of
category-selective activation derived from a large number of localizer subjects in
our laboratory (n = 42)3%70. Using a similar parcel-based approach, we defined two
object-selective ROIs (LO and pFs) based on a contrast of objects > scrambled
objects, and we defined EVC with the contrast of scrambled objects > scenes.
Bilateral ROIs were defined by selecting the top 50 voxels from the parcel in each
hemisphere based on the localizer contrast (i.e., the difference in beta values across
conditions), excluding voxels that did not meet the split-half reliability criterion
described above. For the anterior and posterior PPA ROIs, we restricted the full
PPA parcel to either its anterior or posterior third and selected 25 voxels per
hemisphere from each third.

Representational models. Our analyses made use of representational models
based on statistical relationships between objects in natural images (object2vec)
and linguistic corpora (word2vec), and a representational model based on the
spatial properties of objects. The three representational models are described below.

Object2vec. Using tools from computational linguistics, we developed an
approach for characterizing the latent statistical structure of object co-occurrence
in natural images, which we refer to as object2vec. To train this model, we used
annotated images from the ADE20K data set: http://groups.csail. mit.edu/vision/
datasets/ ADE20K/. This data set contains 22,210 scene images that have been
densely annotated by human observers such that every object within every scene is
segmented and labeled. Across the entire scene image set, there are 3148 unique
object segmentation labels?”. ADE20K is ideal for our purposes because it provides
a large and diverse set of image annotations that we can use to model the co-
occurrence statistics of objects in natural images.

Our modeling approach was inspired by the field of computational linguistics,
which has a long history of modeling the lexical-semantic properties of words
based on their co-occurrence statistics in natural linguistic contexts23. These co-
occurrence-based models are referred to as distributional-semantic models because
they reflect the distribution of words in language (often written language). The
general goal of these models is to learn word representations (i.e., vectors) that
capture the contextual similarity of words—that is, representations in which words
that occur in similar contexts are similar. A leading algorithm for learning these
distributional-semantic representations from text corpora is word2vec?3-24.
Object2vec is based on the continuous bag of words (CBOW) version of word2vec,
which seeks to identify word representations that can be used to predict a missing
target word from its surrounding context words (e.g., the other words around it in
a sentence).

We adapted the word2vec CBOW algorithm, as implemented in fastText’!, and
applied it to the image annotations from ADE20K. Our implementation modifies
how the context window is defined for word2vec. Typically, each word’s context is
defined as a weighted window spanning forward and backward from the position
of the word in a sentence. This approach to defining the context window is not
applicable to our image annotations, which can either be analyzed as a bag of
words, containing object labels in an arbitrary order, or as a 2D segmentation map.
Here we implemented the simpler bag-of-words approach by defining the context
window for each object so that it includes all other objects in the same image (with
equal weights for all context objects). Note that fastText allows for the possibility of
learning representations for character n-grams (i.e., groups of letters within words),
but this option was not applicable to our image annotations and was thus not used.

We first created an annotation data set to use as our training corpus. We
converted each image into a list of object labels, without including repeats for
objects that occurred multiple times in the same image. The object labels were
cleaned up and simplified in several ways. In ADE20K, each object can be
associated with a list of multiple possible names (e.g., “bathtub, bathing tub, bath,

tub”), which we converted into a single name using the first term in the list (e.g.,
“bathtub”). For the 81 object categories in our experimental stimuli, we manually
inspected the object labels in ADE20K to identify other possible labels that could be
applied to these objects (e.g., “bowl” and “bowls”, “notebook” and “notepad”).
These label sets are included in Supplementary Table 1. For categories with
multiple associated labels, we converted all instances to one identical label (e.g., all
instances of “notepad” were converted to “notebook”). After this procedure, we
were left with 2959 unique object labels across the entire data set.

