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Abstract
Coronavirus (COVID-19) and its new strain resulted in massive damage to society and 
brought panic worldwide. Automated medical image analysis such as X-rays, CT, and MRI 
offers excellent early diagnosis potential to augment the traditional healthcare strategy to 
fight against COVID-19. However, the identification of COVID infected lungs X-rays is 
challenging due to the high variation in infection characteristics and low-intensity contrast 
between normal tissues and infections. To identify the infected area, in this work, we pre-
sent a novel depth-wise dense network that uniformly scales all dimensions and performs 
multilevel feature embedding, resulting in increased feature representations. The inclusion 
of depth wise component and squeeze-and-excitation results in better performance by cap-
turing a more receptive field than the traditional convolutional layer; however, the param-
eters are almost the same. To improve the performance and training set, we have combined 
three large scale datasets. The extensive experiments on the benchmark X-rays datasets 
demonstrate the effectiveness of the proposed framework by achieving 96.17% in compari-
son to cutting-edge methods primarily based on transfer learning.
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1 Introduction

Coronavirus infection, a severe acute respiratory syndrome, is an ongoing pandemic that 
the world has facing since December 2019. Up to 31st October, 45.95 million COVID 
cases have been reported, with 1.19 million deaths (153.2/million) across 216 countries 
and territories worldwide. US and India are the leading affected countries with 9.31 mil-
lion and 8.13 million reported cases. Figure 2 shows the recent death and recovery rate. 
A variant of COVID-19 is aggressive than the original COVID, and its rapid spread 
been blamed for strict tier four mixing rules for millions of people and much harsher 
restrictions and travel ban. COVID-19 is a novel beta-corona virus that affects different 
people with different symptoms and shares similarities with Middle East Respiratory 
Syndrome (MERS) and SARS viruses that were previously responsible for endemics in 
2012 and 2003, respectively.

Reverse Transcription Polymerase Chain Reaction (RT-PCR) is used as standard 
practice for COVID screening. However, strict testing requirements for testing envi-
ronments and equipment shortage limit the accurate and fast screening of COVID sus-
pected patient. Additionally, RT-PCR has high false-negative rates. Radiological image 
analysis showed itself as an alternative for efficient and precise diagnosis of COVID. 
It provides the diagnosis and gives considerable knowledge of the disease progres-
sion, evolution, and follow-up assessment. However, manual analysis of infections in 
the lungs is labour-intensive, tedious, time-consuming, and time-consuming. In addition 
to this, it is a highly subjective (inter and intra radiologist variabilities) task as often 
influenced by radiologist experience and bias. Thus, automatic classification of affected 
areas is highly desirable for early diagnosis of COVID. However, identifying COVID-
19 affection areas from radiology images is a challenging task for several reasons, i.e., 
the huge variations in size and position of lesions. In addition to this, the infection may 
be different complex appearances such as consolidation, reticulation, and ground-glass 
opacity etc. Furthermore, the ambiguous boundary and irregular shape of the lesion fur-
ther complicated and difficult to segment.

Recently, deep learning has been extensively applied in medical image analysis. 
Several methods have presented to analyze the Chest images (CT and MRI) to detect 
patients infected with COVID-19 (Fan et al., 2020; Razzak et al., 2020b; Wang et al., 
2020a). Fan et  al. (2020) aggregated high-level features using parallel partial decoder 
and presented semi-supervised lung infection segmentation deep network (Inf-Net) 
for segmentation of infected regions from CT images. To enhance the representation, 
explicit edge and implicit reverse attention is used that model the infection boundaries. 
Wang et  al. (2020a) presented noise-robust dice loss-based Pneumonia Lesion seg-
mentation ensemble network (COPLE-Net) for segmentation of COVID affected areas. 
COPLE-Net and noise-robust Dice loss are combined through the ensembling network. 
The student model’s exponential moving average is used as a teaching model that is 
updated adaptively by suppressing the student network to the exponential moving aver-
age in case the student network has a larger training loss. Li et  al. (2020) presented 
COVID-19 detection neural network (COVNet) for COVID lesion segmentation from 
CT exams. U-net and its variants are the most widely used encoder–decoder network for 
segmentation since it capture high and low-level features through encoder and seman-
tic features through the decoder. Chen et  al. (2020) applied UNet++ for the detection 
of COVID suspected lesion. Hu et  al. (2018) presented squeeze and excitation blocks 
to improve the representational of the network by modelling the inter-dependencies 
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between the channels of its convolutional features. Similarly, Roy et  al. (2018) fused 
spatial and channel SE blocks features by re-calibrating the feature representation chan-
nel-wise and spatially (Figs. 1, 2).

