
Quantum Machine Learning Algorithms for Drug Discovery 
Applications

Kushal Batra1, Kimberley M. Zorn2, Daniel H. Foil2, Eni Minerali2, Victor O. Gawriljuk3, 
Thomas R. Lane2, Sean Ekins2,*

1Computer Science, NC State University, Raleigh, NC 27606, USA.

2Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, 
USA.

3São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Santa 
Angelina, São Carlos - SP, 13563-120, Brazil

Abstract

The growing quantity of public and private datasets focused on small molecules screened against 

biological targets or whole organisms provides a wealth of drug discovery relevant data. This is 

matched by the availability of machine learning algorithms such as Support Vector Machines 

(SVM) and Deep Neural Networks (DNN) that are computationally expensive to perform on very 

large datasets with thousands of molecular descriptors. Quantum computer (QC) algorithms have 

been proposed to offer an approach to accelerate quantum machine learning over classical 

computer (CC) algorithms, however with significant limitations. In the case of cheminformatics, 

which is widely used in drug discovery, one of the challenges to overcome is the need for 

compression of large numbers of molecular descriptors for use on a QC. Here we show how to 

achieve compression with datasets using hundreds of molecules (SARS-CoV-2) to hundreds of 

thousands of molecules (whole cell screening datasets for plague and M. tuberculosis) with SVM 

and the data re-uploading classifier (a DNN equivalent algorithm) on a QC benchmarked against 

CC and hybrid approaches. This study illustrates the steps needed in order to be “quantum 

computer ready” in order to apply quantum computing to drug discovery and to provide the 

foundation for this field to build on.
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INTRODUCTION

The rapidly growing public and private datasets that are focused on small molecules 

screened against known biological targets or whole organisms 1 provides a wealth of data to 

facilitate drug discovery. Increasingly, this is used to create machine learning models 2 

which can be used for enabling target-based design 3-5, predict on- or off-target effects and 

create scoring functions 6, 7. The pharmaceutical industry and academic laboratories are 

increasingly using and exploring machine learning applications in drug discovery to mine 

and model their data generated from years of high throughput screening 8. This is allowing 

rapid identification of molecules for neglected diseases such as Ebola 9 and Chagas disease 
10, presenting lead compounds which can then be moved rapidly into in vivo models 11-13 

and this approach can be more widely applied in cheminformatics. Recent examples have 

illustrated the speed with which the machine learning combined with in vitro testing 

continuum can generate new leads compared to traditional efforts 14. The availability of 

thousands of structure-activity datasets, (some of which in turn contain data for hundreds of 

thousands of molecules screened against a single target or organism 2, 15), presents a 

computational challenge with machine learning methods such as classifiers like support 

vector machines (SVM) on a classical computer (CC) 16.

Recently the potential of quantum machine learning has been illustrated using two methods 

such as a variational quantum circuit and a quantum kernel estimator 17. In addition, new 

machine learning methods for quantum computing continue to be developed 18, 19 which 

creates opportunities to expand the possible applications of machine learning to drug 

discovery and toxicology. Like many emerging technologies, the quantum computer (QC) 

has been proposed as likely to transform early-stage pharmaceutical research and 

development as well as providing a potential solution for datasets that would be intractable if 

performed on a CC 20, 21. One area of interest in early drug discovery is in cheminformatics 

for virtual screening and optimization, where small molecules are frequently described by 

fingerprint descriptors which can lead to tens of thousands of vectors called multiple 

fingerprint features (MFF) 22. While this may be important for many aspects of applying 

machine learning to chemistry 23, it also creates significant challenges when using these 

massive numbers of descriptors on a QC. This is mainly because we do not have enough 

resources and techniques to represent compounds with such large descriptors on QCs as the 

system will collapse.