We created the object2vec embeddings by running our modified version of the
fastText CBOW algorithm on the ADE20K annotation corpus. These embeddings
are learned through stochastic gradient descent and the dimensionality of the
embeddings is set by hand before model training. We first created embeddings of
different sizes, spanning from 10 to 90 dimensions in steps of 20. For each
dimensionality, we created 100 versions using different random initializations. The
models were trained for 1000 epochs with a negative sampling parameter of 20. We
sought to identify the simplest possible model that captured the contextual
representations of the objects in ADE20K. By converting the resulting object2vec
representations into RDMs, we could perform RSA to compare the information
contained in the embeddings at different dimensionalities. We averaged the RDMs
for all 100 versions of each dimensionality and then performed pairwise
correlations of the RDMS for all dimensionalities. We found that the lowest-
dimensional model (10 dimensions) was highly correlated with each of the higher-
dimensional models (mean r-value = 0.92, sd = 0.02). Because of the strong
representational similarity of these models, we used the simpler 10-dimensional
embeddings for all further analyses. We then performed PCA on the 10-
dimensional embeddings to determine if they could be further reduced in
dimensionality. We found that on average across all 100 versions, 8 dimensions
were sufficient to explain over 90% of the variance. Finally, we concatenated all
versions of the 10-dimensional embeddings and used PCA to extract latent
dimensions that were commonly identified across different random initializations.
We retained 8 principal components (PCs), which served as our object2vec
representations.

Word2vec. In addition to our object2vec embeddings, which were trained on
image annotations, we also examined word2vec embeddings trained on written
language. We used a set of 300-dimensional word2vec embeddings that had been
previously trained on the Google News data set (~100 billion words): https://code.
google.com/archive/p/word2vec/. We downloaded the word2vec embeddings here:
https://github.com/chrisjmccormick/word2vec_matlab. These embeddings were
filtered to include only words that are present in WordNet, which removes many
entries that are not useful for our analysis of object concepts, including misspellings
and multi-word phrases. We then used PCA to reduce the dimensionality of these
representations. The goal of reducing the number of word2vec dimensions was to
avoid overfitting by our encoding models. We inspected the scree plot of explained
variance for each PC and found an elbow at ~30 PCs, where explained variance
began to level off (Supplementary Fig. 9). We, therefore, retained 30 PCs of the
word2vec embeddings for all further analyses. It is worth noting that it is not
straightforward to compare the cumulative explained variance of the object2vec
and word2vec PCs. The word2vec PCs were derived from high-dimensional
embeddings (i.e., 300 dimensions) and a data set of 207,147 words, whereas the
object2vec PCs were derived from low-dimensional embeddings (i.e., 10 dimen-
sions) and a data set of 2,959 objects. We later ensured that our findings were not
contingent on the specific number of PCs retained. We observed similar results in
the range of 20-50 PCs. Beyond 50 PCs, cross-validated accuracy of the encoding
models decreased, due to overfitting. For each of the 81 object categories in our
experiment, we created a list of its associated names. This list included all names in
the full ADE20K label for the object (e.g., “bathtub, bathing tub, bath, tub”) as well
as plural forms and any additional names that were detected through manual
inspection of the WordNet-filtered word2vec vocabulary (207,147 words). For each
object category, we averaged the embeddings for all of its associated names. The
resulting 30-dimensional vectors served as our word2vec representations.