In this work, we propose a depth-wise multilevel dense network for the diagnosis of 
COVID-19 lesions to address the aforementioned challenges. We fine-tuned our newly 
added convolutional layers in this pre-trained model by feeding it with pre-processed 
COVID19 scan training dataset. After fine tuning, we picked different layers from dif-
ferent dense blocks of DenseNet along with features. The network consists of multiple 
blocks that uniformly scale all dimensions (depth, width and resolution) and perform 
multilevel feature embedding. Unlike traditional CNN methods, the network arbitrarily 
scales the measurements with a fixed set of scaling co-efficients in each block, followed 
by multilevel feature fusion by aggregating the high-level features to combine the con-
textual information. The inclusion of depth-wise components and squeeze-and-excita-
tion results in better performance by capturing more receptive fields than the traditional 
convolutional layer; however, the parameters are almost the same.

The key contributions of this work are

• present depth-wise multilevel feature fusion by aggregating the high-level features 
to combine the contextual information by balancing the width, depth and resolution 
of the network can result in better feature representation,

Fig. 1  COVID-19 Death rate and recovery rate in different countries. (www. world omete rs. info)

Fig. 2  Cumulative known cases per million since 100th case and deaths per million since 1st death 
recorded. (https:// www. abc. net. au/ news/ 2020- 05- 13/ coron avirus- numbe rs- world wide- data- track ing- charts/ 
12107 500? nw=0)

https://www.worldometers.info
https://www.abc.net.au/news/2020-05-13/coronavirus-numbers-worldwide-data-tracking-charts/12107500?nw=0
https://www.abc.net.au/news/2020-05-13/coronavirus-numbers-worldwide-data-tracking-charts/12107500?nw=0
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• introduce a novel multilevel depth deep framework for an accurate and efficient auto-
mated detection of COVID infection.

• performed extensive experiments on benchmark X-rays dataset that demonstrate the 
effectiveness of the proposed framework in comparison to cutting-edge methods pri-
marily based on transfer learning.

The rest of the paper is organized as follows: In Sect. 2, we present the recent devel-
opment on COVID lesion identification, followed by the proposed depth-wise multilevel 
deep network. In Sect. 4, we present experimental analysis and evaluation of the proposed 
framework on the benchmark dataset.

2  Related work

Recently, deep learning has been extensively using for medical image analysis, and sev-
eral deep learning methods have presented to analyze the Chest images (Ultrasound, CT 
and MRI) for the detection of patients infected with COVID-19 (Born et  al., 2020; Fan 
et al., 2020; Wang et al., 2020a). Brändle et al. presented a large-scale public lung ultra-
sound COVID-19 dataset (Born et  al., 2020) consisting of three classes (bacterial pneu-
monia, COVID19 and healthy). Deep convolutional neural network has been applied to 
classify the COVID-19 patient from ultrasound videos with high sensitivity. In addition to 
this, they have used class activation maps for the spatiotemporal localization of pulmonary 
biomarkers.

