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Abstract

Background: The heterogeneous subtypes and stages of epithelial ovarian cancer (EOC) differ in their biological
features, invasiveness, and response to chemotherapy, but the transcriptional regulators causing their differences
remain nebulous.

Methods: In this study, we compared high-grade serous ovarian cancers (HGSOCs) to low malignant potential or
serous borderline tumors (SBTs). Our aim was to discover new regulatory factors causing distinct biological
properties of HGSOCs and SBTs.

Results: In a discovery dataset, we identified 11 differentially expressed genes (DEGs) between SBTs and HGSOCs.
Their expression correctly classified 95% of 267 validation samples. Two of the DEGs, TMEM30B and TSPAN1, were
significantly associated with worse overall survival in patients with HGSOC. We also identified 17 DEGs that
distinguished stage II vs. III HGSOC. In these two DEG promoter sets, we identified significant enrichment of
predicted transcription factor binding sites, including those of RARA, FOXF1, BHLHE41, and PITX1. Using published
ChIP-seq data acquired from multiple non-ovarian cell types, we showed additional regulatory factors, including
AP2-gamma/TFAP2C, FOXA1, and BHLHE40, bound at the majority of DEG promoters. Several of the factors are
known to cooperate with and predict the presence of nuclear hormone receptor estrogen receptor alpha (ER-
alpha). We experimentally confirmed ER-alpha and PITX1 presence at the DEGs by performing ChIP-seq analysis
using the ovarian cancer cell line PEO4. Finally, RNA-seq analysis identified recurrent gene fusion events in our EOC
tumor set. Some of these fusions were significantly associated with survival in HGSOC patients; however, the fusion
genes are not regulated by the transcription factors identified for the DEGs.
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Conclusions: These data implicate an estrogen-responsive regulatory network in the differential gene expression
between ovarian cancer subtypes and stages, which includes PITX1. Importantly, the transcription factors associated
with our DEG promoters are known to form the MegaTrans complex in breast cancer. This is the first study to
implicate the MegaTrans complex in contributing to the distinct biological trajectories of malignant and indolent
ovarian cancer subtypes.

Keywords: High-grade serous ovarian cancer, HGSOC, Serous borderline tumor, SBT, PITX1, Estrogen receptor-alpha,
ERα, MegaTrans complex, Low-grade serous ovarian cancer, LGSOC

Introduction
Epithelial ovarian cancer (EOC) accounts for over 90%
of ovarian cancer cases [1] and results in 14,000 deaths
in the United States every year, making it the leading
cause of death attributed to gynecological cancers [2].
Current scientific advances provide hope that new treat-
ments—immunotherapies, PARP inhibitors, and small
molecules tailored to tumor characteristics—can im-
prove patient survival [3]. However, these new treat-
ments have not yet increased the 5-year survival rate for
late-stage, invasive EOC, which has been near 30% for
several decades [4]. One impediment to treating EOC is
the heterogeneity of the disease, which is complicated by
multiple histopathological subtypes that differ in morph-
ology, prognosis, etiology, mutational landscape, and
chemotherapeutic response [5].
Serous ovarian cancers are the most common type of

EOC. They are divided into two groups, according to
their invasiveness and aggressiveness: high-grade serous
ovarian cancer (HGSOC) and low-grade serous ovarian
cancer (LGSOC) [6]. HGSOCs comprise 70% of all
EOCs, initially respond to chemotherapy, subsequently
relapse, and predict overall survival (OS) of 54–57
months [7]. LGSOCs comprise 4–10% of EOCs, are less
responsive to chemotherapy, and predict a longer OS, of
82–126 months [7, 8]. Both HGSOCs and LGSOCs are
invasive and can progress to late-stage, untreatable disease;
whereas 5-year survival rates favor LGSOCs (62.3% vs.
43.9% for HGSOCs [8]), 10-year survival rates for HGSOCs
and LGSOCs are not statistically different (21.2% vs. 22.7%,
respectively; P = 0.17 [8]). The two EOC subtypes differ in
their oncogenic pathways, which are driven by distinct
mutational profiles that contain either TP53 (HGSOCs) or
BRAF, KRAS, and NRAS mutations (LGSOCs) [9]. For the
purposes of comparison, HGSOCs and LGSOCs each have
invasive properties, and the standard of care is identical for
late-stage disease of either type: maximal surgical debulking
followed by combination chemotherapy with platinum and
taxane doublets [10]. Whereas HGSOCs are initially che-
mosensitive, LGSOCs are typically less chemosensitive.
Additionally, due to the difference in molecular characteris-
tics in LGSOC, utilization of hormonal agents as therapy in
these patients are currently ongoing.

Many published EOC studies include HGSOCs but
not LGSOCs, because of the rarity of the latter. Thus,
the molecular foundations underlying the different
characteristics of these subtypes are not completely
known. Beyond driver mutations, known differences be-
tween the subtypes include, but are not limited to, pro-
teins involved in the epithelial to mesenchymal transition
[11], MAP kinase signaling [12], metalloproteinases and
their inhibitors [13], and homologous recombination
deficiency.
By the time most LGSOCs are diagnosed, they repre-

sent late-stage tumors with invasive growth [14]. How-
ever, non-invasive precursor lesions, known as serous
borderline tumors (SBTs), account for 10–15% of ovar-
ian epithelial malignancies [15]. They generally have an
excellent prognosis, with OS only slightly lower than
that of the general population [15]. In general, SBTs are
clinically different from LGSOCs [16], but they share the
same KRAS and BRAF mutations [15], consistent with
evidence defining them as precursors of clinically de-
fined LGSOCs [17]. Whereas most LGSOCs are diag-
nosed at stage III [14], the majority of SBTs are detected
at stage I [18]. Given the nearly identical gene expression
profiles between SBTs and LGSOCs [19], the continuum
of disease from SBT to LGSOC [8, 20], the late-stage de-
tection of LGSOCs [21], and noninvasive phenotype of
SBTs, we chose to compare SBTs rather than LGSOCs
to HGSOCs.
Our hypothesis was that regulatory differences be-

tween HGSOCs and SBTs would highlight factors and
molecular processes involved in the invasive growth of
HGSOCs. We also hypothesized that differential gene
expression, utilized as a first step in discovery, would
identify sets of co-regulated genes—and by virtue of
these genes’ co-regulation, shared transcription factors
whose role in malignant tumor growth could be further
evaluated. Therefore, in a discovery set of 4 SBTs, 3
stage II HGSOCs, and 4 stage III HGSOCs, we identified
differentially expressed genes (DEGs). We then performed
expression-level validation testing in an independent data-
set, enrichment analysis of binding motifs, and ChIP-seq
analysis in an ovarian cancer cell line, PEO4. Our findings
are the first to implicate the MegaTrans complex,

Li et al. BMC Cancer          (2021) 21:768 Page 2 of 18



originally discovered in breast cancer, in ovarian
cancer as well. The Megatrans complex regulates
estrogen-responsive molecular networks in a complex
fashion [22, 23]. We conclude that the multidimen-
sional nature of this potent complex could play a role
in the heterogeneity of ovarian cancer.