Herein we describe how we have applied multiple approaches to compress the descriptors 

for QC while also demonstrating applications to drug discovery datasets on a range of scales 

that would be broadly applicable for drug discovery. We also describe hybrid approaches 

that merge QC with CC for machine learning applied to these datasets curated from public 

sources. These include 132 small molecule inhibitors of SARS-CoV-2 in Vero cells 24, 

18,886 inhibitors of Mycobacterium tuberculosis 25 as well as several larger datasets for 

inhibitors of Krabbe disease (β-Galactocerebrosidase, Pubchem Assay 1159614, 44,809 

compounds), Cathepsin B (Pubchem Assay 453, 63,331 compounds), Plague (Yersinia 

pestis, Pubchem Assay 898, 139,861 compounds), a second much larger dataset for M. 
tuberculosis (293,937 compounds) 26 and hERG (306,587 compounds) 15. All these datasets 
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were curated and prepared using Assay Central 25 (See Methods) and the models can be 

applied for predicting new molecules for these targets or diseases.

METHODS

Experimental Procedures

Data curation—Our proprietary Assay Central software 27, 28 is a framework for curating 

high-quality datasets and building Bayesian machine learning models. Each dataset was 

subjected to the same standardization processes (i.e. removing salts, metal complexes and 

mixtures) prior to building models. Duplicate parent compounds with finite concentration 

activities are merged into a single entry. Classification models such as these require a 

defined threshold of bioactivity. The SARS-CoV-2 model used a threshold of 6.65 μM; 

Cathepsin B used >20% inhibition; the three M. tuberculosis models used the thresholds as 

described; the Krabbe model used actives defined by the authors; plague used a threshold at 

≥50% inhibition; the hERGcentral dataset was >50% inhibition; The large M. tuberculosis 
model used a cut off where MIC90 or IC90 < 10 mg/ml or 10mM and a selectivity index (SI) 

greater than 10 was used (where SI = MIC90 or IC90/CC50) 26. The curated files that were 

output from Assay Central were then employed for quantum machine learning.

Running our algorithms on QC—We used IBM’s ibmq_rochester for executing our 

algorithms. Figure S1 shows the architecture of ibmq_rochester. Colors represent error 

probabilities for controlled-NOTs and readout on qubits 29. This architecture has 53 qubits 

linked in the network. These 53 qubits are assembled and connected following the property 

of hexagonal lattices which is advantageous when it comes to minimizing unwanted 

interactions (Figure S1) 29. The error in reporting the accuracies can be ±3% depending on 

the time of day the code is run due to their recalibration. The QC is recalibrated once a day 

at unknown times. The algorithm was run with shots=2048.

Descriptor Compression for Quantum Machine Learning of SARS-CoV-2 data
—As the extended connectivity fingerprint diameter 6 (ECFP6) has been widely applied in 

cheminformatics 27 we used the Morgan Fingerprint (with radius 3), which is equivalent to 

the ECFP6 fingerprint in RDkit 30. The Morgan Fingerprint generates binary numbers whose 

default size is 2048 bits. While this is acceptable for use on a CC, it is not acceptable for use 

on a QC as 2048 bits exceeds the maximum capacity of current state-of-technology gate-

based QCs. Apart from this, having a relatively big descriptor size, around 1000, can also be 

a challenge. This is because with the increase in size/usage of qubits on the QC the network, 

to represent descriptors, accuracy fails because of decoherence noise introduced in the qubit 

system 31. Depending on the architecture of QC being used, it can happen that not all qubits 

are linked with each other. Having no linkage or communication between every qubit adds 

further noise to this system. We attempted two approaches to solve this utilizing QC alone or 

a hybrid where part of the code is run on the QC.

We propose four methods (utilizing QC alone or a hybrid where part of the code is run on 

the QC) to encode the 2048 descriptor features. Method 1 used Principal Component 

Analysis (PCA) that is widely applied in data compression 32. Method 2 used a common 

dimension reduction technique of Linear Discriminant Analysis (LDA) which also considers 
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the target class along with the predictors 33. In this we simply take a projection of points into 

some other hyperplane. In Method 3, we designed an algorithm where first we divide the 

2048 molecule fingerprint bits into ‘x’ groups, such that, each group has ‘k’ bits. This means 

that k should divide 2048 completely leaving out with 0 as the remainder. These ‘k’ bits are 

then converted into base 10 or decimal value. This process is repeated until all the groups are 

converted to decimal. Method 4 uses an algorithm where we keep track of positions of 1 in 

the whole array.