Gozes et al. presented a framework for COVID-19 disease from chest CT (Gozes et al., 
2020) which includes lung segmentation, 2D slice classification, and fine-grained local-
ization. The severity of the virus is graded through COVID bio-marker and COVID-19 
radiographic manifestations is performed using clustering based on unsupervised feature 
space. Fan et  al. aggregated high-level features using parallel partial decoder and pre-
sented semi-supervised lung infection segmentation deep network (Inf-Net) for segmenta-
tion of infected regions from CT images (Fan et al., 2020). To enhance the representation, 
explicit edge and implicit reverse attention is used that model the infection boundaries. 
Yao et al. (2020) presented pixel-wise anomaly detection using a normalcy-converting net-
work (NormNet) for CT image analysis that distinguish the affected area from the nor-
mal area. The framework converts the abnormal area back to normal by synthesizing the 
lesions through simple operations. Amyar et al. presented multitask deep framework that 
consists of the common encoder to disentangled features representation and two additional 
decoder for image segmentation, classification and reconstruction (Amyar et  al., 2020). 
The framework jointly identifies COVID-19 affected patient as well as segment COVID-19 
affected lungs area from CT. Lesion segmentation, classification, and reconstruction are 
performed together on different datasets to leverage useful information in multiple related 
tasks, resulting in improved classification and segmentation performance. Li et al. (2020) 
applied a two-stage mapping-segmentation approach to segment the affected areas from 
CT images. The image-level domain-adaptive approach is used to transform the image into 
a target type followed by the segmentation of affected areas.

Elharrouss et al. (2020) presented a multi-task deep-learning-based approach for a seg-
mentation lung infection on CT images. Initially, infected lung regions are segmented, fol-
lowed by the segmentation of infected areas, and it also allows the model to learn about 
many features that can improve the results. Multi-task learning deals with the challenge of 
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the small, labelled dataset. To perform a multi-class segmentation, the network is trained 
using the two-stream inputs. The framework showed decent segmentation lung infections 
with a high degree of performance. Louefki et al. designed an efficient tool for segmenta-
tion and measurement of lungs infection in CT images (Oulefki et  al., 2020). The lungs 
region from CT images is extracted, followed by segregation of left and right lung. After 
extensive image enhancement, the authors applied modified local contrast enhancement for 
detail CT target. Experiments on publicly available benchmark datasets consisting of 275 
CT scans are COVID-19 positive and new data acquired from the EL-BAYANE centre for 
radiology and medical imaging. Structural relationships are critical for accurate detection 
of pulmonary lobes, especially for COVID-19. Xie et al. (2020) presented relational non-
local deep network by leveraging the structured relationships. To produce self-attention 
weights, the framework learns both geometric and visual relationships among the convolu-
tion features. Initially, the model was trained on 5000 subjects from the COPDGene study, 
followed by retraining the network through transfer on 470 COVID-19 suspects.

Wang et  al. (2020a) presented noise-robust dice loss based Pneumonia Lesion seg-
mentation ensemble network (COPLE-Net) for segmentation of COVID affected areas. 
COPLE-Net and noise-robust Dice loss are combined through the ensembling network. The 
student model’s exponential moving average is used as a teaching model that is updated 
adaptively by suppressing the student network to the exponential moving average in case 
the student network has larger training loss. Li et al. (2020) presented COVID-19 detec-
tion neural network (COVNet) for COVID lesion segmentation from CT exams. U-net and 
its variants are the most widely used encoder-decoder network for segmentation since it 
capture high and low-level features through the encoder and semantic features through the 
decoder. Chen et al. (2020) applied UNet++ for the detection of COVID suspected lesion. 
Hu et al. (2018) presented squeeze and excitation blocks to improve the representational of 
the network by modelling the inter-dependencies between the channels of its convolutional 
features. Similarly, Roy et al. (2018) fused spatial and channel SE blocks features by re-
calibrating the feature representation channel-wise and spatially. Saeedizadeh et al. (2020) 
presented variants (2D-anisotropic total-variation) of UNet based framework for segmenta-
tion of ground glass regions from CT images. A regularization term is added in the loss 
function to promote the segmentation map’s connectivity for COVID-19 affected areas at 
pixel level. To deal with a small dataset and reduce the number of training parameter, the 
Capsules network has also been applied to solve the problem of CNN architecture (Afshar 
et al., 2020; Hinton et al., 2018). Afshar et al. (2020) applied capsule network for diagnosis 
of COVID patient in X-ray images. Ma et al. (2020) presented an active framework con-
tour regularized semi-supervised learning for segmentation of COVID infection on small 
labelled dataset. Region-scalable fitting model is embedded into the loss function for active 
contour regularization and for refinement of pseudo labels of unlabeled data. Splitting 
method is designed to optimize the fegion-scalable fitting regularization and the segmenta-
tion loss. Xu et al. (2020) presented deep generative adversarial learning for weakly super-
vised COVID affected region segmentation. The framework is optimized to segmentation 
COVID affected areas through the segmentator and replace the abnormal area with the gen-
erator’s normal appearance. Zheng et al. (2020) multi-scale discriminative network by inte-
grating channel attention block, pyramid convolution block and residual refinement block 
for segmentation of lungs area affected with COVID. The pyramid convolution block uses 
the different number of the kernel with different size, hence, increases the receptive field. 
The channel attention block fuses both stages and focuses features from the segmented area 
only, and the residual refinement block refines the feature maps; thus, integration results in 
strengthening the power to segment the COVID affected area of different sizes. Bizopoulos 