Materials and methods
Sample collection and preparation
We obtained ovarian tumor RNA from the Magee-
Womens Hospital Tissue Procurement Program
(Pittsburgh, PA), where all samples were de-identified
prior to receipt. Samples included 4 SBTs and 12
HGSOCs (stages I-III). The tissues were snap-frozen
after surgery at the Magee-Womens Hospital and
stored at − 80 °C. Total RNA was isolated using the
QIAGEN RNeasy kit (Germantown, MD). Total RNA
integrity (determined by RNA Integrity Number; aver-
age 8.0) was checked using an Agilent Bioanalyzer
(Santa Clara, CA), and RNA purity (assessed by 260/
280 ratio; average 1.8) was determined using a
Thermo-Fisher Scientific NanoDrop (Waltham, MA).
DNA was isolated for 4 SBT samples and 12 HGSOC
samples using the Qiagen QIAamp Mini kit (Qiagen,
Carlsbad CA) following the manufacturer’s instruc-
tions. DNA quality was assessed using a SmartSpec
Plus spectrophotometer (BioRad, Hercules, CA).

Characterization of SBT mutations via whole exome and
RNA-seq analyses
Four SBT samples were examined for sequence variants
by comparing whole exome or transcriptome sequencing
data to the human reference genome. To obtain whole
exome sequences, whole exome libraries with ~ 280 base
inserts and paired-end index adapters were prepared
from 1 μg genomic DNA, according to Illumina’s TruSeq
DNA Sample Preparation v2 method. Five hundred
nanograms of each of four libraries were pooled together
for enrichment. Exome capture was performed accord-
ing to Illumina’s TruSeq Exome Enrichment Kit proto-
col. Each captured exome pool was sequenced in two
lanes on a HiSeq 2000 using version 3 chemistry. At
least 40 million paired-end 100 base reads were obtained
for each sample. Data was processed using the Illumina
data analysis pipeline RTA v1.13.48 and CASAVA
v1.8.2.

SBT and HGSOC DNA methylation analysis
Human methylation data were derived from Illumina
27K and 450K methylation array datasets and included 4
normal fallopian tube and 5 normal ovarian surface epi-
thelial tissue samples (GSE81224), 8 normal fallopian
tube samples from The Cancer Genome Atlas (TCGA)
OVCA methylation dataset, and 12 HGSOCs and 4 SBTs

from the Magee-Womens Hospital Tissue Procurement
Program. For the tumor samples, bisulfite conversion was
performed on 0.50 μg genomic DNA, as has been described
previously [24]. The top 500 most variable positions, ranked
by beta-value range, were examined in a hierarchical clus-
tering analysis of SBTs, HGSOCs, and controls.

Transcriptome sequencing
To obtain RNA-seq gene expression data, we used the
Illumina Genome Analyzer IIx (GAIIx) platform (San
Diego, CA, USA) to sequence the poly-adenylated frac-
tion (mRNA) of 11 tumor samples (4 SBTs, 3 stage II
HGSOCs, and 4 stage III HGSOCs). Using a Covaris,
Inc. E210 ultrasonicator (Woburn, MA, USA), we
fragmented sample mRNA before using it as a template
for first-strand cDNA synthesis using random primers
and Life Technologies, Inc. SuperScript II Reverse-
Transcriptase (Carlsbad, CA, USA). We ligated Illumina
adaptors to the ends of double-stranded cDNA frag-
ments and then used the Sage Science Pippin Prep
system (Beverly, MA) to select 500-bp final products.
After size selection, library enrichment consisted of 10
to 12 PCR cycles. Using version 5 chemistry, we
sequenced each library on a single lane of an Illumina
GAIIx flow cell and used the Illumina pipeline for image
analysis and base-calling. These methods resulted in 40
to 69 million 51-bp paired-end reads (median: 65 million
reads) per tissue sample.

Normalization and quantification of differential gene
expression
Our goal was to produce two sets of DEGs: SBTs vs.
HGSOCs and stage II HGSOCs vs. stage III HGSOCs.
To do so, we followed the TopHat and Cufflinks proto-
col [25] for RNA-seq analysis. RNA-seq reads were
mapped against the human reference genome (build
hg19) using TopHat v2.0.9 [26] and assembled into
aligned read files using Cufflinks v2.1.1 [25]. We quanti-
fied gene expression values as fragments per kilobase of
transcript per million mapped reads. To prevent bias
(i.e., false negatives) resulting from missing data, we re-
moved from the analysis genes in the Cufflinks outputs
that were not present in all samples. We took the inter-
section of reported genes across all samples, resulting in
a total of 13,208 genes. Using Cuffmerge, we combined
outputs from Cufflinks into a master transcriptome to
input into Cuffdiff [25]. We used Cuffdiff and Student’s
t-tests to identify DEGs.

Data visualization and clustering
To cluster gene expression associated with each sample
subtype, we performed principal component analysis
(PCA) using a covariance matrix and hierarchical cluster
analysis, using the Euclidean distance metric in R
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statistical software. We generated all PCA and box plots
using the ggplot2 package in R statistical software.

Gene ontology
Ontology enrichment was determined using the 5 T
(tree-travel, transform, t-test) method [27]. Briefly, first
we extracted the gene ontology (GO) identifier from GO
annotations for the expressed genes (fpkm > 0). Then we
constructed an in-group gene list and an out-group gene
list, where “in-group” entries were the genes within a
given GO term and “out-group” entries were the
remaining genes. For each GO term, we applied a t-test
to the in-group and out-group expression values and re-
peated the process for all functional groups (as described
in [27]). RNA-seq expression data for each sample type
(SBT, stage II HGSOC, and stage III HGSOC) was used
to identify the most notable terms defining each group.

Gene fusion analysis
To detect recurrent gene fusion events in our samples,
we analyzed transcriptome sequence data with EricScript
[28] using its default parameters. The EricScore, or the
probability of genuine fusion junctions, ranges from 0 to
1. The EricScore is a composite of three scores: genuine
junction score, edge score, and uniformity score, which
provide confidence for genuine fusion products. EricScript
produces a single score using an AdaBoost classifier,
which enabled us to rank predicted gene fusions by score
strength and produce a list of fusions scoring higher than
0.50.

Machine learning assessment of classification accuracy in
a validation dataset
We performed an in silico evaluation of the DEGs’ abil-
ity to reproducibly classify tumor-pathological subtype
differences (such as those defined by the International
Federation of Gynecology and Obstetrics, or FIGO)
when used on validation datasets. Two machine learning
techniques were used to assess the efficacy of classifica-
tion: decision tree (DT) and random forest (RF). To
address advantages and disadvantages of each machine
learning approach, we applied three-fold nested cross-
validation using both the DT and RF algorithms on the
DEGs with scikit-learn 0.17 [29]. The outer loop was
used to calculate accuracy and the inner loop was used
to perform a grid-search to optimize the min_samples_
split and max_depth parameters.

Validation of proposed tumor-classification DEGs using
published microarray data
To validate the ability of our identified DEGs to classify
tumors, we tested them on an independent ovarian can-
cer gene expression dataset (GSE9891 [30]; downloaded
from the Gene Expression Omnibus website). Dataset

GSE9891 came from a study that identified six molecular
subtypes of ovarian tumors and included gene expression
levels for 18 SBTs and 267 HGSOC tumors generated
from microarray analysis. We note that the probe inten-
sities in GSE9891 were normalized and log2-transformed
values [30]. For each gene in the dataset, we performed a
Student’s t-test using the SciPy function scipy.stats.ttest_
ind to assess the significance of expression differences
based on the log-transformed values. For boxplot
visualization, raw probe intensities were used.