Another approach we have applied is a hybrid approach in which the QC is used to perform 

part of the calculation while performing the remainder on a CC. This removes the storage 

limitation on QC as this is provided by the CC, hence leaving the processing to the QC. A 

data re-uploading classifier was used as described further below 34. Here, unlike SVM where 

we were reducing to 2-3 dimensions, we can reduce to 3-10 dimensions to consider the qubit 

architecture. For our purpose, we reduced to 6 dimensions using the Method 1 and Method 3 

for SVM. In this approach, we load data into a single qubit by performing a simple unitary 

operation U (x1, x2, x3) where x1, x2, x3 are the coordinates of the point. When dimensions 

are greater than three, we can have U (x1, x2, x3, x4, x5, x6) to (U (x1, x2, x3) U (x4, x5, 

x6)). Using this approach, we can therefore store a datapoint which has 6 dimensions. We 

can have a similar unitary U (θ1, θ2, θ3) for rotation of datapoint in bloch sphere (Figure 1). 

Here we make a two-qubit connected layer to introduce non-linearity in our network.

The hybrid algorithm helps in introducing non-linearity to the model which makes use of the 

Adam stochastic gradient optimizer 35. We tuned different parameters using an iterative 

process for the following: Optimizer (Adagrad and Adam), Epochs, batch-size and the 

number of hidden layers.

The CC details on which the algorithms were executed:  The computational server used 

was a Supermicro EATX DDR4 LGA 2011, Intel Computer CPU 2.1 8 BX80660E52620V4, 

Crucial 64GB Kit (16GBx4) DDR4 2133 (PC42133) DR x4 288 Pin Server Memory 

CT4K16G4RFD4213 / CT4C16G4RFD4213, 1-5 x EVGA GeForce GTX 1080 Ti 

FOUNDERS EDITION GAMING, 11GB GDDR5X, Intel 730 SERIES 2.5Inch Solid State 

Drive SSDSC2BP480G410, WD Gold 4TB Datacenter Hard Disk Drive 7200 RPM Class 

SATA 6 Gb/s 128MB Cache 3.5 Inch WD4002FYYZ, Supermicro 920 Watt 4U Server.

Quantum SVM:  The initial algorithm we have compared is an SVM implemented using 

the Qiskit library 36 which uses Least-Square SVM (LS-SVM) 37. Qiskit chooses Mij =xi xj 

as the ansatz where Mij is the kernel matrix and xi xj are the datapoints in the dataset 38. 

When working with QC we first formulate the ansatz and try to minimize it. This ansatz 

formulates the SVM hyperplane which divides the datasets. We have chosen the ansatz such 

that we get a line as an output. The main reason we selected linear fit and not polynomial fit 

because we wanted to avoid the scenario of non-convergence kernels. This ansatz equation 

determines the shape the hyperplane will take. We made use of already available QSVM 

(Quantum SVM) code available in the Qiskit library. For the dataset, the SVM’s depth was 

set to 2. Entanglement was set to ‘full’ and the skip_qobj_validation parameter for quantum 

instance was set to False.
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Data re-uploading classifier:  The MFF molecular descriptor 22 was also used with the four 

methods to achieve better accuracy rates. The data re-uploading classifier is very similar to a 

deep neural network (DNN) 34 ,implemented using the existing library in the Pennylane tool 
39, where a single qubit represents a neural network layer. A DNN consists of 2 or more 

hidden layers. So, to replicate the DNN properties and introduce non-linearity, we make use 

of 2 qubits as an analogy to 2-layer Neural networks. With the above MFF descriptor we get 

71,375 vectors. Sandfort et al. 22 postulated that this leads to overfitting and the same results 

were observed with MFF followed by our data reduction algorithm. For all datasets in this 

study, the data re-uploading classifier had hyperparameters set to – Training set size: (70% 

of dataset), Test set size: (30% of dataset), train accuracy rate: 61.2%, test accuracy rate: 

61%, number of layers: 4, batch-size: 32, epochs: 10, optimizer: Adam, learning rate: 0.6, 

cross fold validation: 5.