 Annals of Operations Research

1 3

et al. (2020) combined Linknet, UNet, FPN, PSPNet with 25 randomly initialized and pre-
trained encoders (such as ResNet, DenseNet, ResNext, VGG, DPN, MobileNet, Xception, 
EfficientNet, and Inception-v4) for lung segmentation and lesion segmentation and lesion 
segmentation.

3  Methodology

In this section, we first describe the components of the proposed Depth-wise multilevel 
features concatenated deep neural network to identify COVID affected areas from lungs 
X-rays images. In earlier work, scaling up the ConvNets is widely explored and compara-
tively achieved better accuracy. However, most of the earlier work considers one of three 
dimensions, size, depth or width. Although it is possible to scale all dimensions arbitrarily, 
it requires extensive tuning and challenging efforts to achieve performance. In this work, 
we consider scaling up the ConvNets and presenting a novel framework by balancing the 
scaling factors. We presented depth-wise multilevel concatenation as a learning approach 
to combine the different level of features representation with improving the deep network’s 
performance and making generalization ability better. The network consists of multiple 
blocks that uniformly scale all dimensions (depth, width and resolution) and perform mul-
tilevel feature embedding. The compound depth, width and resolution scaling increase the 
receptive field and channels; thus, the network capture more fine-grained patterns. Unlike 
traditional CNN methods, the network arbitrarily scales the dimensions with a fixed set of 
scaling coefficients in each block, followed by multi-level feature fusion by aggregating 
the high-level features to combine the contextual information. The inclusion of depth-wise 
components and squeeze-and-excitation results in better performance by capturing more 
receptive fields than the traditional convolutional layer; however, the parameters are almost 
the same.

Figure  3 illustrate the proposed depth-wise multilevel concatenated deep neural net-
work. The network consists of three main blocks such as Base Block, Efficient Block-1 
and Efficient Block-2. Notice that the network combines the features from different blocks, 
which results in features with different depth and scale, hence increases the receptive field 
and strengthening the power to classification the COVID affected area of various sizes. 
The integration of varying depth-wise blocks concatenation results in features with differ-
ent depth and scale results in efficient features representation, thus showing better perfor-
mance than fine-tune methods. CNN’s core building block is the convolution operator that 
enables the convolutional neural networks to construct informative feature representation 
by fusing channel-wise and spatial information within each layer’s local receptive fields. 
Squeeze-and-Excitation is simple and can be embedded into any architecture by replacing 
the component with a squeeze-and-excitation block. It can recalibrate channel-wise fea-
tures response adaptively by modelling the inter-dependencies between different channels, 
thus considerably improving performance. We have used squeeze-and-excitation block in 
all three blocks. Each squeeze-and-excitation block uses global averaging pooling opera-
tions in channel-wise feature response through explicit modelling of interdependences in 
different challenges.

Figure 3 illustrate the proposed depth-wise multilevel network. Notice that features are 
extracted from different blocks and concatenated at different stages to have compact and 
discriminant feature representation with wide coverage. Base block consists of four com-
ponents, convolution, depth convolution, squeeze-and-excitation and finally projection. 
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Similarly, an efficient block consists of expanded convolution, depth convolution, squeeze-
and-excitation, projection. In both base block and efficient block, we applied depth-wise 
convolution. We used each filter channel only at one input channel in depth-wise convolu-
tion. For example, we have 3 channel image and 3 channel filter. After breaking the image 
and filter into three different channels, we performed convolution, followed by stacking 
them back. The inclusion of depth-wise component into the proposed network results in 
better performance by capturing more receptive fields than the traditional convolutional 
layer; however, the parameters are almost the same.