Validation of proposed tumor classification DEGs using
RNA-seq data from TCGA
We also used TCGA data (OVCA) to assess classifica-
tion of stage II (n = 13), stage III (n = 179), and stage IV
(n = 32) HGSOC samples using the 17-gene signature
identified earlier in the study. RSEM-normalized gene
expression data from RNAseqV2 was downloaded from
firebrowse.org with cohort = OV. HGSOC stage info was
extracted from the file OV.clin.merged.txt. The afore-
mentioned RF algorithm with nested cross-validation
was used to evaluate the classification power of the 17-
gene signature to discriminate stage II from stage III or
IV samples. Gene expression profiles were also com-
pared individually between stage II, III or IV samples
using the Mann-Whitney U test.

Overall and disease-free survival analysis
To assess the role of the differentially expressed and fu-
sion genes in patient survival, we tested whether there
was a statistically significant relationship of each gene to
overall or disease-free patient survival using data from
the TCGA OVCA cohort, obtained from the cBioPortal
cancer data repository [31, 32]. Using the cBioPortal
toolkit, we produced Kaplan-Meier survival curves for
the candidate genes, setting thresholds for significance
as z-scores with +/− 2.0 difference from the median ex-
pression value seen for the same gene in diploid tumors.
P-values reported by the tool are from a logrank test.

Promoter motif enrichment analysis
To investigate upstream regulators of the DEGs, we
investigated motif enrichment in their promoter se-
quences. We defined promoters as the sequences located
2000 bp upstream of the transcription start sites (TSSs).
We retrieved these sequences from Ensembl Biomart
[33]. Promoters of two genes, CRABP2 and MAFB, were
not found in Ensembl Biomart and were thus excluded
from the analysis. We then used an ensemble of five
tools, Emotif-Alpha [34] (GimmeMotifs [35], DECOD
[36], DME [37], gkm-SVM [38], and info-gibbs [39]) for
motif discovery. The motif discovery inputs consisted of
the 2-kb gene promoters of our selected foreground
genes vs. promoters of a set of background genes. The
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background gene sets, four times the size of the fore-
ground gene sets, were drawn from genes expressed in a
human foreskin fibroblast cell line. This gene set was
chosen because the genes are expressed independent of
cytokine treatment [40], and cytokine expression can
vary according to ovarian carcinoma stages [41]. The
first motif discovery set contained the 17 DEGs from the
analysis of stage II vs. stage III HGSOC samples as the
foreground genes and 68 background genes selected ran-
domly from the background gene set. The second motif
discovery set contained the 9 DEGs (after excluding
CRABP2 and MAFB) from the analysis of SBT vs.
HGSOC samples as the foreground genes and 36 genes
selected randomly from the background set.
We used the Find Individual Motif Occurrences

(FIMO) tool [42] to scan sequences for motifs. To find
putative promoter elements, we established a motif-
ranking method based on an RF classifier. The RF
algorithm is an ensemble learning method; it uses boot-
strap sampling techniques and constructs a DT for each
sub-sample. Using the Python library scikit-learn [29], we
ranked binding sites using Gini impurity [43] and infor-
mation gain [44] criteria. We retained the union set of the
top 20 motifs for each criterion and calculated foreground
and background coverage for each motif. We filtered out
motifs obtained from the first motif discovery set with less
than 50% foreground coverage and more than 35% back-
ground coverage, leaving eight motifs. We filtered out the
motifs obtained from the second motif discovery set with
foreground coverage of 80% and background coverage of
35%, leaving seven motifs. Two of the seven motifs were
similar; we removed the motif with lower foreground
coverage from further analysis. We matched the de novo
motifs to a known motif database, HOCOMOCO v10
[45], using TOMTOM [46] and applied the Euclidean
distance similarity function (requiring P-value threshold <
0.001). Accuracy was calculated as the percentage of
correctly identified promoters containing the motif
occurrence out of all promoter sequences.

Transcription factor binding analysis using ChIP-seq data
from UniBind
To investigate transcription factor (TF) binding sites
within the DEG promoter sequences, we examined the
UniBind repository [47] and downloaded ChIP-seq data
for ERα, FOXA1/F1, RARA, and BHLHE40/41 binding
sites for each promoter region. Additionally, all available
ChIP-seq factors within these promoter sequences, in
any cell line, were collated and ranked by the frequency
of occurrence in each dataset.

Cell growth and cross-linking for ChIP-seq
To confirm predicted binding sites of the regulators
FOXA1, PITX1, and ERα, we used PEO4 cells, derived

from a poorly differentiated serous ovarian adenocarcin-
oma. PEO4 cells were obtained from Sigma-Aldrich (St.
Louis, MO). Cells were grown to confluency in T75
flasks and crosslinked with 1/10th the volume of formal-
dehyde solution (Imquest Bio, Fredrick, MD). Flasks
were agitated for 15 min at room temperature to fix the
cells. Fixation was stopped by adding 1/20th volume of
glycine solution to the existing media in the flask. The
cultures sat at room temperature for 5 min. Following
the incubation, cells were scraped from the flask, com-
bined, and enumerated using trypan blue exclusion
methodology. Two million cells were distributed in two
conical tubes and pelleted by centrifugation at 800 x g at
4 °C for 10 min. The supernatant was removed, and the
cells were resuspended in 10mL chilled PBS-Igepal. The
cells were pelleted a second time. The supernatant was
removed, and the pellet resuspended in 10mL PBS-
Igepal. Next, 100 mL 1mM phenylmethanesulfonyl
fluoride was used to resuspend the pellet. The cells were
centrifuged a third time, and the supernatant was re-
moved entirely from the cell pellet. The cell pellets were
snap-frozen on dry ice and stored at − 80 °C.

ChIP-seq and analysis in the ovarian cancer cell line PEO4
To determine TF binding sites in ovarian cancer cells,
we performed ChIP experiments on PEO4 cell chroma-
tin, via services at Active Motif (Carlsbad, CA), utilizing
their standard protocol. Antibodies for the TFs FOXA1
(Abcam, cat # ab5089), ERα (Millipore, cat number 06–
935), and PITX1 (Bethyl, cat# A300-577A, Lot# A300-
577A-2) were used. Each ChIP reaction was carried out
using 30 μg PEO4 cell chromatin and anti-TF antibody.
ChIP DNA was processed into a standard Illumina
ChIP-seq library and sequenced to generate > 5 million
reads. Reads were aligned to the human genome (hg38),
and after removal of duplicate and non-uniquely mapped
reads, ~ 25 million alignments were obtained. A signal
map capturing fragment densities along the genome was
generated and visualized in the Integrated Genome
Browser. In addition, MACS peak finding was performed
to identify the most significant peaks. Using a default
cutoff of P = 1x10-7 (without control file), peaks were
identified after ENCODE blacklist filtering. Between
1000 and 2000 peaks were identified for ERα replicates
and 12,000–22,000 for PITX1 replicates. The average
fraction of reads in peaks was 0.4% for ERα and 4.6% for
PITX1.