RESULTS

Descriptor Compression for Quantum Machine Learning of SARS-CoV-2 data

Within the QC, a quantum algorithm is used to solve the direct product 37 to solve for matrix 

operations and using it to then calculate the M(the kernel matrix)/. Then a quantum 

algorithm can be used to transform into waveforms to solve the system of linear equations 
38. This approach solves the complete SVM on a QC. While SVM generally provides 

promising results, it takes considerable time to solve linear equations to solve for Kernel 

Matrix using feature maps (1.24 minute for each datapoint) and hence, any time advantage 

for QC is likely not achievable. It should be noted that the connection to the qubit 

architecture also plays an instrumental role in driving the accuracy rates which may vary 

slightly for the best accuracy value. The accuracy rates reported are therefore a best value 

achieved on the QC or QC simulator.

In order to reduce the molecular descriptor features such that they can be represented and 

stored in our limited number of qubits (53 qubits for the ibmq-rochester, Fig. S1). We have 

initially demonstrated the application of QC with a SARS-CoV-2 Vero cell inhibition dataset 

consisting of 132 compounds of which 66 were found to be active with the IC50 activity 

threshold of 6.65 μM which was selected using our Assay Central software 24. We reduced 

the molecular descriptor dimensions from 2048 descriptor features to 2-3 using multiple 

techniques. Method 1 (i.e., PCA) resulted in accuracy rates on a CC with 1GPU of 37% 

using the kernel algorithm = RBF (Radial Basis Function) whereas on a QC accuracy was 

33% (N= 3). Method 2 (i.e., LDA) resulted in accuracy rates of 40% using a kernel 

algorithm on a CC while on QC this was 39% (N = 3). An example of a molecule 

compressed using Method 3 is shown in Figure 2. Method 3 resulted in a greatly improved 

accuracy rate of 61% on a CC using kernel algorithm=‘poly’ and 59.6% on a QC (n=3).

Applying Method 4 using the same example of Remdesivir, we get two values 

[−21086,−502690]- where −21086 is storing the positions of 1’s and −502690 is storing the 

positions of 0’s. Using this approach, we get two dimensions that can be easily fed into the 

model. All the algorithms discussed above try to retain most of the information from the 

molecular descriptors as much as possible. This resulted in accuracy rates on the CC of 59% 

using kernel algorithm=‘sigmoid’ and on the QC of 59.25% (with n=2).
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These four methods were implemented on the QC and then tried as combinations and the 

accuracy was compared with the CC (Table 1). The most promising results were obtained 

when combining Method 1 and Method 3 (k=128). The improved results for k=128 are due 

to the increased spread (more variance) as compared to other k values when combined with 

PCA (Figure 3). This makes it easier to obtain a hyperplane separating the two classes 

(active or not active). The Kernel matrix obtained from running the SVM model on a QC is 

shown in Figure 4.

Another approach we have applied is that of the hybrid approach (i.e., QC performs part of 

the calculation and CC the remainder) to remove the storage limitation on QC. We reduced 

the datapoint to 6 dimensions using the Method 1 and Method 3 for SVM. We loaded data 

into a single qubit by performing a simple unitary operation U (x1, x2, x3) where x1, x2, x3 

are the coordinates of the point. When dimensions are greater than three, we can have U (x1, 

x2, x3, x4, x5, x6) to (U (x1, x2, x3) U (x4, x5, x6)). We have a similar unitary U (θ1, θ2, 

θ3) for rotation of datapoint in bloch sphere (Figure 4) to make a two-qubit connected layer. 

For the same SARS-CoV-2 dataset, we obtained accuracy rates of 61%.