Object spatial properties: We collected behavioral ratings for two spatial
properties of the objects in our experiment: real-world size and spatial stability.
These data were collected on Amazon Mechanical Turk. Separate experiments were
run for each spatial property rating. For real-world size, subjects were asked to
indicate the size of the object using reference objects on a picture scale. The
reference objects for the answer choices were a key, a bagel, a shoe, a backpack, a
chair, a bed, a car, and a building, which were assigned to values 1-8. For spatial
stability, subjects were asked, How often do you expect the position of this object to
change in everyday life? The answer choices were very often, often, occasionally,
rarely, or never, which were assigned to values 1-5. We filtered the data to retain
only high-quality subjects, because we could not be certain that online raters
attended to the stimuli. To do this, we computed all pairwise correlations of
subjects’ ratings and calculated the mean pairwise correlation for each subject. We
then removed any subject whose mean pairwise correlation was more than
1.5 standard deviations away from the mean pairwise correlations of all subjects.
We first collected 52 subjects for the real-world size ratings and retained 45 subjects
after data filtering. After observing that few subjects were removed by our data-
filtering procedure, we reduced the number of subjects collected to 30 for the
spatial-stability ratings and retained 28 subjects after filtering. The across-subject
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split-half reliability was high for the retained subjects (r = 0.99 for real-world size
and r = 0.94 for spatial stability). Each subject rated one image from each of the 81
object categories in random order. We calculated the mean rating for each property
across all retained subjects to obtain a final set of two property ratings for each
object category. We used these property ratings as separate regressors in voxel-wise
encoding models for spatial properties.

Voxel-wise encoding models. We used voxel-wise encoding models to deter-
mine if the fMRI responses to our 81 object categories could be predicted from
the representations of object2vec, word2vec, and object spatial properties. For
each subject, voxel-wise responses to the 81 object categories were determined by
averaging responses across all runs. Ordinary least squares regression was used
to estimate weights that map representational features (e.g., object2vec) to these
fMRI responses. We used 9-fold cross-validation to quantify the out-of-sample
prediction accuracy for each voxel-wise model. This cross-validation design was
built into our fMRI protocol. As described above (see “Procedure” section), the
stimuli for each subject were randomly split into 9 folds of 9 object categories
each, and the object categories from different folds were always shown in dif-
ferent runs. For each iteration of the cross-validation procedure, voxel-wise
regression weights for the object2vec and word2vec dimensions were estimated
using object categories from 8 of the 9 folds, and the estimated regression
weights were applied to the object categories in the held-out fold to generate
predicted fMRI responses.

We included nuisance regressors in our encoding models to account for low-
level stimulus properties that could influence the estimated weights for our
regressors of interest (i.e., object2vec and word2vec). Nuisance regressors were
generated using the five convolutional layers of a convolutional neural network
(AlexNet) trained on ImageNet’?: http://www.vlfeat.org/matconvnet/models/
imagenet-caffe-ref.mat. The goal of this procedure was to create a small set of
nuisance regressors that explain prominent low-level image features while not
drastically increasing the overall number of regressors and thus causing problems
with overfitting. We ran the experimental stimuli through AlexNet to obtain
activations from the final output of each convolutional layer and then concatenated
these activations into a single vector for each stimulus. We averaged these AlexNet
activation vectors across all 10 images for each object category and used PCA to
reduce their dimensionality. Based on inspection of the scree plot, we retained 20
PCs, which is at the point where explained variance leveled off. In the cross-
validation procedure, the nuisance regressors were only included in the training
folds for the purpose of estimating regression weights—they were not included
when applying the regression weights to generate predictions for the object
categories in the held-out test fold. Thus, all encoding-model predictions were
computed using only the representations of object2vec, word2vec, or the object
spatial properties model. We validated that the 20 AlexNet PCs captured variance
in the responses of the visual cortex and were thus reasonable to use as nuisance
regressors that reflect low-level stimulus properties. To do this, we fit voxel-wise
encoding models using only the AlexNet PCs as regressors. As expected, we found
high prediction accuracies in large portions of visual cortex in each subject
(Supplementary Fig. 10).