Results
Molecular characterization of SBTs
The four SBTs available for transcriptome analysis in
this study were subtyped prior to 2010, when they were
classified as low malignant potential tumors according
to the terminology then current. Because our ability to
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molecularly characterize EOC subtypes has improved
since that time, we analyzed gene variants and methyla-
tion in these samples to verify that the sample character-
istics were consistent with what is now known about
SBTs. Whole exome sequencing and RNA-seq data
showed that three of the four tumors harbored the
BRAF V600E mutation, consistent with the mutation
profile of SBTs [15].
In addition, we generated methylation microarray data

and, using the beta-value range, determined differentially
methylated CpG sites, as in Kolbe et al. [24]. The com-
parison included 4 SBTs, 12 normal fallopian tube (FT)
samples (including 8 from TCGA), and 12 HGSOCs
(stages I-III), with data from an additional 5 normal
ovarian surface epithelial (OSE) cell samples added from
the literature (GSE81224 [48]). When these sites were
subjected to hierarchical clustering analysis, normal
samples were divided into two major clades (Fig. 1): (i)
normal FT samples and (ii) normal OSE cell samples.
This latter clade had two prominent nodes, the first
included OSE samples, a few stage I and II HGSOC
samples, and one FT sample; the second included all
four SBT samples, as well as stage II and all stage III
HGSOC samples. HGSOC samples were found across all
clusters, independent of their stage, suggesting intrinsic
heterogeneity. These data indicate that the SBT samples
were most similar to one another, consistent with the

pathologist’s original classification, and that the SBT
samples shared characteristics at these epigenetic sites
with stage II and III HGSOCs.

DEGs associated with invasiveness in EOC
Genes differentially expressed between SBTs and HGSOCs
Using transcriptome data from 4 SBTs and 7 HGSOCs
(3 stage II and 4 stage III samples) (Table S1), we investi-
gated which genes were differentially expressed between
the two EOC subgroups (Table 1). Eleven DEGs were
identified, on the basis of a Student’s t-test (P < 0.05): 2
genes were upregulated in HGSOC and 9 were downregu-
lated. PCA analysis demonstrated that expression levels of
these 11 genes were sufficient to distinguish between SBTs
and HGSOCs (Fig. 2a). Hierarchical clustering gave a
similar result (Figure S1).

Genes differentially expressed between stage II and stage III
HGSOCs
Next, we compared transcriptome expression data be-
tween the 3 stage II and 4 stage III HGSOCs. This time,
17 significant DEGs were identified, all downregulated in
stage III HGSOCs (Table 2). PCA demonstrated that ex-
pression levels of the 17 genes were sufficient to distin-
guish between stage II and stage III HGSOCs (Fig. 2b).
Hierarchical clustering gave a similar result (Figure S1).

Fig. 1 Hierarchical clustering of ovarian tumor and normal samples using methylation data shows that serous borderline tumors (SBTs) cluster
with one another and are distinct from normal tissue samples. Clustering was performed on beta-values derived from Illumina 450 K methylation
sites, selected by methylation beta-value range. Our study generated the methylation data for 4 SBTs and 12 high-grade serous ovarian cancers
(HGSOCs), as well as 4 normal fallopian tube samples (FT_normal samples). Data from the published literature included 5 normal ovarian surface
epithelium (OSE_normal) and 8 normal fallopian tube (TCGA_FT_normal) samples
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Biological properties of DEGs
Next, we used gene ontology to analyze the biological
properties specific for each tumor subtype and stage
(Table S2; see Materials and methods), as well as the
properties of the DEGs identified in the two compari-
sons described above. SBT gene expression was enriched
for inflammatory pathways, including chemokine pro-
duction, regulation of leukocyte activity, dopachrome
isomerase activity (associated with PD-L1 upregulation
[49]), and zinc ion sequestration, corresponding to
negative regulation of mature B-cell apoptotic processes.
Stage II HGSOC gene expression was enriched in chro-
matin and transcriptional regulatory processes, including
those that involve histone acetyltransferase and histone
methyltransferase complexes. Stage III HGSOC gene

expression was enriched in actin cytoskeleton, cell mem-
brane, and plasma membrane organization. Seven of the
11 DEGs identified in the SBT vs. HGSOC comparison
were involved in biological processes involving pre- and
post-transcriptional regulatory processes (AFF2, MAFB,
HES2, RPL12, RPL7A, RPS12, RPS15), whereas 5 of the
17 DEGs identified in the stage II vs. stage III HGSOC
comparison were involved in the biological processes of
cell migration and cytoskeletal organization (PDGFC,
SERPINE2, TSPAN1, ANK1, SYNPO). These data, in
which cell migration emerges as a theme in the stage III
HGSOC gene ontology analysis, invoke a molecular
explanation for the separation of the tumor subtypes
and stages that explains the known correlation between
increasing stage and invasiveness.

Table 1 Eleven genes differentially expressed between serous borderline tumors (SBTs) vs. combined stage II and stage III high-
grade serous ovarian cancers (HGSOCs)

SBT
expression

HGSOC expression aSBT/ HGSOC

Gene name Coordinates Mean Std
dev

Mean Std dev Fold
change

P-value

SLC7A2 chr8:17354596–17428077 65.35 16.00 1.99 2.09 32.84 2.00x10−6

PIFO chr1:111889194–111895639 55 35.4 1.9 1.44 28.95 2.53x10− 3

AFF2 chrX:147582138–148082193 3.2 2.24 0.24 0.53 13.33 7.12x10−3

HES2 chr1:6475293–6479979 5.1 2.44 0.59 0.49 8.64 8.24x10−4

BBS12 chr4:123653856–123666098 4.11 1.16 0.69 0.47 5.96 5.90x10−5

RPL12 chr9:130209952–130213711 1565.46 698.27 301.98 168.7 5.18 1.07x10−3

RPL7A chr9:136215068–136218280 227.97 89.21 45.48 31.97 5.01 6.98x10−4

RPS15 chr19:1438362–1440492 3218.63 1563.63 708.2 547.09 4.54 3.22x10−3

RPS12 chr6:133135707–133138703 3056.61 1034.17 708.02 630.41 4.32 1.04x10−3

MAFBb chr20:39314516–39317876 5.78 2.56 21.04 14.94 −3.64 7.89x10−2

CRABP2b chr1:156669399–156675608 20.13 19.77 119.77 87.65 −5.95 5.59x10−2

aFor any value smaller than 1 (i.e. for downregulation), the fold change value was replaced by its negative reciprocal value. bThese two genes exhibited 3- to 6-
fold higher mean expression in HGSOC. They were included in the table because they have P-values close to the threshold and have been linked to cancer in
previous studies

Fig. 2 Principal component analysis (PCA) shows that differential gene expression distinguishes serous borderline tumors (SBTs) from high-grade
serous ovarian cancers (HGSOCs) and stage II from stage III HGSOC samples. a PCA of expression at 11 genes differentially expressed between
SBTs (n = 4) and HGSOCs (n = 7). Principal components 1 and 2 (PC1,2) are labeled with the percent variability they explain in the data. The areas
enclosed by the ellipses represent the “within 80% confidence interval” under a bivariate t-distribution. b PCA of expression at 17 genes
differentially expressed between stage II (HGSOC-2, n = 3) and stage III (HGSOC-3, n = 4) HGSOC samples
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STAG3 gene fusions
In addition to identifying DEGs, we investigated whether
gene fusions play an important role in invasiveness by
comparing the SBT and HGSOC samples. Using the
transcriptome sequence data, we identified 5 fusions oc-
curring in all SBTs, 15 in all stage II HGSOCs, and 12 in
all stage III HGSOCs (see Tables S3, S4 and S5 for all
fusion genes); singleton fusion occurrences were re-
corded but not counted here. Strikingly, all samples
demonstrated a fusion event in STAG3.