Applications of Quantum Machine Learning to M. tuberculosis datasets

The same hybrid algorithm was then implemented on M. tuberculosis datasets, which were 

representative of high throughput screening data (i.e., tens of thousands of compounds). For 

all these datasets, we applied Method 1 and Method 3 for reducing the dimension and 

feeding it into our data re-uploading classifier as well as for plotting and visualization 

purposes. We also worked with the MFF descriptors 22 which generated a 71,375-descriptor 

vector. Datasets for in vitro inhibitors of M. tuberculosis had three variants, namely with a 

cutoff at of 100nM, 1μM and 10 μM 25. Figure 5 shows a plot for the 100nM cutoff M. 
tuberculosis dataset when we reduced it into 2 dimensions. For these three datasets the data 

re-uploading classifier was run and then compared with the results obtained with CC (Table 

2, Table S1). In Table 2 we see that the accuracy obtained on a QC is closer to that obtained 

on a CC with a slight time advantage over CC, such that there is a trade-off of accuracy and 

speed with these datasets. All of the above reported data are implemented on a QC 

(ibmq_rochester).

Applications of Quantum Machine Learning to Large in vitro Datasets

The data re-uploading classifier algorithm 34 was implemented with the ECFP6 molecular 

descriptor, and tested with five considerably larger drug discovery datasets ranging from 

44,000 – 293,000 molecules on a QC simulator (Table 3). Running them on a QC with the 

transfers of data was the major overhead here for such large datasets. We find that the results 

obtained are very comparable with a slight time advantage for the QC simulator over CC. 

The linearity of calculation time on a CC with dataset size was apparent and this plateaued 

for the QC simulator (Figure 6).

DISCUSSION

We have discussed four approaches and their combination for compression of the molecular 

descriptors, followed by calculation of the machine learning model on a QC. We found that 
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the results were optimal when combining Method 3 and Method 1, most likely due to the 

increased spread of data after employing these techniques. Further, we applied both the QC 

and hybrid approach to train our model. With the current QC hardware available, the option 

of choosing the hybrid approach for drug discovery is likely optimal. When dealing with 

bigger in vitro structure-activity datasets on the order of tens of thousands of molecules, we 

found that the data communication overhead between computer and cloud-based QC was 

much larger than the actual time taken for a circuit to execute on QC. Plotting the time 

versus size of a dataset for CC vs QC simulator also suggests the likely potential speed of 

model building on a QC with larger datasets if we are able to replicate the same settings on a 

QC (Figure 6). Now that we have optimized these steps for machine learning we have 

demonstrated that QC can handle ‘very large’ drug discovery datasets on the order of 

hundreds of thousands of molecules. At the time of this work data for SARS-CoV-2 

available for machine learning was in the hundreds of molecules and now it is likely in the 

low thousands of molecules 24 and yet such datasets clearly do not require the performance 

of QC. However, the larger high-throughput screening datasets for other targets and diseases 

that have been amassing in public databases like PubChem 40 and ChEMBL 1 present 

significant challenges for SVM and deep neural network as well as other computationally 

intensive tools. QC is therefore a viable approach to overcoming some of these limitations 

and allowing practical computing times. With thousands of such datasets now readily 

available, being able to curate and update them quickly will be important as new screening 

data are added. Obviously, as we start to see DNA encoded libraries with sizes in the 

millions to possibly billions of molecules being used for generating high throughput 

screening data, then we will likely need QC for machine learning with algorithms that are 

compute intensive in order to see results in a reasonable time. This study demonstrates the 

non-linear scaling of compute time on a QC with multiple independent datasets of different 

sizes, compared with the linearity observed on a CC. As quantum machine learning 

develops, the accessibility of QC will increase for drug discovery cheminformatics 

applications as we have demonstrated here. Future studies to evaluate these and other 

quantum machine learning models will also need to involve prospective prediction and 

experimental validation in order to provide convincing evidence of their value for drug 

discovery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CC Classical computer

DNN Deep Neural Networks

ECFP6 Extended connectivity fingerprint radius 6

LDA Linear Discriminant Analysis

MFF multiple fingerprint features

PCA Principal Component Analysis

QC Quantum computer

SVM Support Vector Machines
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Figure 1. 
A high-level abstraction of how data is stored in the bloch sphere. The two layers - A and B, 

with U(xA) denoting unitary applied on input vector, U(θA) representing the unitary applied 

to rotate the vector in the bloch sphere.