In each block, we have used the different components with different number of layers 
for the classification of COVID19. Figure 3 shows the basic proposed framework that con-
sists of three blocks (base and two efficient blocks). The efficient block consists of differ-
ent components with skip connections. We have used expansion convolutional layer with 
depthwise, Squeeze-and-Excitation and projection convolutional layer. In the expansion 
convolutional layer, the number of feature maps are increased, whereas in the depth-wise 

Fig. 3  Proposed depth wise multilevel deep network
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convolutional layer, the spatial input size is reduced to reduce computational complexity. 
In contrast, the projection layer, the 1 × 1 convolutional layer, has been proposed to lever-
age a different number of feature maps. Besides, we have used the skip connection used for 
smooth backpropagation of gradient in backpropagation step during gradient computation.

Recently, several researchers investigated the spatial component to improve the repre-
sentation power of convolutional network through enhancement of spatial encoding using 
feature hierarchy. Squeeze-and-Excitation block adaptively re-calibrates the channel-wise 
feature responses by modelling the inter-dependencies between different channels explic-
itly. It is a simple structure, and we can embed it in any state of the art network by replacing 
the component with a squeeze-and-excitation unit. The squeeze-and-excitation is designed 
to improve the representation power of the network through perform dynamic channel-wise 
feature recalibration. The SE block structure is simple and can be used directly in existing 
state-of-the-art architectures by replacing components with squeeze-and-excitation block, 
where the performance can be effectively enhanced. We have embedded squeeze-and-
excitation component in all blocks as shown in Fig. 3, which improves the discriminative 
power of features. It results in significant improvement in performance while being compu-
tationally very light.

4  Experiments

This section presented the experimental setup and evaluation of the proposed depth-wise 
multilevel concatenated deep neural network. We have performed two case studies, in our 
first experiment, we applied the proposed framework as an end-to-end approach for COVID 
diagnosis as shown in Fig.  3. In our second experiment, we have applied the proposed 
framework as a feature extractor and used different classifiers for classification as shown in 
Fig. 4. To generalize the performance, we have performed tenfold validation on the bench-
mark 5-class COVID-19 X-rays image dataset. Figure 5 illustrates the comparative analy-
sis of proposed methods on different classes. For evaluation purposes, we performed an 

Fig. 4  Proposed depth wise multilevel deep network as feature extractor
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(a) COVID19 

(b) Normal 

(c) Phenomenia 

(d) Viral 

(e) TB 

Fig. 5  Sample dataset images a COVID, b normal, c phenomena, d phenomena viral, e tuberculosis
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extensive experiment and compared the performance using precision, recall and accuracy. 
Experimental results showed that the proposed framework achieved considerable improve-
ment in the diagnostic performance of affected areas compared to the methods.