Classification accuracy of DEGs in microarray data from an
SBT and HGSOC validation sample
To determine whether expression levels at these DEGs
could reliably be used to classify the two EOC subtypes,
we tested them in a validation set consisting of micro-
array data for 18 SBT and 267 HGSOC samples (dataset
GSE9891). To minimize overfitting the data, we
employed two different machine learning methods, deci-
sion tree (DT) and random forest (RF), and compared
their output. The 11-gene signature for distinguishing
between SBT and HGSOC samples yielded classification
accuracies of 95.1% with DT and 97.9% with RF. We also
asked if each of the 11 individual genes was significantly
differentially expressed and if the directionality of fold
enrichment remained unchanged. Expression differences
at 11 genes met the significance threshold (P < 0.05),
with the same directionality seen previously (Fig. 3;
Table S6): 9 were downregulated in HGSOC and 2 genes

were upregulated. Additionally, 7 genes showed absolute
fold changes ≥ 2 between SBT and HGSOC samples.

Further validation of DEGs for use in staging HGSOC
tumors
Next, we used the RF approach to test the ability of the
17 DEGs identified in the stage II vs. stage III HGSOC
comparison to discriminate between stage II, III, and IV
HGSOCs, using 563 samples from the TCGA OVCA
RNA-seq dataset. The ability of the 17-gene signature to
correctly classify stage II vs. stage III samples was not
significant (P > 0.05); however, we were able to validate a
significant change in expression in one of the 17 DEGs
in the TCGA data. GCLC (glutamate-cysteine ligase syn-
thetase catalytic subunit) displayed lower expression in
stage IV samples than in stage II samples (P = 8.98x10-3,
Mann Whitney U test) (Figure S2), but expression was
not significantly different in stage III vs. stage II TCGA
data. The directionality of the difference in GCLC be-
tween stage IV vs. stage II samples was the same as in
the discovery dataset, where a decrease was also seen in
stage III (2.39) compared to stage II (9.83) tumors, as
shown in Table 2. In sum, validation failed for stage II
vs. stage III classification using the TCGA OVCA data-
set, in contrast to our success at validating SBT vs.
HGSOC classification using the GSE9891 dataset. This
failure may be due to extensive similarity in HGSOC
stage II and III. It could also be due to nuanced differ-
ences in staging criteria used for EOCs in TCGA

Table 2 Seventeen genes differentially expressed between stage II vs. stage III high-grade serous ovarian cancer (HGSOC) samples

Stage II expression Stage III expression II/III

Gene name Coordinates Mean Std dev Mean Std dev Fold
change

P-value

TSPAN1 chr1:46640748–46651634 94.34 22.3 5.38 5.46 17.55 5.20x10−4

ANK1 chr8:41510743–41754280 0.46 0.18 0.04 0.06 10.18 6.61x10−3

SERPINE2 chr2:224839764–224904036 68.45 45.04 7.46 6.57 9.18 3.98x10−2

SYNPO chr5:149980641–150038792 46.57 20.07 5.24 4.47 8.89 9.24x10−3

PDGFC chr4:157682762–157892546 30 18.76 3.77 0.85 7.95 3.42x10−2

NQO1 chr16:69743303–69760533 20.81 9.36 2.79 1.59 7.45 1.14x10−2

CA12 chr15:63615729–63674075 30.59 8.42 4.41 3.49 6.94 2.25x10−3

PPP1R14C chr6:150464187–150571528 4.32 1.04 0.63 0.23 6.86 8.60x10−4

TMEM30B chr14:61744088–61748530 14.47 4.55 2.2 1 6.59 2.96x10−3

PGK1 chrX:77359665–77382324 147.96 70.15 25.3 10.29 5.85 1.62x10−2

DNAJB9 chr7:108210188–108215294 13.32 8.54 2.45 0.76 5.45 4.70x10−2

CLIC1 chr6:31698357–31704341 236.93 57.2 48.63 6.54 4.87 1.08x10−3

ECE1 chr1:21543739–21672034 25.1 4.53 5.67 3.03 4.42 1.00x10−3

ENPP4 chr6:46097700–46114436 3.17 0.88 0.74 0.35 4.26 3.71x10−3

ZDHHC7 chr16:85008066–85045141 26.42 14.78 6.32 2.57 4.18 4.02x10−2

GCLC chr6:53362139–53409927 9.83 3.68 2.39 0.75 4.11 9.78x10−3

CHST15 chr10:125767181–125853123 13.95 0.82 3.57 1.39 3.9 9.00x10−5
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samples vs. our samples (which were collected prior to
2010), as explained in Duska et al. [50]. It could also be
due to heterogeneity of the tumor collections, demon-
strating the need to develop more sensitive biomarkers
for the molecular staging of ovarian tumors. Of note,
GCLC is a promising therapeutic target in cancer [51].

Association between DEGs and survival in patients with
HGSOC
To determine whether any of the 28 DEGs or genes as-
sociated with gene fusion events might have clinical sig-
nificance, we examined the association between their
expression and disease-free survival (DFS) or OS in a

larger cohort of 563 TCGA HGSOC samples (from the
TCGA OVCA dataset), using cBioPortal [32]. The ex-
pression levels of two genes identified from our DEG
analysis, TMEM30B and TSPAN1, were significantly as-
sociated with OS (P = .014–0.028; Fig. 4a). The expres-
sion levels of three genes associated with gene fusion
events (DNTTIP2, ZNF480, and BPTF) were associated
with DFS (P = .008–0.016; Fig. 4b and Figure S3). The
expression levels of three other genes associated with
gene fusion events (SPINT2, FCRL5, and STAG3) were
associated with OS (P = .008–0.021; Figure S3). For com-
parative purposes, we also assessed the association be-
tween TP53 mutations—the most frequently occurring

Fig. 3 Validation testing of 11-gene signature for distinguishing between serous borderline tumors (SBT, red boxes) and high-grade serous
ovarian cancers (HGSOC, blue boxes). Expression level differences between SBTs and HGSOCs at the 11 genes remained significant (P < 0.05) in
the validation dataset GSE9891, which consists of microarray expression data from 18 SBT and 267 HGSOC samples. Labels on the y-axis show the
probe names, and the values represent probe intensity. Individual genes may be represented by more than one probe on the array, in which
case multiple plots are shown per gene
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mutational events in HGSOC, reported in ≥ 96% of sam-
ples [31]—and DFS and OS. Given the prevalence of
TP53 mutations in HGSOC samples, one might expect it
to be a good predictor of survival; however, unlike the
alterations identified above, TP53 mutations (at all
positions) were not significant predictors of either
DFS or OS.