Batra et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2022 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An example of a molecule and its compression using Method 3. 2D representation of the 

antiviral Remdesivir, and an illustration of the ECFP6 descriptor for Remdesivir and the 

compressed output.
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Figure 3. 
The spread of the data for the SARS-CoV-2 dataset after applying Method 1 and Method 3. 

“x1” and “x2” are the top two features respectively (for all the compounds) obtained after 

applying these two methods.
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Figure 4. 
Kernel Matrix obtained using PCA and Method 3 for the SARS-CoV-2 dataset.
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Figure 5. 
A 2D plot representing the spread of data for the M. tuberculosis (100nM) dataset. This 

takes the important features using dimension = 2 instead of 6. “x1” and “x2” are the top two 

features respectively (for all the compounds) that have been calculated using Method 1 and 

Method 3.
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Figure 6. 
Comparing dataset size with run time for Quantum Computer (QC) simulator and Classical 

Computer (CC). Linear or non-linear (semi-log) fit lines for the data generated. These show 

the likely relationship of CC and QM model size versus calculation time is on a linear and 

semi-log scale, respectively. The dotted lines represent the 99% confidence bands of these 

lines to highlight the likelihood of this relationship.
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Table 1.

The accuracy rates achieved with different combinations of methods. Method 1 (PCA), Method 2 (LDA), 

Method 3 and Method 4 using SVM on the classical and the quantum computer.

Combination Accuracy on QC (%) Accuracy on CC (%)

PCA + Method 3(k=64) <30 47

PCA + Method 3(k=128) 62.9 65

PCA + Method 3(k=256) 59.25 60

PCA + Method 3(k=512) 41 44

LDA + Method 3(k=64) 31 36

LDA + Method 3(k=128) <30 35

LDA + Method 3(k=256) <30 31

LDA + Method 3(k=512) 32 59

PCA + Method 4(2) 59.25 60

LDA + Method 4(2) 57 57
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Table 2.

Comparing accuracy and run time results for M. tuberculosis inhibition datasets (18,886 compounds) 25 using 

data re-uploading classifier on CC with 3 GPU’s versus QC with 5-fold cross-validation using SVM.

Dataset threshold
(number of
actives)

Time on CC
(min)

CC Accuracy
(%)

Time on QC
(min)

QC Accuracy
(%)

100 nM (645) 125 97.1 104 90.5

1 mM (2351) 144 90.4 101 81.4

10 mM (7762) 229 75.6 153 54.9
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Table 3.

Comparing large scale drug discovery datasets on a Quantum Computer Simulator and CC with 5 GPU’s for 

data re-uploading classifier using the ECFP6 descriptor obtained from Method 1 and Method 2. Algorithms on 

QC Simulator were run for 10 epochs with 5 fold cross validation unless noted. ND = not determined.

QC CC

Dataset
target

Total
compounds

(active)

Training
accuracy

(%)

Testing
accuracy

(%)

Time on QC
(min/epoch)

Training
accuracy

(%)

Time on CC
(min)

Cathepsin B 63,331
(75) 99.4 99.1 35

(10 epochs) 99.8 341.25

Krabbe disease 44,809
(63) 91.2 92.4 31

(10 epochs) 99.9 497.91

Plague 139,861
(223) 92.9 93.1 47

(10 epochs) 99.8 958.59

M. tuberculosis 293,937
(6104) 90.4 91.3 71

(10 epochs) 97.9 2329.4

hERG 306,587
(233) 82.7 82.5 313

(ran for 5 epochs) ND ND
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