4.1  Dataset

In this work, we constructed a five-class COVID-19 larger dataset from three main sources. 
We have collected cases from Candemir et  al. (2013), Cohen et  al. (2020), Jaeger et  al. 
(2013) and Kermany et al. (2018) that consist of X-rays and CT images of pulmonary dis-
eases, including COVID-19, SARS and MEARS. Cohen et al. dataset (2020) consists of 
256 males and 136 female patients of average age 54.6 years ± 16.7 (mean ± standard devi-
ation) is the larger COVID dataset that consists of multiple pulmonary diseases, includ-
ing COVID-19, SARS (Severe acute respiratory syndrome) and MERS (Middle East res-
piratory syndrome) collected from many sources. The dataset is up to date and updated 
regularly. The dataset1 consist of 752 X-ray images; among these, we have considered 435 
COVID-19 X-ray images in this study and excluded the lateral X-ray and CT images. We 
have also included X-ray TB dataset2 from U.S. National Library of Medicine, consisting 
of two datasets of chest X-ray. TB dataset consists of 394 infected images from 2 different 
sources (58 images from Montgomery County set and 336 images from China set). As the 
TB X-ray images are less in number, we applied data augmentation by randomly selecting 
the images by rescaling 40 random images. To further increase the dataset size, we have 
also included 5863 X-ray images of 3-class including source of images is the Pneumonia 
and normal dataset3. Thus, normal, pneumonia bacterial and pneumonia viral 5 from the 
newly composed dataset consist of 5 classes is a large dataset. We have randomly selected 
439 images of each class from the pneumonia dataset to be included in the study to con-
struct the COVID-19 balanced 5-class dataset (Johnson & Khoshgoftaar, 2019). Figure 5 
shows the samples of fives classes included in the dataset. The new COVID-19 5-class 
dataset has a larger number of COVID-19 X-ray images, than previous studies (Afshar 
et al., 2020; Khan et al., 2020; Narin et al., 2020; Razzak et al., 2020a; Sethy & Behera, 
2020; Wang et al., 2020b) (Figs. 6, 7, 8, 9).

4.2  Parameters

To generalize the performance, we have performed tenfold validation on the bench-
mark 5-class COVID-19 CT image dataset. The proposed model is trained using the 
Pytorch library. In depth-wise convolution, we have used each filter channel only at 
one input channel, i.e. 3 channel filter and 3 channel image. We break the image and 
filter into three different channels following by convolution operation on the corre-
sponding image with the corresponding channel, and finally stack them back. Results 
showed that depth-wise convolutional produced significantly better performance and 
the ability to capture more receptive fields than standard convolutional layers with the 
same number of parameters. The Adam optimizer with 0.0003 learning and 12 batch 
size used for training the proposed model. The 500 epochs were set for complete 

1 https:// github. com/ ieee8 023/ covid- chest xray- datas et.
2 https:// www. kaggle. com/ kmader/ pulmo nary- chest- xray- abnor malit ies? select= China SetAl lFiles.
3 https:// www. kaggle. com/ pault imoth ymoon ey/ chest- xray- pneum onia

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/kmader/pulmonary-chest-xray-abnormalities?select=ChinaSetAllFiles
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia


Annals of Operations Research 

1 3

(a) COVID19 

(b) Normal 

(c) Phenomenia 

(d) Viral 

(e) TB 

Fig. 6  The visualization of some predicted samples based on our proposed model using RISE library
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Fig. 7  Confusion metrics of proposed framework

Fig. 8  ROC curves for proposed 
and fine-tuned deep learning 
models

Fig. 9  Precision recall curves for 
proposed and fine-tuned deep 
learning models
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training. The google Colab with GPU has 12 GB RAM used for training and validation 
of the proposed model. The scikit-learn library used for machine learning classifiers 
and performance visualization such as region of convergence (ROC), accuracy, preci-
sion and recall (Table 1).

Table 1  Details of the COVID-
19 5-classes dataset

Class Number of X-ray images

COVID-19 435
Normal 439
Pneumonia-bacterial 439
Pneumonia-viral 439
Tuberculosis 434 (394 + 40 augmented)
Total 2186

Fig. 10  Precision recall curves 
plots based on proposed model 
with RF, LR, GB, and BT 
algorithms

Fig. 11  ROC plots based on 
proposed model with RF, LR, 
GB, and BT algorithms
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(a) COVID19 (b) Normal 

(c) Phenomenia (d) Viral 

(e) TB 

Fig. 12  COVID-19 diagnosis using proposed approach on five classes

Table 2  Comparison of proposed 
model with fine-tuned deep 
learning models

Algorithms Accuracy Precision Recall F1 score

Finetune + ResNet 0.8579 0.8598 0.8530 0.8512
Finetune + MobileNet 0.8934 0.8828 0.8802 0.8795
Finetune + InceptionV3 0.9053 0.9094 0.9123 0.9072
Finetune + DesneNet 0.8735 0.8654 0.8602 0.8596
Proposed model 0.9328 0.9371 0.9090 0.9169
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4.3  Results