Prediction of transcription factor (TF) binding sites in DEG
promoters
To determine whether expression of any of the 28 DEGs
identified in our study might be governed by shared
regulatory pathways, we investigated shared regulatory
motifs across the associated promoters using an
ensemble-based motif discovery method, Emotif-Alpha

[34]. Each foreground motif was compared to a four-fold
larger background set of sequences (drawn from genes
expressed in a human foreskin fibroblast cell line). The
results indicated significant TF enrichment in each data-
set: 6 candidate TF binding site motifs were matched to
known factors in the SBT vs. HGSOC comparison
(Table S7) and 8 candidate TF binding site motifs were
matched to known factors in the stage II vs. stage III
HGSOC comparison (Table S8). The enrichment of
these TF motifs suggests they may have a role in co-
regulating the affected genes.
To identify the TFs capable of binding the enriched

motifs that we detected, we conducted a similarity
search to a database of known human TF sequence
logos. We found significant matches for FOXF1, BHLHE41,

Fig. 4 Association between survival and expression levels of differentially expressed and fusion genes identified in a comparison of serous
borderline tumor (SBTs) and high-grade serous ovarian cancers (HGSOCs), among 563 patients with HGSOC. Shown are 4 genes associated with
either a differential expression or b gene fusions in our discovery dataset, whose altered expression was significantly associated with survival.
Expression and survival data were obtained from the Cancer Genome Atlas (TCGA) ovarian carcinoma dataset [31]. The y-axis labels indicate
whether overall survival or disease-free survival is shown. Here, altered expression is defined as being ≥2 standard deviations from the mean
expression level of all diploid samples in the TCGA ovarian cancer collection. Additional genes are included in Figure S3
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PITX1, and RARA (Fig. 5). Two additional related TFs were
also implicated: FOXF1 has a family member, FOXA1,
which could recognize the same motif, with slightly
reduced predicted binding specificity (P = 9.36x10-4 for
FOXF1; P = 4.57x10-3 for FOXA1). In addition, BHLHE41
has a paralog and binding partner, BHLHE40, which is an
additional candidate for binding at the same motif. Individ-
ual motif occurrences localized BHLHE41/BHLHE40 bind-
ing to positions 1–2 kb upstream of the transcription start
sites (TSSs), whereas FOXF1/FOXA1 was localized to posi-
tions < 1 kb from the TSSs (Figure S4).

Validation of predicted TF binding sites in DEG promoters
ChIP-seq analysis of cell lines represented in UniBind
repository for predicted TFs
To determine whether any of the TFs identified in our
analysis could occupy the genomic locations associated
with the predicted binding motifs, we examined ChIP-
seq binding data for FOXF1/FOXA1, BHLHE41/
BHLHE40, PITX1, and RARA from the UniBind reposi-
tory. This repository contains information for numerous
cell types [47] but has little data from ovarian cancer cell
lines. Although binding data for FOXF1, BHLHE41, and
PITX1 was not available, we confirmed the binding of
BHLHE40 at 10 DEG promoters, FOXA1 at 12 DEG
promoters, and RARA at 3 DEG promoters (Table S9)
when we surveyed data from all cell types.

ChIP-seq analysis of cell lines represented in UniBind
repository identifies additional TFs
Using additional ChIP-seq datasets in the UniBind re-
pository, we examined other factors binding within the
DEG promoters. We found evidence of CTCF binding at

19 of the 28 promoters; MYC and MAX binding at 18
and 19 promoters, respectively; TFAP2C/AP2γ binding
at 16 promoters; and RUNX1 binding at 11 promoters;
as well as evidence of binding by numerous additional
TFs at lower frequencies (Table S9). We confirmed that
the binding motifs of MYC/MAX (same as BHLHE41),
RUNX1, and TFAP2C/AP2γ matched sequence logos
identified in our motif enrichment study (Fig. 5).

ChIP-seq analysis of cell lines represented in UniBind
repository for ERα
A literature search of the biological roles of PITX1,
FOXA1, and RARA indicated that each factor could
interact with estrogen receptor α (ERα) [52–55]. There-
fore, we searched the UniBind ChIP-seq data for evi-
dence of ERα binding in the promoter regions of the 28
DEGs. We found evidence of ERα binding in 13 of the
DEG promoters (Table 3, Table S9), although the ChIP-
seq data was collected from breast cancer (MCF7) and
endometrial cancer (Ishikawa) cell lines.

ChIP-seq data for FOXA1, PITX1, and ERα in ovarian cancer
cell line PEO4
To confirm the binding of our identified TFs in ovarian
cancer, we performed ChIP-seq experiments for FOXA1,
PITX1, and ERα in the ovarian cancer cell line PEO4,
derived from a poorly differentiated serous adenocarcin-
oma [56]. We included ERα and FOXA1 (in lieu of
FOXF1) based on their known relevance and protein-
protein interactions in breast cancer, and PITX1 for
relevance in other cancers and its novelty in ovarian can-
cer. Significant PITX1 binding occurred in 16 of the 28
DEGs, in at least one of two experimental replicates: 5

Fig. 5 Transcription factors (TFs) implicated in the differential expression of genes associated with invasiveness in epithelial ovarian cancer. We
identified TF motif enrichment in the promoter sequences of the differentially expressed genes, relative to background sequences. Motif names
were determined by comparing motifs to known TF sequence logos (see Materials and methods). TFs matching the same logos are presented in
the same row, with the same percentage values. P-values represent the significant match to the known motif. The matches to MYC/MAX,
TFAP2C, and RUNX1 were discovered secondarily, from their high frequency of occurrences in the UniBind analysis portion of this study. CRABP2
and MAFB promoters were excluded due to lack of sequence annotations in Ensembl Biomart
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of 11 DEGs from the SBT vs. HGSOC comparison
(Table 4) and 11 of the 17 DEGs in the stage II vs. stage
III HGSOC comparison (Table 5). We show examples of
significant ERα and PITX1 binding in SLC7A2, TSPAN1,
and AFF2 from both ChIP-seq replicates (Fig. 6).
Collectively, these data indicate that the TF binding
predicted from the DEG analysis can occur in ovarian
cancers with similarity to PEO4 cells. In contrast to the
results for PITX1 and ERα, repeated assessment of
FOXA1 using two different antibodies failed to confirm
binding of the protein. We note that DEGs from both
the SBT vs. HGSOC and stage II vs. stage III HGSOC
comparisons show binding of PITX1, which was not pre-
dicted in our motif logo enrichment testing, possibly due
to small sample sizes.