We used permutation tests to assess the statistical significance of prediction
accuracy scores. To estimate the distribution of effects within each voxel under the
null hypothesis, we randomly permuted the object category labels within each fold
of the cross-validation design and then computed the Pearson correlation between
the actual fMRI responses and the permuted version of the predicted responses. We
repeated this procedure 5000 times. We compared the actual r-value in each voxel
to the null distribution to generate p-values and then adjusted for false discovery
rate (FDR)73. For group-level analyses, we averaged the actual prediction accuracy
scores in each voxel across subjects and did the same for the r-values from all 5000
iterations of the permutation procedure to produce a null distribution for each
voxel. For ROI analyses, we calculated the average r-value across all voxels in all
subjects (or within single subjects) and did the same for the r-values from all 5000
iterations of the permutation procedure. We compared the actual r-value for each
ROI to the permutation-based null distribution to generate p-values. For the ROI
analyses, we also obtained bootstrap standard errors by randomly resampling the
actual and predicted fMRI responses within each fold and then re-computing the
voxel-wise correlations and ROI means. This bootstrap resampling procedure was
performed 5000 times.

We also performed a permutation-based interaction test on the encoding-
model accuracy scores for object2vec and word2vec in anterior and posterior PPA.
For each subject, we subtracted the voxel-wise accuracy for word2vec from the
accuracy for object2vec. We calculated the average of these differences scores
across all voxels in all subjects for each ROI, and we subtracted the average in
posterior PPA from the average in anterior PPA. The resulting statistic reflects the
degree to which object2vec produced higher prediction accuracy than word2vec in
anterior PPA relative to posterior PPA. We calculated the same interaction
statistic for 5000 iterations of our permutation procedure, and we compared the
actual interaction statistic to the permutation-based null distribution to generate a
p-value.

Preference maps. We compared voxel-wise prediction accuracies for pairs of
encoding models by subtracting the prediction accuracy of one model from the

prediction accuracy of the other model in each voxel. The result is a preference
map showing which voxels are better predicted by one model or the other”4. Before
computing difference scores of prediction accuracies, we first set any negative
prediction accuracies to zero to avoid the possibility that apparent preferences for
one model could be driven by negative correlations for the comparison model. We
used a permutation procedure to assign p-values to each preference score. To
estimate the distribution of difference scores within each voxel under the null
hypothesis, we randomly permuted the object category labels within each fold of
the cross-validation design, using the same permutation indices for both encoding
models being compared. We computed the Pearson correlation between the actual
fMRI responses and the permuted version of the predicted responses for each
encoding model and then calculated the difference score of prediction accuracies
for the two models. We repeated this procedure 5000 times. We compared the
actual difference score in each voxel to the null distribution to generate p-values
and then adjusted for false discovery rate (FDR). For the group-level result, we
averaged the actual difference scores in each voxel across subjects and did the same
for the difference scores from all 5000 iterations of the permutation procedure to
produce a null distribution for each voxel.

Principal component analysis of encoding-model regression weights. We
performed a post hoc exploratory analysis to examine variance in the encoding
model regression weights across voxels. Each voxel has a set of corresponding
regression weights for each encoding model (e.g., 8 regression weights per voxel for
object2vec). We calculated the average regression weights across subjects for each
voxel, and we then performed PCA on these average regression weights across all
voxels that had significant effects in the whole-brain analysis. We performed this
procedure separately for the object2vec and word2vec encoding models. We
applied the loadings for the first four principal components to the original
regressors and generated PC scores for each object category in our experiment. To
visualize these PCs, we color-coded the t-distributed stochastic neighbor embed-
ding (tSNE) plot of object2vec from Fig. 1 according to the scores for each PC
(Fig. 8 and Supplementary Fig. 7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Stimuli, object2vec embeddings, spatial property ratings, and preprocessed fMRI data are
available at the Open Science Framework repository for this project (https://osf.io/ug5zd/).
The following publicly available resources were used in this work: ADE20K data set:
https://groups.csail. mit.edu/vision/datasets/ ADE20K/. Google News data set: https://code.
google.com/archive/p/word2vec/. WordNet subset of Google News data set: https://
github.com/chrisjmccormick/word2vec_matlab. AlexNet pre-trained on ImageNet: http://
www.vlfeat.org/matconvnet/models/imagenet-caffe-ref.mat Source data are provided with
this paper.

Code availability
Code for the main analyses is available at the Open Science Framework repository for
this project (https://osf.io/ug5zd/).
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