In this paper, we have performed two experiments for the classification of COVID affected 
areas. As we have combined different datasets to increase the sample size, thus the current 
COVID-19 5-class study has a larger number of COVID-19 X-ray images than previous 
studies (Afshar et  al., 2020; Khan et  al., 2020; Narin et  al., 2020; Razzak et  al. 2020a; 
Sethy & Behera, 2020; Wang et al., 2020b). In our first experiment, we presented an end-
to-end network that consists of three main blocks as Base Block, Efficient Block-1 and 
Efficient Block-2. Our second experiment used the same network to extract the best feature 
representation and forwarded it to different classifiers such as random forest, SVM, etc. 
Figures 10, 11 and 12 illustrate the COVID affected area detection in detail. Table 2 and 
Table describes the results of experiment 1 and experiment 2. We have further performed 
several experiments by the fine-tuning state of the art network. Table 2 describes the com-
parative evaluation of the proposed framework with fine-tuning methods (Table 3).

In our first experiment, we have applied an end to end framework for the classification of 
COVID affected areas. The proposed network combines the features from different blocks, 
which results in features with different depth and scale, hence increases the receptive field 
and strengthening the power to classify COVID affected area of different sizes. The effi-
cient blocks consist of expanded convolution, depth convolution, squeeze-and-excitation, 
projection. The integration of different depth wise blocks concatenation results in features 
with different depth and scale results in efficient features representation. Figures 8 and 9, 
Tables 2 and 4 illustrate the evaluation results. Notice that proposed framework showed 
considerably significantly performance 0.932 in comparison to 0.905, 0.873, 0.8579 and 
0.893 using InceptionV3, DenseNet, ResNet and MobileNet respectively. We can observe a 
similar trend for precision, recall, and F-score.

Our second experiment used the proposed framework as a feature extractor and applied 
SVM, random forest, multilayer perceptron, logistic regression, gradient boosting, and bag-
ging tree as the classifier. Figures 10 and 11 and Tables 3 and 4 illustrate the compara-
tive evaluation of different classifier methods. Notice that the proposed framework showed 
significant performance when used as a feature extractor with a classifier compared to an 
end-to-end framework (experiment I). We observe that random forest-based framework 
achieved 0.961 accuracy compared to 0.951, 0.941, 0.9366 and 0.9498 using multilayer 
perceptron, with gradient boasting bagging tree and logistic regression, respectively. We 
can observe a similar trend for other evaluation parameters. Figure  13 showed the con-
fusion matrix. Notice that the proposed frame-work with random forest achieved higher 
detection performance (87%) for COVID infection comparatively. A similar trend can be 
noticed in Fig. 12.

Table 3 and Fig. 12 describes the comparative results of proposed framework. Results 
showed that experiments-2 showed considerably better performance in comparison to 

Table 3  Feature extraction using 
proposed model with traditional 
machine learning classifiers

Proposed + classifier Accuracy Precision Recall F1 score

Random forest 0.9617 0.9581 0.9556 0.9567
Logistic regression 0.9498 0.9457 0.9408 0.94288
Gradient boosting 0.9366 0.9302 0.9305 0.9304
Bagging trees 0.9419 0.9377 0.9347 0.9360
Multilayer perceptron 0.9511 0.9450 0.9440 0.9445
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experiment 1. We have used SHAP python-based library to further validate our proposed 
model’s results with machine learning classifiers. The Fig.  7a shows the distribution of 
feature importance extracted from a proposed model using random forest algorithm and 
Fig. 7b also validated the feature importance and showed  f66,  f29 highest feature importance 

Fig. 13  Confusion metrics for proposed COVID-19 identification framework
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values. We have used the RSIE python library to explain the qualitative visualization anal-
ysis of some input sample and the saliency map generated based on proposed model pre-
diction and created 1000 randomly masked versions of given X-ray image samples. Fig-
ure 6 shows the feature map importance shows the corresponding right location of features 
and would be better to see the feature maps activation of respective class where the features 
provided more attention for right features.