Summary of motif enrichment and ChIP-seq data from
UniBind and experimental analysis
Our motif enrichment analysis of the DEG promoters
identified in the SBT vs. HGSOC and stage II vs. stage
III HGSOC comparisons implicated 4 known TFs
(PITX1, BHLHE40/41, FOXF1/A1, and RARA), as well
as 10 unknown TFs. Our ChIP-seq data from the ovar-
ian cancer cell line PEO4 showed that 16 of the 28 DEGs
had statistically significant evidence of PITX1 binding.
Furthermore, we integrated ERα ChIP-seq data from
two sources, the UniBind repository and our experimen-
tal analysis in the PEO4 cell line. Using the combined

data, we found 16 of 28 DEGs had statistically significant
evidence of ERα binding—always in the presence of
PITX1 in the PEO4 cell line (Tables 3, 4 and 5). This
binding appeared in both SBT vs. HGSOC and HGSOC
stage II vs. stage III DEGs; however, only three pro-
moters, those of TSPAN1, SLC7A2, and CA12, over-
lapped between the ERα ChIP-seq data from our
experiment in the PEO4 cell line and UniBind, indicat-
ing that context matters. Additional TFs capable of bind-
ing these promoters—CTCF, MYC/MAX, RUNX1, and
TFAP2C—were found by comprehensively analyzing the
UniBind ChIP-seq data for the 28 DEG promoters
(Table S9). UniBind contains numerous, non-ovarian
cancer cell types. Thus, the TF binding does not appear
to be exclusive to a tumor-stage or subtype, but dynam-
ically utilized among the DEGs in different cell types.
Collectively, the suite of TFs identified suggests the
existence of a larger regulatory network that governs ex-
pression of the genes responsible for EOC invasiveness
through regulated differential binding.

Discussion
HGSOCs represent an invasive EOC phenotype treated
with surgery and chemotherapy, while SBT is non-
invasive, more indolent, and treated with surgical resec-
tion alone. Our objective in this study was to molecularly
contrast these two EOC subtypes, with the goal of identi-
fying biomarkers that could be used to distinguish

Table 3 Proof of concept, ERα binding in the promoter regions of 28 differentially expressed genes (DEGs)

DEG comparison Proportion of DEGs with ERα binding DEGs with ERα bindinga

SBT vs HGSOC 4/11 HES2, RPL12, RPS15, SLC7A2

Stage II vs stage III HGSOC 9/17 ANK1, CA12, CHST15, ECE1, NQO1, PDGFC, PPP1R14C, SERPINE2, TSPAN1

Abbreviations: HGSOC High-grade serous ovarian cancer, SBT Serous borderline tumor
a ERα binding determined using ChIP-seq data obtained from the UniBind repository from a breast cancer cell line (MCF7) and an endometrial cancer cell line
(Ishikawa cells)

Table 4 PITX1 and ERα ChIP-seq binding in the ovarian cancer cell line PEO4, in genes differentially expressed between serous
borderline tumors vs. high-grade serous ovarian cancers

Number Gene PITX1 replicate 1 PITX1 replicate 2 ERα replicate 1 ERα replicate 2

1 SLC7A2 a YES YES YES YES

2 BBS12 – – – –

3 RPL7A – – – –

4 HES2 – – – –

5 RPS12 – YES YES –

6 RPL12 – – – –

7 PIFO – – – –

8 RPS15 – YES – –

9 AFF2 YES YES YES YES

10 CRABP2 YES YES YES –

11 MAFB – – – –
a ERα binding at SLC7A2 was also present in UniBind data, though UniBind data was only available from breast and uterine cell lines. See Table 3
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between the divergent processes responsible for differ-
ences in growth patterns, which include aggression and
invasion. We performed gene expression profiling and
then used promoter sequences of the DEGs identified to
discover enriched regulatory motifs. Most of the DEGs
identified (20/28) had not previously been reported to be
involved in invasive epithelial ovarian cancer. Neverthe-
less, they could be used to classify independent samples by
subtype with high accuracy (95.1% with DT and 97.9%
with RF), and expression levels of two of them, TMEM30B
and TSPAN1, were also predictors of OS.
We also highlight a number of genes affected by fusion

events. Some of these genes were significantly associated
with OS using TCGA patient data and may therefore be
biologically relevant; thus, we have included them for
the completeness of our ovarian cancer study. Fusion
genes are not typically examined as part of differential
gene expression studies and therefore are often missed.
We found evidence of PITX1 and ERα binding in only
one fusion gene, SPINT2, indicating that the majority of
the fusion genes identified in this study contribute to
ovarian cancer by mechanisms other than this regulatory
network. Further analysis is needed to address these
genes’ specific roles in ovarian cancers.
Of the 28 DEGs identified in our study, several are

known ovarian cancer-related genes. In the SBT vs.
HGSOC comparison, such genes included SLC7A, PIFO,
RPL7A, and CRABP2 [57–61] (Table S10). In fact,
SLC7A2 serves as a potential biomarker and therapeutic

target for ovarian cancer [62]. The remaining seven
DEGs in the SBT vs. HGSOC comparison, while not
previously reported in association with ovarian cancer,
have cancer or disease-related functions. For example,
HES2, MAFB, RPS12, RPL12, RPS15, and AFF2 are all
associated with cancer [63–66], whereas BBS12 is a gene
related to Bardet-Biedl Syndrome, a multi-organ genetic
disease that can involve hypoplasia of the uterus, ovaries,
and fallopian tubes [67]. These findings support the
biological plausibility of the candidate genes that we
identified.
Similarly, 4 of the 17 DEGs identified in the stage II

vs. stage III HGSOC comparison are known ovarian
cancer-related genes: TSPAN1, CLIC1, NQO1, and
DNAJB9 [68–72] (Table S10). Notably, TSPAN1 shows
pronounced expression in serous ovarian carcinomas at
FIGO stage IIIC [68, 69]. Two of the known ovarian
cancer-related genes are also associated with ovarian
cancer prognostic outcomes (CLIC1 and NQO1) [69,
70]. Finally, 12 of the DEGs have known associations
with other cancer types [73–80]. Of note, ZDHHC7, not
previously identified to play a role in ovarian cancer,
encodes a zinc finger protein that regulates a tumor
suppressor important for establishing and maintaining
epithelial cell polarity [81]. Therefore, the lower
ZDHHC7 expression in stage III vs stage II samples is
consistent with reduced tumor suppressor activity.
Using in silico and in vitro analyses of the DEG

promoter sequences, we identified multiple TF binding

Table 5 PITX1 and ERα ChIP-seq binding in the ovarian cancer cell line PEO4, in genes differentially expressed between stage II and
stage III high-grade serous ovarian cancer samples

Number Gene PITX1 replicate 1 PITX1 replicate 2 ERα replicate 1 ERα replicate 2

1 CHST15 – – – –

2 TSPAN1 a YES YES YES YES

3 PPP1R14C YES YES – –

4 ECE1 YES YES – –

5 CLIC1 – – – –

6 CA12 a YES YES YES –

7 TMEM30B – YES – –

8 ENPP4 – – – –

9 ANK1 – YES – –

10 SYNPO – – – –

11 GCLC – YES – –

12 NQO1 YES YES – –

13 PGK1 – – – –

14 PDGFC YES YES – –

15 SERPINE2 – YES – –

16 ZDHHC7 – – – –

17 DNAJB9 – YES – –
a ERα binding at SLC7A2 was also present in UniBind data, though UniBind data was only available from breast and uterine cell lines. See Table 3
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motifs and validated PITX1 and ERα binding using an
ovarian cancer cell line. Many of the TFs we identified,
including PITX1, RARA, FOXA1, and BHLHE41/E40
(including overlapping MYC/MAX sites), are known to
interact with ERα, and many belong to the previously
described MegaTrans complex [22], which has been
shown to play an important role in aberrant ERα-
regulated gene expression in breast cancer [23]. Many of
the TFs we identified as putative regulators of the DEGs
have also already been reported to be involved in onco-
genesis. Notably, nuclear expression of TFAP2C has
been associated with ovarian tumor aggressiveness [82].
However, of the four TFs (PITX1, RARA, FOXF1/A1,
and BHLHE41/40) that matched the binding motifs in
DEG promoters, only one, FOXA1, has previously been
implicated in ovarian cancer specifically [83]. All four
TFs do have documented roles in cancer cell mobility or
invasiveness [84–87]. In particular, proteins BHLHE40/

41 function as ligand-dependent co-repressor retinoic
acid (RXR/RAR) heterodimers [88], indicating a known
biochemical association between proteins binding two of
our predicted TF motifs (BHLHE40/41 and RARA).
Our findings also point toward a potentially important

role for ERα in determining EOC invasiveness. ERα is
expressed at high levels in roughly 80% of HGSOCs,
though it is not sufficient to predict therapeutic response
[89]. Its interactions with factors identified in this study
led us to predict and confirm ERα binding at the DEGs.
For example, RARA binds cooperatively with ERα to
regulate transcription at target sites within chromatin in
breast cancers [52]. In addition, FOXA1 plays a central
role in almost all ERα-chromatin interactions and gene
expression changes in hormone-sensitive and -resistant
breast cancer cell lines [54]. We could not detect
FOXA1 binding in the ovarian cancer cell line PEO4
using ChIP-seq; it may only be needed for short-term

Fig. 6 Experimental ChIP-seq data from the ovarian cancer cell line PEO4 illustrates transcription factors PITX1 and ERα co-occupying the
promoter and gene bodies of three genes differentially expressed between epithelial ovarian cancer subtypes and stages. SLC7A2 and AFF2 were
differentially expressed between serous borderline tumors (SBTs) and high-grade serous ovarian cancers (HGSOCs); TSPAN1 was differentially
expressed between stage II and stage III HGSOCs. Binding data are displayed on tracks from the UCSC Human Genome Browser. Two
experimental replicates were performed for each transcription factor, along with an input control. Blue asterisks indicate PITX1 binding and green
asterisks ERα binding, where peaks displayed statistical significance above background for the relevant transcription factor. The vertical viewing
axis was assigned the value of the highest peak and kept consistent for all panels at each locus
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activity as a pioneer factor, or it could be inaccessible
within a larger protein complex, or not present in the
cells. Finally, PITX1 is under primary transcriptional
control of ERα in breast cancer cells, and the protein it
encodes is recruited to ERα-bound enhancers to modu-
late the transcriptional activity of the associated genes
[53]. PITX1 has been reported in a breast cancer repres-
sive complex that contains RARA, FOXA1, and ERα;
identified prior to MegaTrans [54]. Previous findings,
paired with our results, suggest an analogous regulatory
complex in ovarian cancer.
We identified fusions of the gene STAG3, which

encodes meiotic cohesion protein, cohesin subunit SA-3,
in all samples. This protein regulates the cohesion of
sister chromatids during cell division. To investigate the
biological relevance of this gene in an independent data-
set, we examined STAG3 expression using RNA-seq ex-
pression data from the TCGA OVCA cohort and found
aberrant upregulation in 33 of 563 HGSOC tumors.
Here, aberrant expression was defined as being ≥2 stand-
ard deviations from the median expression level of all
unaffected samples in the TCGA OVCA collection. Of
note, STAG3 loss of function is associated with prema-
ture ovarian failure [90], and a common allele is associ-
ated with elevated risk of developing EOC [91]. Mutant
STAG3 has also been implicated in metastatic melan-
oma [92, 93], where it plays a role in reactivating MAPK
signaling after treatment with a targeted kinase inhibitor.
We predict that STAG3 plays a role in ovarian cancer
tumorigenesis, based on its gene fusions and upregulated
expression, as well as the central role in cancer of the
mitotic cohesin proteins STAG1 and STAG2, whose
mutation or inactivation cause aneuploidy [94].
This study had several important limitations. First, the

sample sizes in our initial SBT vs. HGSOC and stage II
vs. stage III HGSOC comparisons were small. Neverthe-
less, we were able to validate the SBT vs. HGSOC panel
through classification of an independent dataset contain-
ing 267 samples. Given the distinct differences in SBT
and HGSOC, small sample sizes appear not to hinder
differential biomarker identification. In contrast, the
stage II vs. stage III HGSOC panel was not successful in
distinguishing TCGA stage II vs. stage III tumors. In the
future it may be useful to repeat this comparison using
newer prognostic classifications for ovarian cancer based
on machine learning, which have the potential for higher
accuracy than FIGO staging [95]. Second, in our initial
comparison of the HGSOC stages, we did not have ac-
cess to RNA-seq from stage I samples, which are rarely
identified, or stage IV samples. Stage IV samples were
present in TCGA data, however, and helped confirm the
differential expression of GCLC between different
HGSOC stages. Third, the only ChIP-seq data from
ovarian cancer cells that we obtained was from the

PEO4 cell line. PEO4 expresses ERα and PITX1, but it
remains unclear how characteristic it is of HGSOCs. In
the future, it would be helpful to validate our TF find-
ings in additional ovarian cancer cell lines. Fourth, our
differential gene expression analysis did not employ mul-
tiple test correction due to the very small sample sizes.
This study also has important strengths. To the best of

our knowledge, this is the first study to identify mem-
bers of a transcriptional network, overlapping in content
with the MegaTrans complex, that regulates differential
gene expression in ovarian tumors. Of note, one of the
TFs we identified as playing a role in invasiveness,
PITX1, has not previously been implicated in ovarian
cancer or the MegaTrans complex. It is surprising that,
from such a small sample size, we were able to identify a
host of regulatory factors shared among promoters of
genes distinctive for different subtypes or stages of ma-
lignancy. Previous studies identify the role of MegaTrans
in enhancers rather than promoters [22]; however, based
on our data, binding motifs for these factors can also
exist in DEG promoters.
In conclusion, the novel alterations associated with in-

vasiveness in this study—including DEGs, novel fusion
genes, and upstream regulatory elements—may help us
learn more about the mechanisms responsible for malig-
nancy in HGSOCs. Future molecular studies should ex-
plore and delineate the roles of FOXF1 and FOXA1 in
SBTs and HGSOCs, as well as characterize PITX1 inter-
actions with components of the MegaTrans complex.
Future work could also attempt to identify which regula-
tors bind the remaining binding sites upstream of DEGs
that we were unable to match to TFs. For 14 different
predicted binding site motifs, we identified PITX1,
RARA, BHLHE41, MYC/MAX, and FOXF1 as candidate
binding factors, and later added RUNX1 and TFAP2C.
The remaining binding factors could comprise additional
auxiliary members of a master regulatory complex. A
more detailed understanding of the dynamic molecular
alterations that occur during malignant disease may pro-
pel the field forward and create much-needed new ave-
nues for EOC management.
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