4.4  Discussion

The researcher found the variants are much more transmissible or could present challenges 
for the Covid vaccine i.e. a UK based variant of COVID-19 is identified as fast-spread-
ing and 70% more transmissible than existing strains. The aggressive growth variant of 
COVID patients is overwhelming healthcare systems across the world. Although test kits 
can detect infectious cases, detecting possible COVID-19 infections on Chest X-ray may 
help analyze the damage to lunges and detect high-risk patients. X-ray and CT machines 
are already available in almost all healthcare systems, especially there no time of transpor-
tation required for modern X-ray systems. In this work, we propose using a chest X-ray to 
detect the damage to the lungs and detect the high-risk patient and prioritize the selection 
of patients for further RT-PCR testing. The proposed framework can also be used in an 
inpatient setting where the current systems struggle to decide the COVID affected patient 
and high-risk patients.

We presented depth-wise multilevel features concatenated deep neural network to diag-
nose COVID affected areas from lungs X-rays images. We consider scaling up the Con-
vNets and presenting a novel framework by balancing the scaling factors. The depth-wise 
multilevel concatenation is a learning approach that combines a different level of features 
representation with improving the performance of the deep network and making generaliza-
tion ability better. The network consists of multiple blocks that uniformly scale all dimen-
sions (depth, width and resolution). To evaluate the performance of proposed framework, 
we have compared the performance of proposed framework with state of the art methods 
such as Resnet50 (Narin et  al., 2020), InceptionV3 (Narin et  al., 2020), CNN (Panwar 
et  al., 2020), curvelet transform (Altan & Karasu, 2020), chaotic salp swarm algorithm 
(CSSA) (Altan & Karasu, 2020), EfficientNet-B (Altan & Karasu, 2020), Transfer learning 
with ChexNet (Chowdhury et al., 2020; Das et al., 2020; Razzak et al., 2020a), COVID-
Net (Wang et al., 2020b), ResNet features and XGBoost (Das et al., 2020), Resnet50 fea-
tures and SVM (Sethy & Behera, 2020) DarkCovidNet CNN (Ozturk et al., 2020), CoroNet 
(Khan et al., 2020) Cov-eXnet (Mahmud et al., 2020) and Resnet50 features and ensemble 
of subspace discriminant classifier (Al-Timemy et al., 2020). Table 3 describes the compar-
ative evaluation of the proposed framework with state of the art methods. Results showed 
that the proposed framework achieved significant gain in performance 96.18 and 93.28 
using framework plus random forest and end-to-end model respectively compared to the 
state of the art methods. Figure 13 showed the confusion matrix. Notice that the proposed 
framework with random forest achieved higher detection performance (87%) for COVID 
infection comparatively. This shows that the inclusion of depth-wise components, squeeze-
and-excitation, results in better performance by capturing more receptive fields than tradi-
tional convolutional layers. However, the parameters are almost the same i.e. balancing the 
width, depth and resolution of the network resulted in better feature representation. In con-
trast, the depth-wise multilevel feature fusion by aggregating the high level features results 
in combining the contextual information from different levels.
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The promising and encouraging results of the proposed framework in diagnosing 
COVID-19 affected areas from radiography images indicate that it can be used as an appli-
cation for the detection of COVID. The promising and encouraging results of the proposed 
depth-wise framework in detecting COVID affected patients from X-rays images indicate 
that deep learning has a more significant role in fighting against COVID-19. Further in-
depth analysis can be performed, and extensive data can be used to improve the detection 
performance.

5  Conclusion

The exponential increase in COVID-19 patients is over-whelming healthcare systems 
across the world. With limited testing kits, every patient with respiratory illness can’t be 
tested using conventional techniques. In this paper, we presented a novel framework for the 
classification of COVID affected areas. We presented a depth-wise deep neural network 
for the detection of COVID affected lungs regions. Considering the depth-wise component 
and squeeze-and-excitation results in better performance by capturing more receptive fields 
than traditional convolutional layers; however, the parameters are almost the same. The 
extensive experiments on the benchmark X-rays dataset demonstrated the proposed frame-
work’s effectiveness by achieving 93.28% and 96.17% using experiment 1 and experiment 
2 in comparison to cutting-edge methods primarily based on transfer learning. In future, we 
are planning to consider a depth analysis of the network and consider transfer learning on 
the proposed framework.
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